316
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Lung detection and severity prediction of pneumonia patients based on COVID-19 DET-PRE network

ORCID Icon, , &
Pages 97-106 | Received 26 Jul 2021, Accepted 01 Dec 2021, Published online: 14 Dec 2021
 

ABSTRACT

Background

The sudden outbreak of COVID-19 pneumonia has brought a heavy disaster to individuals globally. Facing this new virus, the clinicians have no automatic tools to assess the severity of pneumonia patients.

Methods

In the current work, a COVID-19 DET-PRE network with two pipelines was proposed. Firstly, the lungs in X-rays were detected and segmented through the improved YOLOv3 Dense network to remove redundant features. Then, the VGG16 classifier was pre-trained on the source domain, and the severity of the disease was predicted on the target domain by means of transfer learning.

Results

The experiment results demonstrated that the COVID-19 DET-PRE network can effectively detect the lungs from X-rays and accurately predict the severity of the disease. The mean average precisions (mAPs) of lung detection in patients with mild and severe illness were 0.976 and 0.983 respectively. Moreover, the accuracy of severity prediction of COVID-19 pneumonia can reach 86.1%.

Conclusions

The proposed neural network has high accuracy, which is suitable for the clinical diagnosis of COVID-19 pneumonia.

Declaration of interest

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Reviewer disclosures

Peer reviewers on this manuscript have no relevant financial or other relationships to disclose.

Additional information

Funding

This research was supported by the National Natural Science Foundation of China [grant number 51905093] and A Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 570.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.