Advertisement

Abstract

The boreal forest, one of the largest biomes on Earth, provides ecosystem services that benefit society at levels ranging from local to global. Currently, about two-thirds of the area covered by this biome is under some form of management, mostly for wood production. Services such as climate regulation are also provided by both the unmanaged and managed boreal forests. Although most of the boreal forests have retained the resilience to cope with current disturbances, projected environmental changes of unprecedented speed and amplitude pose a substantial threat to their health. Management options to reduce these threats are available and could be implemented, but economic incentives and a greater focus on the boreal biome in international fora are needed to support further adaptation and mitigation actions.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Summary

Figs. S1 and S2
References (7182)

Resources

File (gauthier.sm.pdf)

References and Notes

1
Brandt J. P., Flannigan M. D., Maynard D. G., Thompson I. D., Volney W. J. A., An introduction to Canada’s boreal zone: Ecosystem processes, health, sustainability, and environmental issues. Environ. Rev. 21, 207–226 (2013). 10.1139/er-2013-0040
2
P. J. Burton, P. J. Burton, Y. Bergeron, B. E. C. Bogdanski, G. P. Juday, T. Kuuluvainen, B. J. McAfee, A. Ogden, V. K. Teplyakov, R. I. Alfaro, D. A. Francis, S. Gauthier, J. Hantula in Forests and Society – Responding to Global Drivers of Change, G. Mery, P. Katila, G. Galloway, R. I. Alfaro, M. Kanninen, M. Lobovikov, J. Varjo, Eds. (International Union of Forest Research Organizations, Vienna, Austria, 2010), pp. 249–282.
3
Potapov P., Yaroshenko A., Turubanova S., Dubinin M., Laestadius L., Thies C., Aksenov D., Egorov A., Yesipova Y., Glushkov I., Karpachevskiy M., Kostikova A., Manisha A., Tsybikova E., Zhuravleva I., Mapping the world’s intact forest landscapes by remote sensing. Ecol. Soc. 13, 51 (2008).
4
Steffen W., Richardson K., Rockström J., Cornell S. E., Fetzer I., Bennett E. M., Biggs R., Carpenter S. R., de Vries W., de Wit C. A., Folke C., Gerten D., Heinke J., Mace G. M., Persson L. M., Ramanathan V., Reyers B., Sörlin S., Planetary boundaries: Guiding human development on a changing planet. Science 347, 1259855 (2015). 10.1126/science.1259855
5
Pan Y., Birdsey R. A., Fang J., Houghton R., Kauppi P. E., Kurz W. A., Phillips O. L., Shvidenko A., Lewis S. L., Canadell J. G., Ciais P., Jackson R. B., Pacala S. W., McGuire A. D., Piao S., Rautiainen A., Sitch S., Hayes D., A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011). 10.1126/science.1201609
6
Bradshaw C. J. A., Warkentin I. G., Global estimates of boreal forest carbon stocks and flux. Global Planet. Change 128, 24–30 (2015). 10.1016/j.gloplacha.2015.02.004
7
Moen J., Rist L., Bishop K., Chapin F. S., Ellison D., Kuuluvainen T., Petersson H., Puettmann K. J., Rayner J., Warkentin I. G., Bradshaw C. J. A., Eye on the taiga: Removing global policy impediments to safeguard the boreal forest. Conserv. Lett. 7, 408–418 (2014). 10.1111/conl.12098
8
Food and Agriculture Organization of the United Nations (FAO), “The Russian Federation forest sector. Outlook study to 2030” (FAO, Rome, 2012); www.fao.org/docrep/016/i3020e/i3020e00.pdf
9
Reyer C. P. O., Brouwers N., Rammig A., Brook B. W., Epila J., Grant R. F., Holmgren M., Langerwisch F., Leuzinger S., Lucht W., Medlyn B., Pfeifer M., Steinkamp J., Vanderwel M. C., Verbeeck H., Villela D. M., Forest resilience and tipping points at different spatio-temporal scales: Approaches and challenges. J. Ecol. 103, 5–15 (2015). 10.1111/1365-2745.12337
10
FAO, “Global forest resources assessment 2010. Terms and definitions,” Working paper 144/E, FAO, Rome, 2010; www.fao.org/docrep/014/am665e/am665e00.pdf.
11
D. Kneeshaw, Y. Bergeron, T. Kuuluvainen, in The Sage Handbook of Biogeography, A. Millington, M. Blumler, U. Schickhoff, Eds. (Sage, London, 2011), pp. 261–278.
12
Zimov S. A., Schuur E. A. G., Chapin F. S., Permafrost and the global carbon budget. Science 312, 1612–1613 (2006). 10.1126/science.1128908
13
A. Osawa, Y. Matsuura, T. Kajimoto, in Permafrost Ecosystems. Siberian Larch Forests, A. Osawa, O. A. Zyryanova, Y. Matsuura, T. Kajimoto, R. W. Wein, Eds. (Springer, Netherlands, 2010), pp. 459–481.
14
Shorohova E., Kneeshaw D., Kuuluvainen T., Gauthier S., Variability and dynamics of old- growth forests in the circumboreal zone: Implications for conservation, restoration and management. Silva Fenn. 45, 785–806 (2011). 10.14214/sf.72
15
T. Kuuluvainen, J. Siitonen, in Managing Forests as Complex Adaptive Systems - Building Resilience to the Challenge of Global Change, C. Messier, K. J. Puettmaan, K. D. Coates, Eds. (Routledge, New York, 2013), pp. 244–268.
16
Kuuluvainen T., Aakala T., Natural forest dynamics in boreal Fennoscandia: A review and classification. Silva Fenn. 45, 823–839 (2011). 10.14214/sf.73
17
Rogers B. M., Soja A. J., Goulden M. L., Randerson J. T., Influence of tree species on continental differences in boreal fires and climate feedbacks. Nat. Geosci. 8, 228–234 (2015). 10.1038/ngeo2352
18
P. J. Burton, in Managing Forests as Complex Adaptive Systems - Building Resilience to the Challenge of Global Change, C. Messier, K. J. Puettmaan, K. D. Coates, Eds. (Routledge, New York, 2013), pp. 79–108.
19
Harper K. A., Macdonald S. E., Mayerhofer M. S., Biswas S. R., Esseen P.-A., Hylander K., Stewart K. J., Mallik A. U., Drapeau P., Jonsson B.-G., Lesieur D., Kouki J., Bergeron Y., Edge influence on vegetation at natural and anthropogenic edges of boreal forests in Canada and Fennoscandia. J. Ecol. 103, 550–562 (2015). 10.1111/1365-2745.12398
20
Bolton D. K., Coops N. C., Wulder M. A., Characterizing residual structure and forest recovery following high-severity fire in the western boreal of Canada using Landsat time-series and airborne lidar data. Remote Sens. Environ. 163, 48–60 (2015).
21
Aitken S. N., Yeaman S., Holliday J. A., Wang T., Curtis-McLane S., Adaptation, migration or extirpation: Climate change outcomes for tree populations. Evol. Appl. 1, 95–111 (2008). 10.1111/j.1752-4571.2007.00013.x
22
Lindner M., Maroschek M., Netherer S., Kremer A., Barbati A., Garcia-Gonzalo J., Seidl R., Delzon S., Corona P., Kolström M., Lexer M. J., Marchetti M., Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manage. 259, 698–709 (2010). 10.1016/j.foreco.2009.09.023
23
Blarquez O., Carcaillet C., Frejaville T., Bergeron Y., Disentangling the trajectories of alpha, beta and gamma plant diversity of North American boreal ecoregions since 15,500 years. Front. Ecol. Evol. 2, 1–8 (2014). 10.3389/fevo.2014.00006
24
A forest is considered to be managed when it is included within a forest management plan for purposes such as conservation, fire protection, or wood production. A managed forest may not be accessible or may not yet have been subjected to active management activities.
25
Venier L. A., Thompson I. D., Fleming R., Malcolm J., Aubin I., Trofymow J. A., Langor D., Sturrock R., Patry C., Outerbridge R. O., Holmes S. B., Haeussler S., De Grandpré L., Chen H. Y. H., Bayne E., Arsenault A., Brandt J. P., Effects of natural resource development on the terrestrial biodiversity of Canadian boreal forests. Environ. Rev. 22, 457–490 (2014). 10.1139/er-2013-0075
26
Federal Agency of Forest Service, Forest Fund of the Russian Federation (state by 1 January 2009) (Federal Agency of Forest Service, Moscow, 2009) [in Russian].
27
P. J. Burton, C. Messier, G. F. Weetman, E. E. Prepas, W. L. Adamowicz, R. Titler, in Towards Sustainable Management of the Boreal Forest, P. J. Burton, C. Messier, D. W. Smith, W. L. Adamowicz, Eds. (NRC Research Press, Ottawa, Canada, 2003), pp. 1–40.
28
Helmisaari H.-S., Kaarakka L., Olsson B. A., Increased utilization of different tree parts for energy purposes in the Nordic countries. Scand. J. For. Res. 29, 312–322 (2014). 10.1080/02827581.2014.926097
29
State Program of the Russian Federation, Development of Forest Management for 2013-2020 [in Russian]; www.mnr.gov.ru/upload/iblock/e82/GP_2013-2020.pdf.
30
Newell J. P., Simeone J., Russia’s forests in a global economy: How consumption drives environmental change. Eurasian Geogr. Econ. 55, 37–70 (2014). 10.1080/15387216.2014.926254
31
Kuuluvainen T., Tahvonen O., Aakala T., Even-aged and uneven-aged forest management in boreal Fennoscandia: A review. Ambio 41, 720–737 (2012). 10.1007/s13280-012-0289-y
32
Maynard D. G., Paré D., Thiffault E., Lafleur B., Hogg K. E., Kishchuk B., How do natural disturbances and human activities affect soils and tree nutrition and growth in the Canadian boreal forest? Environ. Rev. 22, 161–178 (2014). 10.1139/er-2013-0057
33
Thiffault E., Hannam K. D., Paré D., Titus B. D., Hazlett P. W., Maynard D. G., Brais S., Effects of forest biomass harvesting on soil productivity in boreal and temperate forests — A review. Environ. Rev. 19, 278–309 (2011). 10.1139/a11-009
34
Gauthier S., Bernier P., Burton P. J., Edwards J., Isaac K., Isabel N., Jayen K., Le Goff H., Nelson E. A., Climate change vulnerability and adaptation in the managed Canadian forest. Environ. Rev. 22, 256–285 (2014).
36
A. Z. Shvidenko, A. Z. Shvidenko, E. Gustafson, A. D. McGuire, V. I. Kharuk, D. G. Schepaschenko, H. H. Shugart, N. M. Tchebakova, N. N. Vygodskaya, A.A. Onuchin, D. J. Hayes, I. McCallum, S. Maksyutov, L. V. Mukhortova, A. J. Soja, L. Belelli-Marchesini, J. A. Kurbatova, A. V. Oltchev, E. I. Parfenova, J. K. Shuman, in Regional Environmental Changes in Siberia and Their Global Consequences, P. Y. Groisman, G. Gutman, Eds. (Springer, New York, 2013), pp. 171–249.
37
A. A. Baklanov, V. V. Penenko, A. G. Mahura, A. A. Vinogradova, N. F. Elansky, E. A. Tsvetova, O. Y. Rigina, L. O. Maksimenkov, R. B. Nuterman, F. A. Pogarskii, A. Zakey in Regional Environmental Changes in Siberia and Their Global Consequences, P. Y. Groisman, G. Gutman, Eds. (Springer, New York, 2013), pp. 303–346.
38
Intergovernmental Panel on Climate Change (IPCC), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley, Eds. (Cambridge Univ. Press, Cambridge, 2013).
39
Price D. T., Alfaro R. I., Brown K. J., Flannigan M. D., Fleming R. A., Hogg E. H., Girardin M. P., Lakusta T., Johnston M., McKenney D. W., Pedlar J. H., Stratton T., Sturrock R. N., Thompson I. D., Trofymow J. A., Venier L. A., Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. Environ. Rev. 21, 322–365 (2013).
40
World Bank, “Turn down the heat: Confronting the new climate normal” (World Bank, Washington, DC, 2014); https://openknowledge.worldbank.org/handle/10986/20595.
41
Scheffer M., Hirota M., Holmgren M., Van Nes E. H., Chapin F. S., Thresholds for boreal biome transitions. Proc. Natl. Acad. Sci. U.S.A. 109, 21384–21389 (2012). 10.1073/pnas.1219844110
42
Allen C. D., Macalady A. K., Chenchouni H., Bachelet D., McDowell N., Vennetier M., Kitzberger T., Rigling A., Breshears D. D., Hogg E. H. T., Gonzalez P., Fensham R., Zhang Z., Castro J., Demidova N., Lim J.-H., Allard G., Running S. W., Semerci A., Cobb N., A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259, 660–684 (2010). 10.1016/j.foreco.2009.09.001
43
Shvidenko A. Z., Schepaschenko D. G., Climate change and wildfires in Russia. Contemp. Probl. Ecol. 6, 683–692 (2013). 10.1134/S199542551307010X
44
Boulanger Y., Gauthier S., Burton P. J., A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Can. J. For. Res. 44, 365–376 (2014). 10.1139/cjfr-2013-0372
45
de Groot W. J., Flannigan M. D., Cantin A. S., Climate change impacts on future boreal fire regimes. For. Ecol. Manage. 294, 35–44 (2013). 10.1016/j.foreco.2012.09.027
46
Kurz W. A., Dymond C. C., Stinson G., Rampley G. J., Neilson E. T., Carroll A. L., Ebata T., Safranyik L., Mountain pine beetle and forest carbon feedback to climate change. Nature 452, 987–990 (2008). 10.1038/nature06777
47
Langor D. W., Cameron E. K., MacQuarrie C. J. K., McBeath A., McClay A., Peter B., Pybus M., Ramsfield T., Ryall K., Scarr T., Yemshanov D., DeMerchant I., Foottit R., Pohl G. R., Non-native species in Canada’s boreal zone: Diversity, impacts, and risk. Environ. Rev. 22, 372–420 (2014). 10.1139/er-2013-0083
48
Boisvert-Marsh L., Périé C., de Blois S., Shifting with climate? Evidence for recent changes in tree species distribution at high latitudes. Ecosphere 5, 83 (2014). 10.1890/ES14-00111.1
49
Kharuk V., Ranson K. J., Dvinskaya M. L., Evidence of evergreen conifer invasion into larch dominated forests during recent decades in central Siberia. Eurasian J. For. Res. 10, 163–171 (2007).
50
McKenney D. W., Pedlar J. H., Lawrence K., Campbell K., Hutchinson M. F., Potential impacts of climate change on the distribution of North American trees. Bioscience 57, 939–948 (2007). 10.1641/B571106
51
Kauppi P. E., Posch M., Pirinen P., Large impacts of climatic warming on growth of boreal forests since 1960. PLOS ONE 9, e111340 (2014). 10.1371/journal.pone.0111340
52
Zhang K., Kimball J. S., Hogg E. H., Zhao M., Oechel W. C., Cassano J. J., Running S. W., Satellite-based model detection of recent climate-driven changes in northern high-latitude vegetation productivity. J. Geophys. Res. 113, G03033 (2008).
53
Lapenis A., Shvidenko A., Shepaschenko D., Nilsson S., Aiyyer A., Acclimation of Russian forests to recent changes in climate. Glob. Change Biol. 11, 2090–2102 (2005). 10.1111/j.1365-2486.2005.001069.x
54
Beck P. S. A., Juday G. P., Alix C., Barber V. A., Winslow S. E., Sousa E. E., Heiser P., Herriges J. D., Goetz S. J., Changes in forest productivity across Alaska consistent with biome shift. Ecol. Lett. 14, 373–379 (2011). 10.1111/j.1461-0248.2011.01598.x
55
Girardin M. P., Raulier F., Bernier P. Y., Tardif J. C., Response of tree growth to a changing climate in boreal central Canada: A comparison of empirical, process-based, and hybrid modelling approaches. Ecol. Model. 213, 209–228 (2008). 10.1016/j.ecolmodel.2007.12.010
56
Tchebakova N. M., Parfenova E. I., Soja A. J., Climate change and climate-induced hot spots in forest shifts in central Siberia from observed data. Reg. Environ. Change 11, 817–827 (2011). 10.1007/s10113-011-0210-4
57
Jasinski J. P. P., Payette S., The creation of alternative stable states in the southern boreal forest, Québec, Canada. Ecol. Monogr. 75, 561–583 (2005). 10.1890/04-1621
58
Kurz W. A., Shaw C. H., Boisvenue C., Stinson G., Metsaranta J., Leckie D., Dyk A., Smyth C., Neilson E. T., Carbon in Canada’s boreal forest — A synthesis. Environ. Rev. 21, 260–292 (2013). 10.1139/er-2013-0041
59
Dolman A. J., Shvidenko A., Schepaschenko D., Ciais P., Tchebakova N., Chen T., van der Molen M. K., Belelli Marchesini L., Maximov T. C., Maksyutov S., Schulze E.-D., An estimate of the terrestrial carbon budget of Russia using inventory-based, eddy covariance and inversion methods. Biogeosciences 9, 5323–5340 (2012). 10.5194/bg-9-5323-2012
60
Neigh C. S. R., Nelson R. F., Ranson K. J., Margolis H. A., Montesano P. M., Sun G., Kharuk V., Næsset E., Wulder M. A., Andersen H.-E., Taking stock of circumboreal forest carbon with ground measurements, airborne and spaceborne LiDAR. Remote Sens. Environ. 137, 274–287 (2013). 10.1016/j.rse.2013.06.019
61
Bonan G. B., Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008). 10.1126/science.1155121
62
Lemprière T. C., Kurz W. A., Hogg E. H., Schmoll C., Rampley G. J., Yemshanov D., McKenney D. W., Gilsenan R., Beatch A., Blain D., Bhatti J. S., Krcmar E., Canadian boreal forests and climate change mitigation. Environ. Rev. 21, 293–321 (2013). 10.1139/er-2013-0039
63
Kurganova I., Lopes de Gerenyu V., Six J., Kuzyakov Y., Carbon cost of collective farming collapse in Russia. Global Change Biol. 20, 938–947 (2014). 10.1111/gcb.12379
64
Shvidenko A. Z., Schepaschenko D. G., Carbon budget of Russian forests. Siberian J. For. Sci. 1, 69–92 (2014) [in Russian].
65
Pukkala T., Lähde E., Laiho O., Optimizing any-aged management of mixed boreal forest under residual basal area constraints. J. For. Res. 25, 627–636 (2014). 10.1007/s11676-014-0501-y
66
Rämö J., Tahvonen O., Economics of harvesting uneven-aged forest stands in Fennoscandia. Scand. J. For. Res. 29, 777–792 (2014). 10.1080/02827581.2014.982166
67
Andrew M. E., Wulder M. A., Cardille J. A., Protected areas in boreal Canada: A baseline and considerations for the continued development of a representative and effective reserve network. Environ. Rev. 22, 135–160 (2014). 10.1139/er-2013-0056
68
Gauthier S., Bernier P. Y., Boulanger Y., Guo X., Guindon L., Beaudoin A., Boucher D., Vulnerability of timber supply to projected changes in fire regime in Canada’s managed forests. Can. J. For. Res. 10.1139/cjfr-2015-0079 (2015).
69
Gustafson E. J., Shvidenko A. Z., Sturtevant B. R., Scheller R. M., Predicting global change effects on forest biomass and composition in south-central Siberia. Ecol. Appl. 20, 700–715 (2010). 10.1890/08-1693.1
70
Supplementary information on data sources and methods on the figures are available on Science Online.
71
I. S. Goudilin, “Landscape map of the USSR. Legend to the landscape map of the USSR” (Ministry of Geology of the USSR, Moscow, 1987) [in Russian].
72
IPCC, “Good practice guidance for land use, land-use change and forestry,” J. Penman, M. Gytarsky, T. Hiraishi, T. Krug, D. Kruger, R. Pipatti, L. Buendia, K. Miwa, T. Ngara, K. Tanabe, F. Wagner, Eds. (IPCC/National Greenhouse Gas Inventories Program/Institute for Global Environmental Strategies, Kanawaga, Japan, 2003).
73
Alaska Interagency Coordination Center, Fire Information; http://afsmaps.blm.gov.
74
See L., Fritz S., Perger C., Schill C., McCallum I., Schepaschenko D., Duerauer M., Sturn T., Karner M., Kraxner F., Obersteiner M., Harnessing the power of volunteers, the internet and Google Earth to collect and validate global spatial information using Geo-Wiki. Technol. Forecast. Soc. Change 10.1016/j.techfore.2015.03.002 (2015). 10.1016/j.techfore.2015.03.002
75
J. Brown, O. J. Ferrians Jr., J. A. Heginbottom, E. S. Melnikov, “Circum-arctic map of permafrost and ground ice conditions” (National Snow and Ice Data Center, Boulder, CO, 1998, revised 2001); http://nsidc.org/data/docs/fgdc/ggd318_map_circumarctic/.
76
Blackard J. A., Finco M., Helmer E., Holden G., Hoppus M., Jacobs D., Lister A., Moisen G., Nelson M., Riemann R., Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information. Remote Sens. Environ. 112, 1658–1677 (2008). 10.1016/j.rse.2007.08.021
77
Beaudoin A., Bernier P. Y., Guindon L., Villemaire P., Guo X. J., Stinson G., Bergeron T., Magnussen S., Hall R. J., Mapping attributes of Canada’s forests at moderate resolution through kNN and MODIS imagery. Can. J. For. Res. 44, 521–532 (2014). 10.1139/cjfr-2013-0401
78
Thurner M., Beer C., Santoro M., Carvalhais N., Wutzler T., Schepaschenko D., Shvidenko A., Kompter E., Ahrens B., Levick S. R., Schmullius C., Carbon stock and density of northern boreal and temperate forests. Glob. Ecol. Biogeogr. 23, 297–310 (2014). 10.1111/geb.12125
79
Giglio L., Randerson J. T., van der Werf G. R., Analysis of daily, monthly, and annual burned area using the fourth-generation Global Fire Emissions Database (GFED4). J. Geophys. Res. Biogeosciences 118, 317–328 (2013). 10.1002/jgrg.20042
80
R. H. Whittaker, Communities and Ecosystems (Macmillan, New York, ed. 2, 1975).
81
G. Kunstler, BIOMEplot: Plot the Whittaker biomes, R package version 0.1 (2014); https://github.com/kunstler/BIOMEplot/.
82
Tabor K., Williams J. W., Globally downscaled climate projections for assessing the conservation impacts of climate change. Ecol. Appl. 20, 554–565(2010). 10.1890/09-0173.1

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 349 | Issue 6250
21 August 2015

Submission history

Published in print: 21 August 2015

Permissions

Request permissions for this article.

Acknowledgments

We thank D. Boucher, D. Gervais, and Y. Boulanger for help with the figures and V. Roy, Y. Boulanger, M. Lorente, R. van Bogaert, and M. Cusson for comments on an earlier version of the paper.

Authors

Affiliations

S. Gauthier* [email protected]
Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, Quebec G1V 4C7, Canada.
P. Bernier
Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, Quebec G1V 4C7, Canada.
T. Kuuluvainen
Department of Forest Sciences, University of Helsinki, P.O. Box 27, 00014 Helsinki, Finland.
A. Z. Shvidenko
Ecosystems Services and Management Program, International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg, Austria.
D. G. Schepaschenko
Ecosystems Services and Management Program, International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg, Austria.

Notes

*
Corresponding author. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Effect of soil warming on growth and physiology of aspen seedlings from Alberta, Canada, The Forestry Chronicle, 99, 1, (67-79), (2023).https://doi.org/10.5558/tfc2023-002
    Crossref
  2. A Modeling Framework to Frame a Biological Invasion: Impatiens glandulifera in North America, Plants, 12, 7, (1433), (2023).https://doi.org/10.3390/plants12071433
    Crossref
  3. Predicting Spruce Taiga Distribution in Northeast Asia Using Species Distribution Models: Glacial Refugia, Mid-Holocene Expansion and Future Predictions for Global Warming, Forests, 14, 2, (219), (2023).https://doi.org/10.3390/f14020219
    Crossref
  4. Extreme temperature events reduced carbon uptake of a boreal forest ecosystem in Northeast China: Evidence from an 11-year eddy covariance observation, Frontiers in Plant Science, 14, (2023).https://doi.org/10.3389/fpls.2023.1119670
    Crossref
  5. Climate change may increase Quebec boreal forest productivity in high latitudes by shifting its current composition, Frontiers in Forests and Global Change, 6, (2023).https://doi.org/10.3389/ffgc.2023.1020305
    Crossref
  6. Future supply of boreal forest ecosystem services is driven by management rather than by climate change, Global Change Biology, 29, 6, (1484-1500), (2023).https://doi.org/10.1111/gcb.16566
    Crossref
  7. Airborne laser scanning reveals uniform responses of forest structure to moose ( Alces alces ) across the boreal forest biome , Journal of Ecology, (2023).https://doi.org/10.1111/1365-2745.14093
    Crossref
  8. Positive effects of projected climate change on post-disturbance forest regrowth rates in northeastern North American boreal forests, Environmental Research Letters, 18, 2, (024041), (2023).https://doi.org/10.1088/1748-9326/acb72a
    Crossref
  9. Perception of wildfire behaviour potential among Swedish incident commanders, and their fire suppression tactics revealed through tabletop exercises, International Journal of Wildland Fire, 32, 3, (320-327), (2023).https://doi.org/10.1071/WF22085
    Crossref
  10. Forest microbiome and global change, Nature Reviews Microbiology, 21, 8, (487-501), (2023).https://doi.org/10.1038/s41579-023-00876-4
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media