Supplementary Information: Infection dynamics of COVID-19 virus under lockdown and reopening

Jakub Svoboda^a, Josef Tkadlec^b, Andreas Pavlogiannis^c, Krishnendu Chatterjee^a, and Martin A. Nowak^{b,d,*}

^aIST Austria, Klosterneuburg, A-3400, Austria

^bHarvard University, Department of Mathematics, Cambridge, MA 02138, USA

^cAarhus University, Department of Computer Science, 8200 Aarhus, Denmark

^dHarvard University, Department of Organismic and Evolutionary Biology, Cambridge, MA 02138, USA *martin_nowak@harvard.edu

ABSTRACT

This is a Supplementary Information for the manuscript "Infection dynamics of COVID-19 virus under lockdown and reopening". It includes three additional figures.

Supplementary Figure 1. Another performance measure: The total (expected) overflow of the bed capacity, per 1000 individuals. For a given stochastic run, the total bed capacity overflow is defined as $\sum_{t\geq 0} \max\{C(t) - c, 0\}$, where C_t is the number of critical cases on day *t*. The parameters are as in Fig. 3 from the main text ($\tau_{low} = 3$, $\tau_{high} = 12$, $k^* \doteq 5.3$, the patience parameter is **a**, d = 7 days and **b**, d = 70 days). We note that for high-trigger policies and $k < k^*$, the total bed capacity overflow is substantial (see Fig. 3b from the main text).

Supplementary Figure 2. Different parameter choices. We perform the computation leading to Fig. 4 from the main text for different parameter choices. In order to keep the reproductive ratio roughly fixed, we always vary two parameters at a time. **a**, We consider a population with $2 \times$ shorter infectious period $X_{I \to R} = 5$ days, and roughly $2 \times$ larger individual transmission rate p = 3.6%. **b**, We consider a population with $3 \times$ as many contacts $k_0 = 45$ and $3 \times$ smaller individual transmission rate p = 0.67%. In both cases, the trends in the resulting plots are qualitatively the same as in Fig. 4 from the main text.

Supplementary Figure 3. Periods following a distribution. We consider a setting in which the random variables corresponding to the pre-infectious period $X_{E \to I}$, the infectious period $X_{I \to R}$, and the critical period $X_{C \to R}$ each follow a distribution over 3 consecutive integer values, rather than being concentrated on a single value. In particular, each variable attains its expectation with probability 50% and is 1 lower or 1 higher with probability 25% each. The resulting plots are qualitatively the same as in Fig. 4 from the main text.