Supplementary Figures

Supplementary Figure 1. Diagram illustrating the novel software functionality for merging haplotype panels in IMPUTE2.
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Supplementary Figure 2. Flowchart describing the strategy for imputation evaluation in

this study.
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Supplementary Figure 3. Imputation performance of different reference panels

Imputation accuracy in the UK10K pseudo-GWAS test panel using reference panels from
1000GP (black), UK10K (blue), and UK10K+1000GP (red) across all MAFs. The “original”
UK10K reference panel (dotted blue line) was produced by standard genotype refinement of
low-coverage sequencing data, while the “rephased” reference panel (solid blue line) was
produced by running SHAPEIT2 on the genotypes called by BEAGLE to improve haplotype
accuracy. The rephased UK10K panel was combined with the 1000GP panel to produce the
UK10K+1000GP panel.
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Supplementary Figure 4. SNP-wise imputation accuracy with a Hamming distance

approximation.

SNPs with MAF<5% in the INCIPE pseudo-GWAS panel were imputed with the UK10K
reference panel under two different IMPUTE2 settings: one that used a Hamming distance
approximation to choose a customized subset of 500 reference haplotypes when imputing
each study haplotype (x-axis; mean r’=0.27), and one that used all available reference
haplotypes with no approximation (y-axis; mean r*=0.33). The red point highlights a rare
SNP that is examined in detail in the supplementary text and figures.
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Supplementary Figure 5. lllustration of reference states (haplotypes) copied by IMPUTE2
when imputing INCIPE

INCIPE pseudo-GWAS haplotypes were imputed from the UK10K reference panel in a 3Mb
region on chromosome 20. Points at each position on the chromosome (x-axis) represent
reference haplotypes that were copied with marginal (per-site) posterior probabilities of at
least 0.01 when using the full UK10K reference panel (7,562 haplotypes). Copied reference
haplotypes are ordered on the y-axis by the position at which they first surpassed this
threshold. The location of the SNP coloured red in Supplementary Figure 4 is marked by a
vertical red line, and points belonging to the haplotype that carries this variant are also
coloured red. Subsets of reference states selected by different approximations are marked
by dotted blue lines. (A) Reference states selected with kxq,=500 under a Hamming distance
approximation. Of the 103 copied states in this plot, 25 (24%) were chosen under this
approximation. (B) Reference states selected with kj,,=500 under a tract sharing
approximation. Of the 103 copied states in this plot, 96 (93%) were chosen under this
approximation.
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Supplementary Figure 6. SNP-wise imputation accuracy with a tract sharing approximation.

SNPs with MAF<5% in the INCIPE pseudo-GWAS panel were imputed with the UK10K
reference panel using either all available UK10K haplotypes or a customized subset of
UK10K haplotypes chosen by a tract sharing approximation. The rare SNP highlighted in red
in Supplementary Figure 4 is also shown in red here. (A) Comparison of imputation accuracy
with kkap=500 (x-axis; mean r’=0.32) against accuracy with the full reference panel (y-axis;
mean r’=0.33). (B) Comparison of imputation accuracy with kxq,=60 (x-axis; mean r’=0.30)
against accuracy with the full reference panel (y-axis; mean r’=0.33).
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Supplementary Table

Supplementary Table 1. Imputation results for different reference panels.

Numeric values of imputation r’are given for SNPs and IN/DELs within each allele frequency

bin; the UK10K pseudo-GWAS is the imputation target

MAF bin 0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5
UK10K+1000GP 0.538 0.558 0.629 0.702 0.774 | 0.860 | 0.921 | 0.950 | 0.963
UK10K rephased 0.502 0.537 0.615 0.689 0.764 | 0.854 | 0.919 | 0.949 | 0.964

UK10K original 0.397 0.413 0.488 0.573 0.673 | 0.799 | 0.894 | 0.936 | 0.954

1000GP 0.259 0.288 0.352 0.477 0.615 | 0.770 | 0.875 | 0.923 | 0.944




Supplementary Notes

Supplementary Note 1. Imputation strategy and novel software functionality for merging

WGS datasets

Genotype imputation is now widely used in GWAS to boost power, carry out fine-mapping
and facilitate meta-analysis'. Usually imputation is carried out using a single haplotype
reference panel, such as those produced by the HapMap project or the 1000 Genomes
Project. We have developed a new option in the Impute2 software®? that allows two sets of
haplotypes to be combined to form a single set of haplotypes at the union set of sites.
Imputation into GWAS samples can then be carried out using this combined panel. This
method can be used to combine two sets of haplotypes from two distinct population
cohorts, such as UK10K and 1000 Genomes, as we have done in this paper. Alternatively, it
may be that a particular study has sequenced specific individuals with high relevance to the
GWAS, and wish to combine that set of haplotypes with one of the publicly available

haplotype sets.

The main difficulty in combining reference panels is that some sites will only have data in
one or other of the panels. This maybe because the site is monomorphic for the reference
allele in the cohort, in which case the site is unlikely to have been ‘called’ from the
sequencing. However, the site may also be polymorphic and may not have been called due
to low-coverage of the non-reference allele, or due to cohort specific site filtering that

removed the site from consideration.

We use the Li and Stephens® hidden Markov model to impute the unobserved alleles in each
panel using the other panel. Since each dataset is haploid the calculations involved are
efficient. The methods build upon the pre-phasing imputation machinery already within
Impute2. The scheme that we use to carry out imputation is shown in Supplementary

Figure 1.

We denote the two haplotype reference panels as panel 0 and panel 1. The top part of the
figure shows the combined datasets. In the diagrams a column is a site and a row is an

individual. Observed genotypes in the two reference panels are coloured red and blue



respectively. Observed genotypes in the GWAS samples are coloured orange. The top figure

makes it clear that that some sites only have observed genotypes in some of the datasets.

We impute the untyped variants in three steps:
1. Impute the variants that are specific to Panel 0 (red) into Panel 1 (blue). Variants
shown in grey do not inform the imputation.
2. Impute the variants that are specific to Panel 1 (blue) into Panel O (red). Variants
shown in grey do not inform the imputation.
3. Now that we have imputed the two reference panels up to the union of their
variants, treat the imputed haplotypes as known (i.e., take the best-guess haplotypes)

and impute the GWAS cohort in the usual way.

Our implementation allows for the use of unphased or pre-phased GWAS samples. In
addition, Impute2 outputs a file containing a merged haplotype reference panel that can be
used for future imputation without repeating this step. This new functionality is available in

IMPUTE2 v2.3.1 at https://mathgen.stats.ox.ac.uk/impute/impute v2.html.




Supplementary Note 2. Novel imputation approximation based on haplotype tract sharing
Background and motivation

Genotype imputation in GWAS has always been a computationally intensive task. Recent
developments like pre-phasing have greatly reduced the computational cost of imputation,
but growing reference panels continue to challenge existing methods. As we were
conducting the analyses for this manuscript, we evaluated an approximation developed by
Howie et al. (2011) to reduce computing times for GWAS imputation. This approach uses a
Hamming distance metric to choose a different subset of k4, reference haplotypes for each
GWAS haplotype; if this subset includes the most informative reference haplotypes, it can
speed up the imputation calculations without sacrificing much accuracy. The cost of
imputation with pre-phased GWAS data scales linearly with the number of reference
haplotypes N, so the speedup expected from this approximation is roughly N / ks, after

accounting for the overhead of reading in a large data set.

In an experiment that used the INCIPE pseudo-GWAS panel and the UK10K reference panel,
we compared the results of running IMPUTE2 with kx,,=500 and with no approximation
(effectively knop=7,562, the number of haplotypes in the full UK10K panel). The results for
SNPs with MAF<5% are shown in Supplementary Figure 4. The full reference panel (y-axis)
produced better accuracy for most SNPs, but the differences were generally modest —
overall, the mean r* was 0.27 for krnap=500 and 0.33 with no approximation. However, a
subset of SNPs were imputed very poorly (r’<0.2) with the Hamming distance
approximation and very well (r*>0.8) with the full panel. We decided to investigate further
to understand where the approximation was breaking down, focusing initially on a singleton
SNP (frequency 0.1%) among the masked and imputed INCIPE SNPs (position 1,460,491 on

chromosome 20; shown in red in Supplementary Figure 4 and subsequent figures).
Understanding limitations of the Hamming approximation

To better understand why the Hamming distance approximation failed to successfully
impute the rare SNP highlighted above, we examined the state-copying probabilities
generated by IMPUTE2 when no approximation was used with the UK10K reference panel.

These probabilities are calculated at each site that is shared between a GWAS data set and a



reference panel. At a given site, the reference haplotypes (“copying states”) with the largest

probabilities contribute the most to the imputation.

Supplementary Figure 5 provides a visual depiction of how the copied reference states
changed across a 3MB region of chromosome 20 when the INCIPE haplotype carrying the
singleton allele of interest was being imputed. Walking from left to right across the region,
each reference haplotype that was copied with a per-site (marginal) probability of 0.01 or
greater was added to a list of unique copied states, which were assigned to consecutive
positions on the y-axis. There is a grey point on the plot for each reference haplotype that
surpassed this threshold at a given SNP site (x-axis location); most points blur together since
there are many on the plot. The location of the SNP of interest is shown as a vertical red line,
and the points that correspond to the UK10K haplotype that carries the variant allele are

also coloured red.

Intuitively, Supplementary Figure 5 gives a sense of where the imputation model chose to
copy different reference haplotypes as it scanned the region. The probabilities that
generated this plot are based on the full UK10K reference panel, so the 103 copying states
represented in this plot are among the most important for imputing this GWAS haplotype —
we would hope than an approximation would choose many of these reference states from

the full set of 7,562 UK10K haplotypes.

Supplementary Figure 5A shows which states were chosen by the Hamming distance metric
with knqp=500. Each state chosen by this approximation is shown as a horizontal dotted line;
25 of the 500 selected states were among the 103 states in this plot, but these did not
include the haplotype carrying the highlighted rare variant, which is why it was not

successfully imputed by the Hamming method.

A notable feature of this plot is that the copied states change frequently along the region,
which is a consequence of the high recombination rate in this region (average of 3.5
cM/Mb). It can also be seen that the shared haplotype tract of interest, shown as a row of
red dots, is distinctive and short: within the range of the red dots, this haplotype is often the
only one with a meaningful copying probability, yet the shared tract is only ~300kb long

(many alleles at 0.1% frequency reside on longer haplotype backgrounds). There is a clear



signal of haplotype sharing to be found here, but it is not easy to detect via region-wide

metrics like Hamming distance.

Observations like this led us to develop a new approximation that focuses on capturing the
shared reference haplotype tracts around each site in a study haplotype, rather than
averaging these out with region-wide metrics. Our goal was to capture the same kind of
information used by methods like MVNCcall® for one site at a time, but to do so in a way that
produces an ensemble of kuq haplotypes that can be used to impute an entire region,

analogous to the current Hamming distance approach used by IMPUTE?2.
A novel tract sharing approximation:

The goal behind our new approximation is to ensure that each site in a study haplotype has
the opportunity to copy the reference haplotype with the longest shared tract of allelic
identity. If this goal can be fulfilled with fewer than k,, reference haplotypes, we continue
adding haplotypes with shorter shared tracts until kx4, unique states have been selected.
This approach aims to capture local copying information while allowing a user to control the

computational costs via kxgp, as is currently done with the Hamming distance method.
Our algorithm works as follows, from the point of view of a single GWAS haplotype:

1. For each reference haplotype, identify sets of contiguous sites that show no allele
mismatches with the study haplotype; store these shared haplotype tracts for each
reference haplotype.

2. At each site, generate a hash table whose keys are shared tract lengths (in genetic
map units) and whose values are indices of the corresponding reference haplotypes.
A given key can map to multiple values.

3. At each site, use the hash table created in the previous step to generate a list of
reference haplotype indices ranked in descending order of shared tract length. Ties
are broken at random.

4. Add the top-ranked haplotype index at each site to a list of unique reference
haplotype indices; these states are marked for copying by the current study

haplotype.



5. Go to the next-ranked haplotype index (“level”) and repeat Step 4 until ks, distinct
reference haplotypes have been identified. If the number of selected haplotypes
exceeds kpqp at a particular level, choose a random subset of the reference indices at

that level such that the total number of selected haplotypes is knap.

Supplementary Figure 5B shows that this algorithm is much more effective than the region-
wide Hamming metric at identifying reference haplotypes with the highest local copying
probabilities: whereas the Hamming method selected 25/103 (24%) of the most important
reference states at kn,,=500, the tract sharing method selected 96/103 (93%) of these states.
These results suggest that our new approximation may better reflect the behaviour of the

IMPUTE2 model with a full reference panel, which should lead to more accurate imputation.
Computational burden and accuracy of tract sharing approximation

The computational cost of imputing a study haplotype with the Hamming distance
approximation is O(MN), where M is the number of sites shared between the study and
reference panels and N is the number of reference haplotypes. Our new tract length
approximation takes roughly four times longer since it scans the sites in a region multiple
times, but it is still linear in M and N. The Hamming distance approximation accounts for less
than 1% of a typical imputation run (as determined by profiling the IMPUTE2 C++ code when
imputing the INCIPE pseudo-GWAS with the UK10K reference panel), so switching to the
tract sharing approximation leads to only a small increase in total run times — typically less

than 5% in the benchmark experiments we conducted.

To confirm that the tract sharing approximation improves imputation accuracy, we repeated
the analysis from Supplementary Figure 4 (SNPs with MAF<5% imputed with the INCIPE
pseudo-GWAS panel and the UK10K reference panel). Supplementary Figure 6A shows that
the new approximation with kx,=500 provides essentially the same accuracy as using the
entire UK10K reference panel: the mean r* values in this analysis were 0.32 and 0.33,
respectively, and none of the SNPs imputed well (r*>0.8) by the full reference panel were
missed when using the approximation — this includes the rare SNP that was previously
imputed poorly by the Hamming distance method (red dot). To see if we could push this
approach even further, we also ran the tract sharing approximation with k=60

(Supplementary Figure 6B). The accuracy suffered a bit at this setting (mean r?=0.30), but



the results were still better than the analysis with k4q,=500 under the Hamming metric, and
again there were few major discrepancies between the results with this approximation

versus the full reference panel.
Conclusions

In summary, our new tract sharing approximation has a similar computational cost to the
Hamming distance approximation of 3, but it is better at maintaining imputation accuracy
for low-frequency and rare SNPs. We believe that this will be a useful approach as

imputation reference panels continue to grow.



Supplementary Note 3. Re-phasing and imputation commands.

These are the command options for imputation using the combined UK10K+1000GP panel in

IMPUTEZ2, using as an example for one region of chromosome 20.

1. Phase UK10K WGS with SHAPEIT v2

shapeit --thread 8 --window 0.5 --states 200 --effective-size 11418 —B chr20.01--
input-map genetic_map_chr20_combined_b37.txt --output-log chr20.shapeit --
output-max chr20.hap.gz chr20.sample

2. Merge WGS reference panel

impute2 -allow_large_regions -m genetic_map_chr20_combined_b37.txt -h
1kg/chr20.01.shapeit.hap.gz uk10k/chr20.01.shapeit.hap.gz -1
1kg/chr20.01.shapeit.legend.gz uk10k/chr1.01.shapeit.legend.gz -merge_ref panels
-merge_ref_panels_output_ref chr20.01.shapeit -int 28590 3028590 -Ne 20000 -
buffer 250 -include_buffer_in_output

3. Pre-phase UK10K-Cohort GWAS

shapeit --thread 8 --window 2 --states 200 --effective-size 11418 -B chr20.01 --input-
map genetic_map_chr20_combined_b37.txt --output-log chr20.01.shapeit --output-
max chr20.01.hap.gz chr20.01.sample

4. Imputation

impute2 -allow_large_regions -m genetic_map_chr20_combined_b37.txt -h
chr20.01.shapeit.hap.gz -1 chr20.01.shapeit.legend.gz -known_haps_g chr20.hap.gz -
sample_g chr20.sample -exclude_samples g uk10k.sample.ids -use_prephased g -
int 28590 3028590 -Ne 20000 -buffer 250 -o chr20.01.gen
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