Skip to main content
Log in

Periodical drying or no drying during aquaculture affects the desiccation tolerance of a sublittoral Pyropia yezoensis strain

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Germplasm degeneration causes serious problems for the Chinese Pyropia yezoensis industry. A subtidal P. yezoensis strain was introduced into aquaculture. The desiccation tolerance of this strain is compared by using “periodically drying” and “never drying” culture protocols. The thalli with periodical drying tolerated ~70% relative water loss (RWL) while those cultured without “drying” endured ≤50% RWL. Pigment contents were higher in the thalli with periodical drying than those farmed without drying. Chlorophyll a and carotenoid levels from both systems decreased significantly at RWL = 20%, were steady at RWL = 20–50%, and decreased at RWL = 60%. Phycoerythrin, phycocyanin, and soluble proteins (SPs) contents from the periodically drying system decreased significantly at RWL = 20%, while those from the never drying system remained steady at RWL = 0–50%. For (phycoerythrin + phycocyanin): SPs from either system increased during dehydration and peaked at the critical point of desiccation tolerance. Superoxide dismutase (SOD), catalase, and peroxidase activities peaked at RWL = 40–50% in the never drying system and 60–70% in the periodically drying system. The results suggested that SOD, catalase, and peroxidase played important roles in desiccation tolerance of this strain. Phycoerythrin, phycocyanin, and carotenoid could dissipate the excess energy as heat or directly scavenge reactive oxygen species. Thus, no significant malondialdehyde was accumulated during dehydration. In conclusion, with and without periodically drying during P. yezoensis farming affected the desiccation tolerance, pigments and SP contents, and antioxidase activities. The subtidal strain seemed to prefer the never drying culture protocol in terms of SPs content and SOD, CAT, and POD activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alpert P (2006) Constraints of tolerance: why are desiccation-tolerant organisms so small or rare? J Exp Biol 209:1575–1584

    Article  PubMed  Google Scholar 

  • Bartels D, Salamini F (2001) Desiccation tolerance in the resurrection plant Craterostigma plantagineum: a contribution to the study of drought tolerance at the molecular level. Plant Physiol 127:1346–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burritt DJ, Larkindale J, Hurd K (2002) Antioxidant metabolism in the intertidal red seaweed Stictosiphonia arbuscula following desiccation. Planta 215:829–838

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Wang WJ, Liang ZR, Liu FL, Sun XT, Yao HQ, Li XL, Wang FJ (2016) Genetic and nutrient analysis of new Pyropia yezoensis strain “Huangyou No. 1”. Guangxi Sci 23(2):131–137 (in Chinese with English abstract)

    Google Scholar 

  • Chen CS, Weng L, Wang L, Ji DH, Xie CT, Xu Y (2007) Influence of desiccation and cold preservation on the survival and growth of Porphyra haitanensis and unwanted alga. Acta Oceanol Sin 29(2):131–136 (in Chinese with English abstract)

  • Collén J, Guisle-Marsollier I, Léger JJ, Boyen C (2007) Response of the transcriptome of the intertidal red seaweed Chondrus crispus to controlled and natural stresses. New Phytol 176:45–55

    Article  PubMed  Google Scholar 

  • Contreras-Porcia L, Thomas D, Flores V, Correa JA (2011) Tolerance to oxidative stress induced by desiccation in Porphyra columbina (Bangiales, Rhodophyta). J Exp Bot 62:1815–1829

    Article  CAS  PubMed  Google Scholar 

  • Contreras-Porcia L, López-Cristoffanini C, Lovazzano C, Flores-Molina MR, Thomas D, Núñez A, Fierro C, Guajardo E, Correa JA, Kube M, Reinhardt R (2013) Differential gene expression in Pyropia columbina (Bangiales, Rhodophyta) under natural hydration and desiccation conditions. Lat Am J Aquat Res 41:933–958

    Article  Google Scholar 

  • Cosgrove J, Borowitzka MA (2011) Chlorophyll fluorescence terminology: an introduction. In: Suggett DJ, Prásil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer, Dordrecht, pp 1–17

    Google Scholar 

  • Davison IR, Pearson GA (1996) Stress tolerance in intertidal seaweeds. J Phycol 32:197–211

    Article  Google Scholar 

  • Druehl LD, Green JM (1982) Vertical distribution of intertidal seaweeds as related to patterns of submersion and emersion. Mar Ecol Prog Ser 9:163–170

    Article  Google Scholar 

  • Gao K, Aruga Y (1987) Preliminary studies on the photosynthesis and respiration of Porphyra yezoensis under emersed conditions. J Tokyo Univ Fish 47:51–65

    Google Scholar 

  • Gao S, Wang GC (2012) The enhancement of cyclic electron flow around photosystem I improves the recovery of severely desiccated Porphyra yezoensis (Bangiales, Rhodophyta). J Exp Bot 63:4349–4358

    Article  CAS  PubMed  Google Scholar 

  • Green LA, Neefus CD (2015) Effects of temperature, light level, photoperiod, and ammonium concentration on Pyropia leucosticta (Bangiales, Rhodophyta) from the Northwest Atlantic. J Appl Phycol 27:1253–1261

    Article  CAS  Google Scholar 

  • Guajardo E, Correa JA, Contreras-Porcia L (2016) Role of abscisic acid (ABA) in activating antioxidant tolerance response to desiccation stress in intertidal seaweed species. Planta 243:767–781

    Article  CAS  PubMed  Google Scholar 

  • Hader D, Lebert M, Sinha RP, Barbieri ES, Helbling EW (2002) Role of protective and repair mechanisms in the inhibition of photosynthesis in marine macroalgae. Photochem Photobiol Sci 1:809–814

    Article  PubMed  Google Scholar 

  • Huang XS, Liu JH, Chen XJ (2010) Overexpression of PtrABF gene, a Bzip transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. BMC Plant Biol 10:230

    Article  PubMed  PubMed Central  Google Scholar 

  • Illing N, Denby KJ, Collett H, Shen A, Farrant JM (2005) The signature of seeds in resurrection plants: a molecular and physiological comparison of desiccation tolerance in seeds and vegetative tissues. Integr Comp Biol 45:771–787

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Gao K, Helbling EW (2008) UV-absorbing compounds in Porphyra haitanensis (Rhodphyta) with special reference to effects of desiccation. J Appl Phycol 20:387–395

    Article  Google Scholar 

  • Kranner I, Beckett RP, Wornik S, Zorn M, Pfeifhofer HW (2002) Revival of a resurrection plant correlates with its antioxidant status. Plant J 31:13–24

    Article  CAS  PubMed  Google Scholar 

  • Li XL, Wang WJ, Liang ZR, Liu FL, Sun XT, Cao Y, Yao HQ, Wang FJ (2017) Antioxidant physiological characteristics of wild Pyropia yezoensis under desiccation stress. Mar Fish Res in press. (in Chinese with English abstract)

  • Lin AP, Wang GC, Yang F, Pan GH (2009) Photosynthetic parameters of sexually different parts of Porphyra katadai var. hemiphylla (Bangiales, Rhodophyta) during dehydration and rehydration. Planta 229:803–810

    Article  CAS  PubMed  Google Scholar 

  • Liu YC (2009) Mechanism for differential desiccation tolerance in Porphyra species. Thesis, Northeastern University, Boston, USA

  • Niwa K, Iida S, Kato A, Kawai H, Kikuchi N, Kobiyama A, Aruga Y (2009) Genetic diversity and introgression in two cultivated species (Porphyra yezoensis and Porphyra tenera) and closely related wild species of Porphyra (Bangiales, Rhodophyta). J Phycol 45:493–502

    Article  CAS  PubMed  Google Scholar 

  • Oh S, Shin M, Lee K, Choe E (2013) Effects of water activity on pigments in dried laver (Porphyra) during storage. Food Sci Biotechnol 22:1523–1529

    Article  CAS  Google Scholar 

  • Oliver MJ, Velten J, Mishler B (2005) Desiccation tolerance in bryophytes: a reflection of the primitive strategy for plant survival in dehydrating habitats? Integr Comp Biol 45:788–799

    Article  PubMed  Google Scholar 

  • Porra RJ (2002) The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth Res 73:149–156

    Article  CAS  PubMed  Google Scholar 

  • Read S, Northcote D (1981) Minimization of variation in the response to different proteins of the Coomassie blue G dye-binding assay for protein. Anal Biochem 116:53–64

    Article  CAS  PubMed  Google Scholar 

  • Romay C, González R, Ledón N, Remirez D, Rimbau V (2003) C-phycocyanin, a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr Protein Pept Sci 4:207–216

    Article  CAS  PubMed  Google Scholar 

  • Sampath-Wiley P, Neefus CD (2007) An improved method for estimating R-phycoerythrin and R-phycocyanin contents from crude aqueous extracts of Porphyra (Bangiales, Rhodophyta). J Appl Phycol 19:123–129

    Article  CAS  PubMed  Google Scholar 

  • Shen D, Wu M (1995) Chromosomal and mutagenic study of the marine macroalga, Gracilaria enuistipitata. J Appl Phycol 7:26–30

    Article  Google Scholar 

  • Sutherland JE, Lindstrom SC, Nelson WA, Brodie J, Lynch MDJ, Hwang MS, Choi HG, Miyata M, Kikuchi N, Oliveira MC, Farr T, Neefus C, Mols-Mortensen A, Milstein D, Müller KM (2011) A new look at an ancient order: generic revision of the Bangiales (Rhodophyta). J Phycol 47:1131–1151

    Article  PubMed  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signaling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    Article  CAS  PubMed  Google Scholar 

  • Tandeau de Marsac N (2003) Phycobiliproteins and phycobilisomes, the early observation. Photobiol Res 76:197–205

    CAS  Google Scholar 

  • Vranová E, Inzé D, Van Breusegen F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236

    Article  PubMed  Google Scholar 

  • Wang WJ, Zhu JY, Xu P, Xu JR, Lin XZ, Huang CK, Song W, Peng G, Wang GC (2008) Characterization of the life history of Bangia fuscopurpurea (Bangiaceae, Rhodophyta) in connection with its artificial cultivation in China. Aquaculture 278:101–109

    Article  CAS  Google Scholar 

  • Wang WJ, Wang FJ, Zhu JY, Sun XT, Yao CY, Xu P (2011) Freezing tolerance of Porphyra yezoensis (Bangiales, Rhodophyta) gametophyte assessed by chlorophyll fluorescence. J Appl Phycol 23:1017–1022

    Article  CAS  Google Scholar 

  • Wang WJ, Sun XT, Liu FL, Liang RZ, Zhang JH, Wang FJ (2016) Effect of abiotic stress on the gameophyte of Pyropia katadae var. hemiphylla (Bangiales, Rhodophyta). J Appl Phycol 28:469–479

    Article  CAS  Google Scholar 

  • Watanabe Y, Nishihara GN, Tokunaga S, Terada R (2014) Effect of irradiance and temperature on the photosynthesis of a cultivated red alga, Pyropia tenera (= Porphyra tenera), at the southern limit of distribution in Japan. Phycol Res 62:187–196

    Article  CAS  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  • Xie J, Xu Y, Ji D, Chen C, Xie C (2014) Physiological response of the antioxidant system in Pyropia haitanensis to desiccation stress. J Fish Sci China 21(2):405–412 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Xu Y, Gao S, Yang Y, Huang M, Cheng L, Wei Q, Fei Z, Hong B (2013) Transcriptome sequencing and whole genome expression profiling of chrysanthemum under dehydration stress. BMC Genomics 14:662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng Y, Kermode AR (2004) A gymnosperm ABI3 gene functions in a severe abscisic acid-insensitive mutant of Arabidopsis (abi3-6) to restore the wild-type phenotype and demonstrates a strong synergistic effect with sugar in the inhibition of post-germinative growth. Plant Mol Biol 56:731–746

    Article  CAS  PubMed  Google Scholar 

  • Zheng BF, Li Y (2009) Rhodophyta No. 1 Porphyridiales, Erythropeltidales, Goniotrichales, Bangiales. In: Flora algarum marinarum sinicarum. Science Publisher, Beijing, pp 56–105

    Google Scholar 

  • Zhong ZH, Wang WJ, Sun XT, Liu FL, Liang ZR, Wang FJ, Chen WZ (2016) Developmental and physiological properties of Porphyra dentata (Bangiales, Rhodophyta) conchocelis in culture. J Appl Phycol 28:3435–3445

    Article  Google Scholar 

  • Zhou W, He L, Yang F, Lin A, Zhang B, Niu J, Wang G (2014) Pyropia yezoensis can utilize CO2 in the air during moderate dehydration. Chin J Oceanol Limnol 32:358–364

    Article  Google Scholar 

  • Zou D, Gao K (2002) Effects of desiccation and CO2 concentrations on emersed photosynthesis in Porphyra haitanensis (Bangiales, Rhodophyta), a species farmed in China. Eur J Phycol 37:587–592

    Article  Google Scholar 

  • Zou D, Gao K (2004) Exogenous carbon acquisition of photosynthesis in Porphyra haitanensis (Bangiales, Rhodophyta) under emersed state. Prog Nat Sci 14(2):138–144

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Special Scientific Research Funds for Central Non-profit Institutes, Chinese Academy of Fishery Sciences (No. 2015A02), the Primary Research & Development Plan of Shandong Province (2016GSF115038), and the Science and Technology Plan of Changdao (2016-2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-jun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Xl., Wang, Wj., Liu, Fl. et al. Periodical drying or no drying during aquaculture affects the desiccation tolerance of a sublittoral Pyropia yezoensis strain. J Appl Phycol 30, 697–705 (2018). https://doi.org/10.1007/s10811-017-1227-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1227-y

Keywords

Navigation