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ABSTRACT: Reproduction traits are important 
but difficult to improve in sheep because they are lowly 
heritable and are recorded later in life.  Genomic 
information can be used for genomic prediction of breeding 
values to increase the accuracy of selection.  Alternatively, 
genomic information can be used to identify recessive lethal 
mutations, which cause embryonic losses. We investigated 
both uses of genomic information using 54k SNP in the 
Border Leicester, Merino and Polled Dorset breeds.  
Genomic prediction accuracy of three reproduction traits 
was greater when compared to pedigree methods, especially 
in less related animals.  Furthermore, making use of both 
sire and ewe information in the reference set increased 
accuracies. Ten haplotypes carrying potential recessive 
lethal mutations were identified.  One haplotype spanning 
50 SNP alleles was significantly associated with litter size.  
The findings suggest genomic tools should be used to 
increase reproductive efficiency in sheep. 
Keywords: sheep; genomic selection; reproduction; 
recessive lethal mutation 
 

Introduction 
 

Reproduction traits, such the number of lambs 
born and weaned, are important drivers of profitability in 
sheep.  However, these traits are difficult to improve 
because they have low heritability and are recorded later in 
life.  Genomic technologies, such as single nucleotide 
polymorphism (SNP) arrays, could improve genetic gain for 
these traits through genomic selection (Meuwissen et al. 
2001).  Genomic information can also be used to find 
regions that harbor recessive lethal mutations, which 
decrease reproductive success (e.g. VanRaden et al. 2011).  

 
Genomic prediction equations are estimated in a 

reference population of genotyped and phenotyped 
individuals, and then used to predict breeding values for 
animals with only genotypes.  This can enable the 
prediction of a selection candidate’s performance early in 
life potentially with  greater accuracy than estimated 
breeding values based on pedigree alone, provided the 
reference population is large enough.  One straightforward 
way to design a reference population is to use genotyped 
and phenotyped ewes.  Additionally, genotyped sires with 
many daughter reproduction records could be included.  
This second data type is attractive for genomic prediction, 
as the sire ‘phenotypes’ are more accurate than ewe 
phenotypes, delivering a greater increase in accuracy per 
sire genotyped.  Combining ewe and sire information, 
thereby making optimal use of all data, in a reference 
population is expected to yield higher accuracy predictions.  

However, combined reference populations require 
additional considerations during analysis and validation 
(e.g. Calus et al. 2013; Daetwyler et al. 2013).   

Lethal recessive mutations have been shown to 
affect reproduction traits and are expected to arise 
spontaneously in all populations by chance (e.g. Frankham 
1996; VanRaden et al. 2011).  Genetic drift and inbreeding 
may increase their frequency and these factors are 
especially pronounced when the effective population size 
(Ne) is small.  Lethal mutations may also occur by chance 
within a haplotype that increases production and, in such 
cases, artificial selection may further increase their 
frequency. Large datasets have been built for genomic 
selection analyses, further mining of this genomic data for 
lethal recessives that never occur in their homozygous state 
can provide additional tools to improve reproduction traits 
in sheep. 

This paper has two main aims. First, we show that  
a combined reference population composed of genotyped 
ewes with phenotypes and genotyped sires with daughter 
phenotypes can increase the accuracy of genomic 
prediction. Second, we search for lethal recessive mutations 
inherited within haplotypes in the Australian sheep flock. 

 
Materials and Methods 

Genomic Selection 
Phenotypes, Genotypes, Heritability and 

Repeatability.  Three traits were investigated: number of 
lambs weaned per ewe joined (NLW), number of lambs 
born per ewe joined (NLB), and litter size (number of 
lambs born per ewe lambing, LSIZE).  The initial dataset 
consisted of 3984 genotyped ewes with reproduction 
phenotypes from the CRC for Sheep Industry Innovation 
(CRC) Information Nucleus (van der Werf et al. 2010) and 
SheepGENOMICS (SG) (White et al. 2012).  This data was 
augmented with 524 genotyped sires with derived 
phenotypes based on their daughter phenotypes (daughter 
trait deviations, DTD).  Derived phenotypes were 
calculated with 367,393 records from 202,898 animals from 
Sheep Genetics database, which provides the national 
genetic evaluation for sheep in Australia. The ewes used to 
derive the phenotypic data used in the analyses (described 
below) overall consisted of 74% of Merino (MER) and 12% 
of Border Leicester (BL), and less than ~5% of each of the 
other breeds.  Hence, most were pure MER, but first cross 
MER-BL were also prevalent within CRC. 



All available phenotype data was fitted in single 
trait BLUP mixed models  to estimate heritability (h2) and 
repeatability (t) for each trait (Henderson 1984). These 
parameters were needed to calculate weights to derived 
phenotypes (trait deviations) when combining sire and ewe 
records in genomic best linear unbiased prediction 
(GBLUP), described below.  The model applied was: 
y = Xb + Z1Qq + Z1a + Z2pe + e ,  where y is a vector of 
phenotypes, X, Z1, and Z2 are design matrices, Q is a 
matrix that accounts for breeds and strains, b is vector of 
fixed effects, q is a vector of breed effects, a is a vector of 
animal genetic effects, pe is a vector of permanent 
environmental effects, and e is the vector of random errors.. 
The following distributions were assumed: a ~ N (0, 2

aσ A), 

q ~ N (0, 2
qσ I), pe ~ N (0, 2

peσ I), and e ~ N (0, 2
eσ I), where 

A is the numerator relationship matrix, 2
aσ  is the genetic 

variance, 2
qσ  is the variance of breed effects, 2

peσ  is the 

permanent environment variance and 2
eσ  is the residual 

variance.   Fixed effects included the mean, conception site, 
lambing site, year of lambing, birth year of ewe, age at 
lambing, and conception method. The conception methods 
used for mating were natural, artificial insemination, and 
hand mating. The ewes were born from year 1990 to 2011 
and lambed in years 1991 to 2012. There were 3 different 
classes of age of lambing: <1.5; 1.5-2.5; and >2.5.  Only 
24,783 ewes lambed at age less than one year old.  

The genotypes were provided by the CRC and SG 
projects. All animals were genotyped using the Ovine50K 
SNP chip comprising a total of 54,977 single nucleotide 
polymorphisms (SNP).  The genotype quality control and 
imputation of sporadic missing genotypes is described in 
Daetwyler et al. (2012). The final genotyped dataset for 
genomic prediction included 4,508 animals (524 sires) 
genotyped at 48,599 SNP. Results for genomic predictions 
are based on 4508 animals, and are reported separately for 
the MER and BL breeds and their crosses, as these two 
breeds made up the majority of genotyped animals (Table 
1). 

 
Table 1. Size of reference population (TD + DTD) within 
Border Leicester (BL) and Merino (MER) breeds and in 
total across all breeds (ALL). 

Trait BL MER ALL 
 TD DTD TD DTD  
NLW 644 93 2,404 177 4,484 
NLB 649 93 2,405 189 4,508 
LSIZE 629 89 2,394 184 4,458 

 
 Trait and Daughter Trait Deviations.  Trait 
deviations (TD) for genotyped ewes and daughter trait 
deviations (DTD) for genotyped sires were used as the 
derived phenotypes in GBLUP analyses. Firstly, the 
phenotype was corrected for fixed effects using the same 

model applied to calculate heritability and repeatability, but 
excluding the animal genetic effect.  Then the residuals 
from this model were used to calculate ewe TD as 
Σ(residualj)/Nj, where Nj is the number of records for the 
ewe j, and sire DTD as Σ(TDi)/pi, where TDi are the trait 
deviations of the ungenotyped daughters of sire i, and pi is 
the number of  daughters. Genotyped daughters of these 
sires were included in reference population and not 
included in DTDs to avoid double counting.  Sires with less 
than 3 progeny were excluded from the analysis.  The DTD 
contain only half the genetic merit of the sire, thus DTD 
was doubled. To account for heterogeneity of variance the 
TD and DTD were weighted as in Garrick et al (2009).  The 
weighting requires an assumption on the proportion of the 
genetic variance not captured by the markers (c).  We 
assumed five different values for c (0.25, 0.35, 0.50, 0.60, 
and 0.75).  

Genomic Prediction Analysis.  Two methods 
were used to estimate breeding values: genomic BLUP  or 
GBLUP for Genomic EBVs (GEBV) and BLUP for EBVs. 
GEBVs were calculated based on the following model: 
y = 1µ + 𝐗𝐛 + Zg + e , where y is a vector of TD and DTD, 
1 is a vector of ones, µ is the mean, X and Z are design 
matrices, b is a fixed sex effect, e is the vector of random 
errors distributed as N~(0, Rσe

2) where R is a diagonal 
matrix with weights as described above and σe

2 is the 
residual variance; g is a vector of either GEBV or EBV 
distributed as N~(0, Gσg

2), where σg
2 is either genetic 

variance explained by the markers or the additive genetic 
variance, and G is either the genomic relationship matrix 
(GRM) or the numerator relationship matrix among animals 
(NRM) (Yang et al. 2010).  Breed effects were not fitted 
because they were fitted during calculation of TDs and 
DTDs. All estimates were performed using ASReml 
software (Gilmour et al., 2009). 

Estimation of Accuracy Through Cross-
Validation.  Prediction analyses using both GBLUP and 
BLUP used all genotyped individuals from all breeds that 
had either their own records or ungenotyped daughters with 
records in the reference population.  Cross-validation, 
where the data is divided into a number of subsets and each 
subset is predicted once from the other subsets, was used to 
estimate accuracy.  The six subsets for cross-validations 
were chosen either completely at random or by at random 
stratified by sire family.  Sire families based on TD or 
DTDs were not forced to be equally distributed in subsets.  
In random sire family cross-validation, sires were randomly 
allocated to subsets, and all genotyped progeny of a sire 
were then allocated to the same subset to ensure prediction 
was across sire families, resulting in a conservative estimate 
of prediction accuracy.  The  cross-validation subsets were 
the same for GBLUP and BLUP.  All subsets consisted of 
multiple breeds.  For all GBLUP and BLUP analyses, the 
validation animals were included in the GRM or NRM but 
had unknown phenotypes in the calculation of GEBV or 
EBV. 

The correlation between the GEBV and the true 
breeding values (TBV) is known as accuracy of genomic 



prediction. In practice, the TBV are unknown, and the only 
data available are phenotypes, which are made up of the 
true breeding value and the environmental effect. The 
accuracies of genomic prediction were calculated as a 
Pearson correlation between GEBV and corrected 
phenotypes (TD + DTD) within the MER and BL breeds, 
where animals were assigned to breed groups according to 
the breed of the sire.    The upper bound of this correlation 
is equal to the accuracy of the breeding value. The 
correlation of GEBV and TBV were approximated by 
dividing by the accuracy of the TD and DTD within each 
breed in a subset.  Ewe TD accuracies were approximated 
from BLUP models and sire DTD accuracies were 
approximated using their BLUP EBV accuracy from only 
non-genotyped daughters.  They were calculated as 

2/1 aPEVr σ−= , where 𝑟  is accuracy of the BLUP 

solution, PEV is the prediction error variance and 2
aσ  is the 

additive genetic variance.  Correlations from each of the six 
subsets were averaged within breed and weighted by the 
number of individuals in the validation set.   
 
Detection of Potential Lethal Recessive Mutations.  

Genotypes and Haplotyping. 23907 sheep from 
many breeds, but mainly Merino, Border Leicester, Polled 
Dorset, and White Suffolk, were genotyped within the CRC 
and SG projects (van der Werf et al. 2010; White et al. 
2012).  Quality control and imputation was performed, as 
above, resulting in a 48599 SNP.  The genotypes were 
phased jointly in all breeds using ChromoPhase (Daetwyler 
et al. 2011) to ensure more consistent long-range 
haplotypes.  All unique haplotypes across all breeds were 
identified by comparing each animal’s haplotypes at a 
position to all other haplotypes. Haplotypes were numbered 
in order of observation.  Phasing was not perfect and 
included some missing or unphased loci.  Haplotypes with 
missing alleles were considered unique and were not 
merged with other potentially consistent haplotypes to be 
conservative. The following haplotype lengths were 
considered 5, 10, 20, 50, and 100 SNP corresponding to 
approximately 0.25, 0.5, 1.0, 2.5, and 5.0cM, respectively. 

 
The breed proportion matrix (Q) was then used to 

identify pure individuals for the main four breeds in the 
dataset.  Individuals needed to reach a 95% purity 
threshold, as determined from pedigree analysis.  This 
resulted in 9517 Merino, 767 Polled Dorset and 331 Border 
Leicester individuals.  There were not enough pure White 
Suffolk individuals for meaningful analyses. Haplotype 
frequencies in crosses were ignored as one would not 
expect to detect deleterious haplotypes due to high 
haplotype heterozygosity.  The expected number of 
homozygote haplotypes was calculated assuming Hard-
Weinberg equilibrium by multiplying the frequency of the 
homozygote haplotype by the number of individuals in the 
breed.   

Haplotypes that were expected to be observed in a 
homozygous state at least 6 times based on their frequency 
in the breed, but were never observed, were further 
investigated. First, carrier sires and their offspring were 

checked for Mendelian inheritance ratios.  The expected 
frequency of haplotype homozygosity in purebred offspring 
of carriers equals the probability of inheriting the haplotype 
from the carrier sire (0.25) times the probability of 
inheriting it from the dam, which is half the carrier 
frequency in the population.  Second, the effect of the 
carrier status on three female reproduction traits (LSIZE, 
NLB, and NLW) was investigated using the TD and DTDs 
of carriers and non-carriers in the following model: 
y = 1µ + 𝐗𝐛 + e , where y is a vector of TD and DTD, 1 is a 
vector of ones, µ is the mean, X is a design matrix, b is a 
vector of fixed effects including sex and potential 
deleterious haplotype carrier status (1 for carrier, 0 
otherwise). Heterogeneous accuracy of TDs and DTDs was 
accounted for as in genomic prediction analyses above. 

 
Results and Discussion 

 
Genomic Selection.  

Heritability and repeatability.  The number of 
lambs born varied between 0 to 4 (5 categories) per ewe 
joined, with very few quadruplets. The data for the 
reproduction traits were approximately normally 
distributed.  Heritabilites and repeatabilities estimated from 
the full BLUP model were between 0.06 and 0.08 and 
between 0.08 and 0.10, respectively.  Estimated 
heritabilities were within the range of literature estimates, 
while repeatabilities were slightly lower (e.g. Safari et al. 
2005).  The permanent environmental effect (pe) explained 
on average 2% of the total variance.  The standard errors of 
h2 and the proportion of the permanent environmental effect 
were small (range 0.0027 to 0.0035).    

Genomic Prediction Accuracy.  This is one of 
the first genomic prediction studies for reproduction traits 
in sheep.  The accuracy of GEBVs was generally low 
(Table 2), reflecting the low heritability of reproduction 
traits and relatively low number of animals per breed 
considering the multi-breed nature of our reference 
population. Overall, the prediction accuracy of cross-
validation random splits was much higher than across sire 
family splits in both BLUP and GBLUP, reflecting the 
greater relationships between reference and validation 
animals due to prediction within families (GBLUP accuracy 
random 0.23, sire family 0.11, Table 2).  There was a trend 
for higher accuracy of GBLUP over BLUP, except in BL 
for LSIZE. The increase in accuracy seen with GBLUP was 
more pronounced in sire family splits, where the average 
GBLUP accuracy was double that of BLUP.  In random 
splits the increase from GBLUP was very modest, but was 
consistent for NLW and NLB.   

This study has shown that combining sire and ewe 
records resulted in higher accuracy in both GBLUP and 
BLUP (Table 2).  The increase in accuracy from this 
additional information was greater when animals were less 
related to the reference population (e.g. across sires family 
cross-validation).  More generally, the increase in GBLUP 
over BLUP, while fairly consistent, was also greater when 
animals were less related, confirming other studies (Clark et 
al. 2012). 



Table 2. Average weighted accuracies of GEBV from 
cross-validation using BLUP and GBLUP, when using 
only TDs of ewes or TD plus DTDs of sires. 

    BLUP GBLUP 

Trait Breed TD+
DTD TD TD+

DTD TD 

sire family           
NLW MER 0.04 -0.09 0.12 0.09 
NLB MER 0.03 -0.19 0.06 0.11 
LSIZE MER 0.00 -0.16 0.14 0.09 
Mean MER 0.02 -0.15 0.11 0.10 
NLW BL 0.11 -0.04 0.10 0.07 
NLB BL 0.12 -0.01 0.15 0.11 
LSIZE BL 0.11 0.06 0.07 -0.02 
Mean BL 0.11 0.00 0.11 0.05 
Mean All 0.07 -0.07 0.11 0.08 
random       
NLW MER 0.19 0.17 0.21 0.20 
NLB MER 0.31 0.32 0.32 0.33 
LSIZE MER 0.39 0.38 0.40 0.39 
Mean MER 0.30 0.29 0.31 0.31 
NLW BL 0.11 0.06 0.14 0.10 
NLB BL 0.19 0.18 0.20 0.21 
LSIZE BL 0.14 0.14 0.12 0.10 
Mean BL 0.15 0.13 0.15 0.14 
Mean All 0.22 0.21 0.23 0.22 

 

In the sire family split, GBLUP achieved an 
increase of 0.12 over BLUP across the three reproduction 
traits in MER, whereas in BL a modest increase was 
observed only for NLW and NLB.  Genomic prediction 
accuracies can be compared with theoretical predictions 
(Daetwyler et al. 2010b) based on the number of 
individuals, genome length (L) = 26 Morgan,  effective 
population size (Ne=  853 for MER, Ne = 243 for BL, (Kijas 
et al. 2012), and number of independent chromosome 
segments (Me) =2NeL), which would give an expected 
accuracy of approximately 0.14 for MER and 0.11 for BL. 
Therefore, the achieved accuracies are  consistent with 
expectations.   

The accuracy of across breed prediction has been 
shown to be limited in sheep with the 50k SNP chip 
(Daetwyler et al. 2010a).  However, the use of a common 
reference population or, equivalently a common prediction 
equation based on SNP genotypes, for all breeds 
significantly simplifies analyses in multi-breed cross-bred 
data.  An increase in marker density may allow for across 
breed prediction to play a greater role in the future.  In beef 
cattle using the 800k Bovine chip, Bolormaa et al. (2013) 
found that using a common training population lead to 
higher accuracies than using breed specific training 
populations, especially for crossbreeds.  A multi-breed 

reference population is only advantageous if the LD phase 
between SNP and QTL are consistent across breeds. This is 
only expected if the chromosome segments containing the 
SNP and QTL in different breeds have descended from a 
common ancestor without recombination. As the common 
ancestor would have occurred many generations ago the 
shared segments across breeds are likely to be very short 
and therefore the SNP and the QTL would need to closely 
linked and dense to be effective at tagging QTL   

Another way to increase the accuracy of genomic 
prediction would be to increase the reference population 
size.  Genotyping highly influential sires with many 
daughters is a more cost effective strategy to increase the 
sample size, than genotyping all ewes.  The approach 
shown in this study enables the incorporation of sire data 
into genomic prediction analyses. 

 Using the current approach, the GEBV would have 
to be combined with BLUP breeding values to be 
distributed to sheep breeders.  In Australian sheep, this has 
been accomplished with a selection index approach for 
traits which have a BLUP evaluation (the so called 
“blending” method) (Harris & Johnson 2010; Swan et al. 
2012).  The use of sire DTDs for genomic predictions 
further complicates this process and additional steps are 
necessary to reduce double counting.  GEBVs for traits that 
do not have a BLUP EBV are currently delivered using a 
one-step approach which augments the NRM inverse matrix 
used in the BLUP equations with the GRM inverse for 
genotyped animals (Misztal et al. 2009; Aguilar et al. 2010; 
Swan et al. 2012).  This would eliminate the post 
processing steps of the blending approaches, as all breeding 
values would be on the same scale and genomic 
information would be accounted for implicitely.  However, 
one-step approaches do not avoid all issues related to 
blending, because they also require an assumption on a 
scale parameter (lambda) describing how much of the 
genetic variance is captured by the GRM.  The value of 
lambda, just like c, is uncertain and would have to be 
verified by cross-validation.   

 The accuracies achieved using GBLUP, while low, 
are encouraging and more genetic gain would be achieved 
for reproduction traits through genomic prediction than 
with BLUP.  This is especially true for animals that are less 
related to the reference population.  The accuracies shown 
are conservative estimates of accuracies that could be 
achieved in commercial breeding programs as they are 
calculated for animals without direct relationships to the 
reference poplation.  Making use of all data on both ewes 
and sires increased the accuracy of prediction.   

Deleterious Recessive Haplotypes.  
 Ten haplotypes carrying potentially lethal 
mutations were detected across the MER, PD and BL 
breeds (Table 3).  All of these haplotypes were expected as 
homozygotes in the population at least six times but were 
never observed as homozygotes.  The p-value for not 
observing a homozygote when expecting 6 is 0.0025, 
assuming a poisson distribution.  The number, length and 



frequency of these haplotypes reflected the effective 
population size (Ne) of the respective breeds.  The greatest 
number of deleterious haplotypes (5) were found in the BL 
breed across all haplotype lengths.  This was expected as it 
also has the smallest Ne and therefore the highest inbreeding 
of the three breeds in the study.  The deleterious haplotype 
carrier frequencies in BL were high at approximately 0.13.  
In three instances, haplotypes of different lengths identified 
the same genomic location to harbour a recessive lethal 
haplotype in BL.  Haplotypes expected five times but never 
observed were only reported if they fell in the same regions 
as haplotype meeting the more stringent threshold (Table 
3).  This provides further confidence that signals are true.   

Table 3. Potential lethal recessive haplotype in Border 
Leicester (BL), Polled Dorset (PD) and Merino (MER) 
breeds, where Name contains 
breed.chromosome.length.location.haplotype, Loc is the 
location on chromosome in megabases, Freq is the 
frequency of the haplotype in the population, Obs is the 
number of observed homozygote haplotypes, Exp is the 
expected number of homozygote haplotypes and 
HapAlleles are the alleles within the haplotype. 

Name Loc Freq Obs Exp HapAlleles 
BL.2.20.210.18 215 0.15 0 7 2020202000 

2222002020 

BL.2.50.84.19 214 0.14 0 6 
0002022222 
2200222200 
2022200000 
2020202000 
2222002020 

BL.4.5.345.13 87 0.14 0 6 20222 

BL.4.10.172.29 87 0.14 0 6 0020020222 

BL.4.20.86.37 87 0.13 0 5 0200000002 
0020020222 

BL.8.5.289.3 74 0.14 0 6 00202 

BL.8.10.144.14 74 0.13 0 5 0002000202 

BL.15.5.143.3 39 0.14 0 6 02222 

BL.24.50.5.14 15 0.14 0 6 
2220200200 
2022000002 
2000022022 
2222202020 
00002002202 

PD.13.50.14.10 38 0.11 0 8 
0202200020 
2002202200 
2202222000 
0200220200 
20220022202 

PD.18.5.29.23 8 0.09 0 6 02202 

MER.2.5.222.3 59 0.03 0 6 22202 

MER.4.10.240.9 122 0.03 0 8 0202220222 

MER.9.5.359.2 91 0.03 0 6 02222 

 
 Two recessive lethal haplotypes that reached 
carrier frequencies of 0.10 were detected in the PD breed.  
In MER, 3 haplotypes were found to possess recessive 
lethal patterns.  As these breeds have a higher Ne than BL, it 
was expected that fewer deleterious haplotypes would be 
detected.   

 The length of the haplotype that is found to be 
potentially lethal may reveal information about the age of 
the deleterious mutation.  Mutations are expected to get 

older as haplotypes shorten.  Applying the approximation of 
Hayes et al. (2003) (1/2(length of segment in Morgans)), 
we can calculate that a 100 SNP haplotype could harbour 
new recessive mutations that arose 10 generations ago, 
whereas a 5 SNP haplotype would be much older at 200 
generation ago. The length of the lethal haplotypes varied 
within and across breeds (Table 3).  No lethal 100 SNP 
haplotypes were detected.   There was a trend for lethal 
haplotypes in the BL and PD breeds to be longer than in the 
MER breed. 

 
Table 4. Potential lethal recessive haplotype in Border 
Leicester (BL), Polled Dorset (PD) and Merino (MER) 
breeds, and their observed (ObsFreq) and expected 
(ExpFreq) frequency in offspring of carrier sires, as well 
as most significant P-value in three litter size, number of 
lambs born and number of lambs weaned. Name 
contains breed.chromosome.length.location.haplotype. 

Name ObsFreq ExpFreq Pvalue 
BL.2.20.210.18 0.25 0.32 0.023* 
BL.2.50.84.19 0.21 0.32 0.009* 
BL.4.5.345.13 0.30 0.32 0.425# 
BL.4.10.172.29 0.29 0.32 0.62# 
BL.4.20.86.37 - 0.31 - 
BL.8.5.289.3 0.21 0.32 0.359* 
BL.8.10.144.14 - 0.31 - 
BL.15.5.143.3 0.24 0.32 0.842# 
BL.24.50.5.14 0.19 0.32 0.079* 
PD.13.50.14.10 0.21 0.30 0.096& 
PD.18.5.29.23 0.26 0.30 0.578* 
MER.2.5.222.3 0.21 0.26 0.151# 
MER.4.10.240.9 0.15 0.27 0.123& 
MER.9.5.359.2 0.26 0.26 0.087# 

*litter size, #number of lambs born, &number of lambs weaned 
 

 All identifed haplotype were investigated to see 
whether they follow Mendelian inheritance in carrier sire 
families.  The frequencies of potential lethal haplotypes in 
carrier families was always lower than expected (Table 4).  
This is likely due the fact that the sires’ offspring were 
often crosses and the lethal haplotype was not segregating 
in their dams.  Futhermore, the haplotype carrier status was 
fitted as a fixed effect in a model that used TD and DTD as 
reproduction phenotypes. A subset of all purebred 
individuals also had reproduction information, leaving 2516 
MER, 89 PD and 114 BL individuals for this analysis. A 
significant effect (Pvalue < 0.01) of carrier status was only 
observed for BL.2.50.84.19 in LSIZE of the BL breed (p 
value 0.009, Table 4).  This indicates that there was likely 
not enough power to detect these effects in PD and BL.  In 
MER, where power should have been less of an issue, the 
non-significant effects indicate that further investigation 
may be needed to adequatley confirm these potential 



recessive lethal haplotypes.  A potential complication in 
MER is the precence of three different strains based on 
wool fibre diameter.  While the groups are somewhat 
loosley defined, there is only limited genetic connectedness 
across the strains.  A deleterious mutation may only occur 
in one strain, but it may be frequent enough to be chosen 
based on observed-expected ratios.  Subsequent testing of 
haplotype effects on carrier reproduction would not be 
expected to yield significant results, as the deleterious 
mutation is not present consistently in all strains. 

 Haplotypes were not found to be deleterious in 
multiple breeds.  The a priori expectation is that deleterious 
lethal mutations in a population are lost quickly because 
carriers have a large reproductive disadvantage.  While 
possible, it is unlikely that the same deleterious mutations 
that predate breed divergence would still be present in 
several breeds.  The cause of the rather high frequency of 
these haplotypes within breeds warrants further 
investigation.  It may be that the same haplotypes also have 
positive effects on currently desired production traits and 
that artifical selection has increased their frequency.  Such 
cases have been confirmed in Holstein cattle (VanRaden et 
al. 2011).  The frequency of inheriting the favourable and 
lethal mutations in the same haplotype is closely related to 
genomic distance between the two mutations.  If they are 
distant, the relationship of the two mutations will soon be 
broken by recombination. However, if they are close 
genomically, they may be inherited in same haplotype for 
many generations.  This is a further argument that one 
would not expect  longer haplotype to consistently carry the 
same lethal mutation across breeds.  The effect of the lethal 
haplotypes on production traits will be investigated. 

 The existence of rather frequent lethal haplotypes 
in the BL and PD breeds is expected to require management 
of mating programs to minimise the risk of carrier-carrier 
matings.  The risk is greatest for purebred breeding stock, 
which is used to produce rams for the multiplier and 
commercial sectors.  The identification of carrier animals 
with genomics would allow breeders to avoid carrier-carrier 
matings.  For untested animals, the probability that they are 
a carriers could be calculated based on their genomically 
tested relatives.  The risk to the commercial sheep sector 
which utilises crosses is small, as the lethal alleles will not 
be expected to occur in the homozygous state. 

Conclusions 
 
Genomics can be applied to increase reproduction 

traits in sheep in several ways.   We have outlined two 
approaches: genomic prediction and identification of 
potential lethal recessive mutations.  Genomic prediction, 
while its accuracy currently is still low for reproduction 
traits, does offer an advantage over pedigree selection 
methods, especially in less related animals.  We have 
shown that making use of both sire and ewe information 
increases the accuracy of genomic prediction.  The 
identification of recessive lethal mutations, which are 
inherited within longer haplotypes, is an additional tool to 
increase reproductive efficiency of purebred sheep.  

Together, these genomic technologies are effective tools to 
make Australian sheep more productive.  
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