Preview

Sechenov Medical Journal

Advanced search

Prognostic biomarkers for cardiovascular injury in patients with COVID-19: a review

https://doi.org/10.47093/2218-7332.2022.13.3.14-23

Abstract

Investigations into the causes of adverse outcomes of the novel coronavirus infection (COVID-19) have been ongoing since the beginning of the pandemic. There is evidence that coronavirus-induced cardiovascular injury is as important to a risk of adverse outcome as respiratory injury. Many studies have shown that concomitant cardiovascular disease aggravates the course of COVID-19. However, in some patients who did not have cardiovascular diseases before COVID-19, they are detected during hospitalization or after discharge from the hospital. The review examines data on the effect of serum biomarkers of cardiovascular disease determined during COVID-19 on the risk of adverse outcomes in the near and long-term follow-up periods. Among such biomarkers are considered: troponins, N-terminal pro B-type natriuretic peptide, creatine phosphokinase-MB, lactate dehydrogenase, myoglobin, growth stimulation expressed gene 2, pentraxin 3, angiotensin II, as well as D-dimer and homocysteine. Threshold values have been set for some of these biomarkers, which allow predicting the risk of an unfavorable outcome. At the same time, in most prognostic models, these markers are considered in association with cytokine storm indicators and other risk factors.

About the Authors

T. V. Kanaeva
Saratov State Medical University named after V.I. Razumovsky
Russian Federation

Tatyana V. Kanaeva - postgraduate student, Hospital Therapy Department, Saratov State Medical University named after V.I. Razumovsky.

137, Bolshaya Sadovaya str., Saratov, 410000

Tel.: +7 (908) 542-42-94



N. A. Karoli
Saratov State Medical University named after V.I. Razumovsky
Russian Federation

Nina A. Karoli - Dr. of Sci. (Medicine), Professor, Hospital Therapy Department, Saratov State Medical University named after V.I. Razumovsky.

137, Bolshaya Sadovaya str., Saratov, 410000



References

1. Lu R., Zhao X., Li J., et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020; 395: 565–574. https://doi.org/10.1016/S0140-6736(20)30251-8. PMID: 32007145

2. Wan Y., Shang J., Graham R., et al. Receptor recognition by novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS. J Virol 2020; 94: e00127–120. https://doi.org/10.1128/JVI.00127-20. PMID: 31996437

3. Hoffmann M., Kleine-Weber H., Schroeder S., et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181(2): 271–280. https://doi.org/10.1016/j.cell.2020.02.052. PMID: 32142651

4. Mason R.J. Pathogenesis of COVID-19 from a cell biology perspective. Eur Respir J. 2020; 55(4): 2000607. https://doi.org/10.1183/13993003.00607-2020. PMID: 32269085

5. Ciceri F., Castagna A., Rovere-Querini P., et al. Early predictors of clinical outcomes of COVID-19 outbreak in Milan, Italy. Clin Immunol. 2020; 217: 108509. https://doi.org/10.1016/j.clim.2020.108509. PMID: 32535188

6. Grasselli G., Zangrillo A., Zanella A., et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV2 admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020; 323(16): 1574–1581. https://doi.org/10.1001/jama.2020.5394. PMID: 32250385

7. Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020; 323(13): 1239–1242. https://doi.org/10.1001/jama.2020.2648. PMID: 3209153333

8. Verity R., Okell L.C., Dorigatti I., et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect. Dis. 2020; 20: 669–677. https://doi.org/10.1016/S1473-3099(20)30243-7. PMID:32240634

9. Wang W., Tang J., Wei F. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. J. Med. Virol. 2020; 92: 441–447. https://doi.org/10.1002/jmv.25689. PMID: 31994742

10. Guo T., Fan Y., Chen M., et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020; 5(7): 811–818. https://doi.org/10.1001/jamacardio.2020.1017. PMID: 32219356

11. Liu P.P., Blet A., Smyth D., Li H. The science underlying COVID-19: implications for the cardiovascular system. Circulation. 2020; Jul 7; 142(1): 68–78. https://doi.org/10.1161/CIRCULATIONAHA.120.047549. PMID: 32293910

12. Guan W.J., Ni Z.Y., Hu Y., et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020; Apr 30; 382(18): 1708–1720. https://doi.org/10.1056/NEJMoa2002032. PMID: 32109013

13. Ibanez B., James S., Agewall S., et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with STsegment elevation of the European society of cardiology (ESC). Eur Heart J. 2018; 39: 119–177. https://doi.org/10.1093/eurheartj/ehx393. PMID: 28886621

14. Zagidullin N.S., Motloch L.J., Musin T.I., et al. J-waves in acute COVID-19: a novel disease characteristic and predictor of mortality? PLoS ONE. 2021; 16: e0257982. https://doi.org/10.1371/journal.pone.0257982. PMID: 34648510

15. Mao L., Jin H., Wang M., et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020 Jun 1; 77(6): 683–690. https://doi.org/10.1001/jamaneurol.2020.1127. PMID: 32275288

16. Huang C., Wang Y., Li X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223): 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5. PMID: 31986264

17. Oudit G.Y., Kassiri Z., Jiang C., et al. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest. 2009 Jul; 39(7): 618–625. https://doi.org/10.1111/j.1365-2362.2009.02153.x. PMID: 19453650

18. Zhu N., Zhang D., Wang W., et al. China novel Coronavirus investigating and research team. A Novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020; 382(8): 727–733. https://doi.org/10.1056/NEJMoa2001017. PMID: 31978945

19. Xu X., Chen P., Wang J., et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci. 2020; 63(3): 457–460. https://doi.org/10.1007/s11427-020-1637-5. PMID: 32009228

20. Gohar A., Chong J.P.C., Liew O.W., et al. The prognostic value of highly sensitive cardiac troponin assays for adverse events in men and women with stable heart failure and a preserved vs. reduced ejection fraction. Eur. J. Heart Fail. 2017; 19: 1638–1647. https://doi.org/10.1002/ejhf.911. PMID: 28849609

21. Lippi G., Lavie C.J., Sanchis-Gomar F. Cardiac troponin I in patients with coronavirus disease 2019, (COVID-19): Evidence from a meta-analysis. ProgCardiovasc Dis. 2020; 63(3): 390–391. https://doi.org/10.1016/j.pcad.2020.03.001. PMID: 32169400

22. Santoso A., Pranata R., Wibowo A., et al. Cardiac injury is associated with mortality and critically ill pneumonia in COVID-19: a meta-analysis. Am J Emerg Med. 2021; 44: 352–357. https://doi.org/10.1016/j.ajem.2020.04.052. PMID: 32331955

23. Wang D., Hu B., Hu C., et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020. Mar 17; 323(11): 1061–1069. https://doi.org/10.1001/jama.2020.1585. PMID: 32031570

24. Motloch L.J., Jirak P., Gareeva D., et al. Cardiovascular biomarkers for prediction of in-hospital and 1-year post-discharge mortality in patients with COVID-19 pneumonia. Front. Med. 9: 906665. https://doi.org/10.3389/fmed.2022.906665. PMID: 35836945

25. Zagidullin N., Motloch L.J., Gareeva D., et al. Combining novel biomarkers for risk stratification of two-year cardiovascular mortality in patients with ST-elevation myocardial infarction. J Clin Med. 2020; 9(2): 550. https://doi.org/10.3390/jcm9020550.

26. Caro-Codón J., Rey J.R., Buño A., et al. Characterization of NT-proBNP in a large cohort of COVID-19 patients. Eur J Heart Fail. 2021 Mar; 23(3): 456–464. Epub 2021 Feb 1. https://doi.org/10.1002/ejhf.2095. PMID: 33421281;

27. Gao L., Jiang D., Wen X.S., et al. Prognostic value of NT-proBNP in patients with severe COVID-19. Respir Res. 2020 Apr 15; 21(1): 83. https://doi.org/10.1186/s12931-020-01352-w. PMID: 32293449

28. Wang L., Chen F., Bai L., et al. Association between NT-proBNP Level and the severity of COVID-19 pneumonia. Cardiol Res Pract. 2021 Jul 8; 2021: 5537275. https://doi.org/10.1155/2021/5537275. PMID: 34306746

29. Izcovich A., Ragusa M.A., Tortosa F., et al. Prognostic factors for severity and mortality in patients infected with COVID-19: A systematic review. PLoS One. 2020 Nov 17; 15(11): e0241955. https://doi.org/10.1371/journal.pone.0241955. Erratum in: PLoS One. 2022 May 26; 17(5):e0269291. PMID: 33201896

30. Mo J., Liu J., Wu S., et al. Predictive role of clinical features in patients with coronavirus disease 2019 for severe disease. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2020 May 28; 45(5): 536–541. English, Chinese. https://doi.org/10.11817/j.issn.1672-7347.2020.200384. PMID: 32879103.

31. Sheth A., Modi M., Dawson D., Dominic P. Prognostic value of cardiac biomarkers in COVID-19 infection. Sci Rep. 2021 Mar 2; 11(1): 4930. https://doi.org/10.1038/s41598-021-84643-6. PMID: 33654230.

32. Qin J.J., Cheng X., Zhou F., et al. Redefining cardiac biomarkers in predicting mortality of inpatients with COVID-19. Hypertension. 2020; 76(4): 1104–1112. https://doi.org/10.1161/HYPERTENSIONAHA.120.15528. PMID: 32673499

33. Kakkar R., Lee R. The IL-33/ST2 pathway: therapeutic target and novel biomarker. Nat Rev Drug Discov. 2008; 7: 827–840. https://doi.org/10.1038/nrd2660. PMID: 18827826

34. Zeng Z., Hong X.Y., Zhou H., et al. Serum soluble ST2 as a novel biomarker reflecting inflammatory status and disease severity in patients with COVID-19. SSRN Electron J. 2020; 14: 1619–1629. https://doi.org/10.2217/bmm-2020-0410. PMID: 33336592

35. Sánchez-Marteles M., Rubio-Gracia J., Peña-Fresneda N., et al. Early Measurement of Blood sST2 is a good predictor of death and poor outcomes in patients admitted for COVID-19 infection. J Clin Med. 2021; 10: 3534. https://doi.org/10.3390/jcm10163534. PMID: 34441830

36. Brunetta E., Folci M., Bottazzi B., et al. Macrophage expression and prognostic significance of the long pentraxin PTX3 in COVID-19. Nat Immunol. 2021 Jan; 22(1): 19–24. Epub 2020 Nov 18. https://doi.org/10.1038/s41590-020-00832-x. PMID: 33208929.

37. Protti A., Meessen J., Bottazzi B., et al. Circulating pentraxin 3 in severe COVID-19 or other pulmonary sepsis. Eur J Clin Invest. 2021 May; 51(5): e13530. Epub 2021 Mar 13. https://doi.org/10.1111/eci.13530. PMID: 33660256.

38. Assandri R., Accordino S., Canetta C., et al. Long pentraxin 3 as a marker of COVID-19 severity: evidences and perspectives. Biochem Med (Zagreb). 2022 Jun 15; 32(2): 020901. Epub 2022 Apr 15. https://doi.org/10.11613/BM.2022.020901. PMID: 35464745

39. Tong M., Xiong Y., Zhu C., et al. Elevated serum Pentraxin-3 levels is positively correlated to disease severity and coagulopathy in COVID-19 patients. Mediterr J Hematol Infect Dis. 2021 Jan 1; 13(1): e2021015. https://doi.org/10.4084/MJHID.2021.015. PMID: 33489054

40. Genç A.B., Yaylacı S., Dheir H., et al. The predictive and diagnostic accuracy of long pentraxin-3 in COVID-19 pneumonia. Turk J Med Sci. 2021 Apr 30; 51(2): 448–453. https://doi.org/10.3906/sag-2011-32. PMID: 33315349

41. Salehi S., Abedi A., Balakrishnan S., Gholamrezanezhad A. Coronavirus Disease (COVID-19): a systematic review of imaging findings in 919 patients. AJR Am J Roentgenol. 2020: Jul; 215(1): 87–93. Epub 2020 Mar 14. https://doi.org/10.2214/AJR.20.23034. PMID: 32174129

42. Düz M.E., Balcı A., Menekşe E. D-dimer levels and COVID-19 severity: systematic review and meta-analysis. Tuberk Toraks. 2020 Dec; 68(4): 353–360. https://doi.org/10.5578/tt.70351. PMID: 33448732.

43. Yu H.H., Qin C., Chen M., et al. D-dimer level is associated with the severity of COVID-19. Thromb Res. 2020; 195: 219–225. https://doi.org/10.1016/j.thromres.2020.07.047. PMID: 32777639

44. Rostami M., Mansouritorghabeh H. D-dimer level in COVID-19 infection: a systematic review. Expert Rev Hematol. 2020 Nov; 13(11): 1265–1275. Epub 2020 Oct 12. https://doi.org/10.1080/17474086.2020.1831383. PMID: 32997543.

45. Zhang J.J., Dong X., Cao Y.Y. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020 Jul; 75(7): 1730–1741. https://doi.org/10.1111/all.14238. PMID: 32077115

46. Panigada M., Bottino N., Tagliabue P., et al. Hypercoagulability of COVID-19 patients in intensive care unit. A report of thromboelastography findings and other parameters of hemostasis. J Thromb Haemost. 2020; 18(7): 1738–1742. https://doi.org/10.1111/jth.14850. PMID: 32302438

47. Zhou F., Yu T., Du R., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 2020; 395: 1054–1062. https://doi.org/10.1016/S0140-6736(20)30566-3. PMID: 32171076

48. Tang N., Li D., Wang X., et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020; 18: 844–847. https://doi.org/10.1111/jth.14768. PMID: 32073213

49. Cui S., Chen S., Li X., et al. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost. 2020 Jun; 18(6): 1421–1424. https://doi.org/10.1111/jth.14830. Epub 2020 May 6. PMID: 32271988; PMCID: PMC7262324.

50. Tomasoni D., Italia L., Adamo M., et al. COVID-19 and heart failure: from infection to inflammation and angiotensin II stimulation. Searching for evidence from a new disease. Eur J Heart Fail. 2020 Jun; 22(6): 957–966. Epub 2020 Jun 24. https://doi.org/10.1002/ejhf.1871. PMID: 32412156

51. Mendoza-Torres E., Oyarzun A., Mondaca-Ruff D., et al. ACE2 and vasoactive peptides: novel players in cardiovascular renal remodeling and hypertension. Ther Adv Cardiovasc Dis. 2015; 9(4): 217–237. https://doi.org/10.1177/1753944715597623. PMID: 26275770

52. Qaradakhi T., Apostolopoulos V., Zulli A. Angiotensin (1-7) and alamandine: similarities and differences. Pharmacol Res. 2016; 111: 820–826. https://doi.org/10.1016/j.phrs.2016.07.025. PMID: 27456244

53. Liu Y., Yang Y., Zhang C., et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci. China Life Sci. 2020; 63: 364–374. https://doi.org/10.1007/s11427-020-1643-8. PMID: 32048163

54. Aksoy H., Karadag A.S., Wollina U. Angiotensin II receptors: impact for COVID-19 severity. Dermatol Ther. 2020 Nov; 33(6): e13989. Epub 2020 Jul 27. https://doi.org/10.1111/dth.13989. PMID: 32645228

55. Yang Z., Shi J., He Z., et al. Predictors for imaging progression on chest CT from coronavirus disease 2019 (COVID-19) patients. Aging (Albany NY). 2020 Apr 10; 12(7): 6037–6048. Epub 2020 Apr 10. https://doi.org/10.18632/aging.102999. PMID: 32275643

56. Carpenè G., Negrini D., Henry B.M., et al. Homocysteine in coronavirus disease (COVID-19): a systematic literature review. Diagnosis (Berl). 2022 Jun 16; 9(3): 306–310. Epub ahead of print. https://doi.org/10.1515/dx-2022-0042. PMID: 35704707


Review

Views: 941


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2218-7332 (Print)
ISSN 2658-3348 (Online)