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ABSTRACT: Genomic selection allows prediction of ge-
netic merit and selection of superior animals for breeding, 
on the basis of data from many genetic markers. Here we 
describe the application of this methodology in the New 
Zealand dual purpose sheep industry using a mixed breed 
(Romney, Coopworth and Perendale) training set. The 
gBLUP method was used, and accounting for breed struc-
ture in the genomic relationship matrix was found to be 
important for calculating model-based accuracies, but the 
predictions were similar with and without this adjustment. 
Realized accuracies were lower than model-based accura-
cies, particularly for early life traits, reflecting a selection 
effect in the animals chosen for genotyping. The results of 
this research are available commercially in New Zealand 
for the breed types used in the training set and for compo-
sites that include these breeds. 
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Introduction 
 

The New Zealand (NZ) sheep industry is dominat-
ed by dual purpose (meat and wool) breeds and crosses. 
Within this sector, most sheep are predominantly Romney 
or one of its derivatives - Coopworth or Perendale (Dodds 
et al. (2013)).  In recent years the Texel breed has become 
more prevalent. Terminal sire breed rams are commonly 
used in commercial flocks, but these breeds constitute less 
than 20% of the breeding. Even within the breeder’s flocks, 
crossbred animals are becoming common. Both dual-
purpose and terminal sire breeders record their flocks with 
Sheep Improvement Limited (SIL). 

 
Genomic selection (GS; Meuwissen et al. (2001)) 

is a methodology developed to allow prediction of genetic 
merit, and subsequently selection of parents, from large 
numbers of genetic markers. Genomic selection has been 
the focus of much research (Habier (2010)) and has been 
quickly taken up in a number of industries (e.g. in dairy 
cattle; Hayes et al. (2009a)). The availability of the Illumina 
OvineSNP50 Beadchip (http://www.illumina.com; ‘50k 
chip’) has allowed GS within sheep breeding programmes. 
Here we investigate if and how this resource can be used to 
predict genetic merit in the NZ dual purpose sheep industry.  
 

Materials and Methods 
 

Animals. A set of 13,364 animals were genotyped 
with the 50k chip where there was permission to use the 
associated SIL flock data. The animals were primarily sires 
from breeder’s flocks, but also included other animals of 
both sexes, as well as some animals from research flocks. 

The breed representation in this set was 47% Romney (40% 
purebred Romneys), 21% Coopworth (8% purebred), 7% 
Texel (1% purebred), 7% Perendale (6% purebreed), 6% 
Primera (5% purebreed) and other breeds with less than 3% 
each. 

 
Animals were assigned to a number of breed 

groups. Those that were recorded as at least 75% Romney, 
Coopworth, Perendale or Texel formed the groups R, C, P 
and T, respectively. Remaining animals that were recorded 
with more than 30% of Romney, Coopworth and Perendale 
combined formed the composite group (Comp) and then 
those still not assigned a breed group were discarded from 
the analyses. Recently developed ‘breeds’ were decom-
posed into their foundation breeds, as far as possible, before 
applying these thresholds. 

 
Estimated breeding values (eBVs) were obtained 

using standard SIL procedures, except that pedigrees were 
cleaned to avoid genotype inconsistencies. The eBV anal-
yses were based on a set of 756 flocks with over 4 million 
animals, born between 1990 and 2011. 

 
Genotypes. There were 53,903 single nucleotide 

polymorphism (SNP) markers with results reported from 
the 50k chip. Results were obtained in Illumina’s ‘AB’ 
format. SNPs that were discarded by the ovine HapMap 
project (http://www.sheephapmap.org), or that were denot-
ed or appeared to be non-autosomal were discarded. SNPs 
with a call rate <97% or with a 10th percentile quality score 
(GC10) reported by the Illumina software < 0.422 or that 
were monomorphic were also discarded. Data were also 
checked for extreme departures from Hardy-Weinberg, but 
none discarded. This process resulted in 47,071 SNPs being 
available for GS. 

 
Samples with a call rate (using all 53,903 SNPs) 

<0.96 were discarded. Duplicates were checked for con-
sistency, and samples checked for consistency with record-
ed parentage, gender and breed. Samples were removed if 
inconsistencies other than pedigree could not be corrected, 
leaving 13,338 animals.  

 
Genotypes were then coded as the number of A al-

leles (0, 1 or 2). After the data edits, missing genotypes 
were minimal (<0.1%) and were replaced by twice the 
weighted (by the animal’s breed composition) average 
breed estimated A allele frequency. 

 
Statistical analysis. The data used in the analyses 

were based on eBVs for the following traits: weaning 
weight direct (WWT), weaning weight maternal (WWTM), 



live weight at 8 months (LW8), greasy fleece weight at 12 
months (FW12), log faecal egg count after 6-8 weeks fol-
lowing an initial drench (FEC1) and number of lambs born 
(NLB, i.e. litter size). Parental contributions were removed 
from the eBVs (so that only measurements on the animal 
and its descendants would contribute to its value), and the 
resulting values were deregressed by dividing by the relia-
bility (squared correlation between true and estimated 
breeding value) of those values to give the ‘deregressed, 
parent-average removed breeding values’ (dpBV). These 
steps followed the procedures described by Garrick et al. 
(2009). 

 
For a particular trait, an animal was included in the 

analysis only if its dpBV had a reliability of at least 0.8 
times the trait heritability (approximately equivalent to hav-
ing at least one trait record on itself). Breed validation sets 
were created by choosing the youngest animals of a breed 
using a birth year cut-off for each breed, to mimic the in-
tended application to predicting merit in young animals. 
The cut-off for each breed was chosen so that there were at 
least 200 animals in a breed validation set, but using no 
more than 75% of the full breed resource. The remaining 
animals were combined in to a single mixed-breed training 
set. When applying these rules to the Comp group, the ani-
mals were first restricted to those that had at least 50% of 
Romney, Coopworth and Perendale combined and less than 
25% Texel. The other Comp animals were then added to the 
Comp validation set (none were used in training). The Tex-
el group was used for validation only. Numbers for each set 
and trait are shown in Table 1. 

 
Table 1. Number of animals in training and validation 
sets for Romney (R), Coopworth (C), Perendale (P), 
Composite (Comp) and Texel (T) breed groups for 
weaning weight (WWT), WWT maternal (WWTM), live 
weight at 8 months (LW8), greasy fleece weight at 12 
months (FW12), log faecal egg count (FEC1) and num-
ber of lambs born (NLB) 
    Breed   
Trait Set§ R C P Comp T 
WWT T 4643 1840 564 880 0 
WWT V 688 250 202 2277 404 
WWTM T 2308 1019 306 132 0 
WWTM V 257 287 257 848 288 
LW8 T 4510 1751 417 801 0 
LW8 V 649 247 293 2113 403 
FW12 T 4287 1603 434 634 0 
FW12 V 549 228 275 924 240 
NLB T 2317 1188 307 373 0 
NLB V 420 253 328 906 306 
FEC1 T 1720 1293 248 347 0 
FEC1 V 216 304 254 664 140 
§Training (T) or validation (V) 

 
 
 
 
 
 
Prediction of breeding values (giving ‘molecular 

breeding values’; mBVs) from genotype data was undertak-

en using the ‘gBLUP’ method (Goddard et al. (2010)) 
whereby the pedigree-based numerator relationship matrix 
is replaced by a genomic relationship matrix (GRM), as 
follows. Two different versions of GRM were investigated, 
one (Ga) which centers and scales using allele frequencies 
calculated from the whole data set (vanRaden (2008)), and 
another (Gb) which centers and scales based on breed-
specific allele frequencies (Harris and Johnson (2010); Au-
vray and Dodds (2013)), based on the proportion of R, C, P, 
T or ‘Other’. The models for each trait included the first ν 
principal components (PCs) of Ga for training set animals 
as covariates and a random animal effect with the covari-
ance between animals set to 𝐆𝜎!! where G is a GRM. Un-
less specified otherwise, ν = 6. The records in the analysis 
were weighted by (1-r2)/ r2 where r2 is the reliability of the 
dpEBV. Further details can be found in Auvray et al. 
(2014). The genetic variance, 𝜎!!, was fixed so that the her-
itability (of an individual measurement) matched that used 
in the SIL system. 

 
Two measures of accuracy of the mBV were cal-

culated. The ‘realized accuracy’,rA, was estimated as the 
correlation, in the validation set, between dpEBV and mBV 
divided by the square root of the ‘effective heritability’ 
(mean reliability of the dpEBV) of the observations in the 
gBLUP model (Lorenz et al. (2011)). The lower bound of a 
one-sided 95% confidence interval was also calculated. The 
‘model-based accuracy’, rB, was calculated as the mean 
individual accuracy in the validation set, where the individ-
ual accuracies are calculated from the prediction error vari-
ance from the gBLUP model (Mrode (2005); Auvray et al. 
(2014)). 

 
The spread of mBV in the validation sets was 

compared to what might be expected for a set of estimated 
breeding values with mean accuracy r’. The ratio of the 
expected spread to that observed was measured as  

 
𝑘 = 𝑟′𝜎!/  sd(mBV) 

 
where σA is the genetic variance of the trait. 
  

Results and Discussion 
 

Population Structure. The variation explained by 
the first 1, 2, 6, 50 and 200 PCs was 54%, 69%, 82%, 91% 
and 94%, respectively. Figure 1 shows that the different 
breeds are largely separated on the basis of the first two 
PCs. The Coopworth breed appears more spread than other 
breeds which is likely to be a reflection of its breed society 
allowing introgression from other breeds (Coopworth Ge-
netics (2014)). Although the Perendales appear within the 
spread of Romneys, they appear as a distinct group in other 
dimensions (e.g. components 4 and 5). Some breed sub-
structure is also evident from higher order (>3) compo-
nents, especially within the Romney breed. 



 
Figure 1: The first two principal components (PC1 and 
PC2) of Ga, colored by breeds as defined for the ge-
nomic selection analysis. The composite group is sepa-
rated into those considered for training (Comp1; ≥ 50% 
R+C+P, <25% T) and those only used for validation 
(Comp2). Other represents breed types not used for ge-
nomic selection.  

 
Realized accuracies. Table 2 shows the rA in the 

various validation sets when using GRM Ga and with ν = 6. 
For comparison, the theoretical EBV accuracy of the parent 
average (PA) with a single trait record on each parent is 
also shown. In general, R, C and Comp rA, are similar to the 
PA accuracies for liveweight traits (WWT, WWTM and 
LW8) and higher for the other traits. These three breed 
groups have the highest rA followed by P and then T. This 
roughly represents the contribution of these breeds to the 
training sets, with low numbers of P and with T being ex-
cluded from training. The results suggest that there is some 
predictive power across breeds as the rA for T were signifi-
cantly positive for WWT, WWTM, LW8 and NLB. This is 
likely to be assisted by there being some T contribution to 
the training set (e.g. ≈ 1% for WWT) and some R, C and P 
contribution in the T validation set ((e.g. ≈ 8% for WWT). 
However, the results are worse than for the other breeds, 
and in one case the correlation between mBV and dpEBV 
was actually negative (for FW12), so the mBV for T do not 
appear to be very useful. Harris et al. (2009) and Kachman 
et al. (2013) also found limited prediction accuracy in 
breeds not in the training set, when using a bovine 50k SNP 
chip in dairy and beef cattle, respectively. 

 
There was very little difference between rA calcu-

lated using Ga or Gb (Figure 2). This was also true for val-
ues of rA calculated using all the validation sets, except for 
T, combined. There were some slight differences for the 
most poorly predicted combinations (FW12 and FEC1 for 
T). Auvray et al. (2014) also found small differences in rA 
using a variety of GRM. These authors also found that sin-
gle breed training sets did not give any overall advantage 
over mixed breed training, using the same resource de-
scribed here. 

 

 
Figure 2. Comparison of realized accuracies using two 
different GRM (Ga and Gb) for different breed sets and 
across all validation breed sets excluding Texel (All-T). 
The line of equality is also shown. 
 

Model-based accuracies. Figure 3 shows the rB in 
the various validation sets when using either GRM Ga or 
Gb. For the main breeds studied (R, C, P and their compo-
sites), the two GRM give quite similar rB, with slightly 
higher values using Gb. In contrast, the values are quite 
different for T, the breed with almost no contribution to the 
training sets. In this case the method which accounts for 
breed structure (Gb) gives lower values than when ignoring 
breed structure (Ga). Given that the T validation set is not 
closely related to the training set, it would appear that Gb is 
giving more realistic results in this case. 

 

 
Figure 3. Comparison of model-based accuracies using 
two different GRM (Ga and Gb) for different breed sets. 
The line of equality is also shown. 

 
Realized accuracies and model-based accuracies 

are compared in Figure 4. For this comparison we show rB 



with Gb, the GRM that seemed to give the best results, 
while for rA there is little difference between the GRM so 
results are shown for the simpler method, Ga. In general, 
the rB are somewhat higher than the rA. A similar effect was 
observed by Hayes et al. (2009b) in multi-breed populations 
(without accounting for breed structure in the GRM) but 
was not evident with single breed populations of dairy cat-
tle. As we have seen, failing to account for breed structure 
can result in over-estimation of rB, and there may be further 
population structure that we have not catered for with Gb, 
but given the relatively minor differences in rB between the 
two GRM for the main breeds, it is unlikely there would be 
much further change by defining breed subgroups for the 
calculation of Gb. A characteristic of the GRM used here is 
that their elements do not have a direct identity by descent 
interpretation as is the case for pedigree-based numerator 
relationship matrix. In particular, diagonal elements may be 
less than one, and off diagonals can be negative. It could be 
that the model-based accuracy is being increased by nega-
tive relationships, which is counter-intuitive. To investigate 
this, a modified Gb was created where negative elements 
were set to zero (Gbz). The rB from this GRM were indeed 
lower than those from Gb (by ≈ 5% for higher accuracy 
combinations to ≈ 25% for lower accuracy results). 

 
Figure 4. Comparison of model-based accuracies using 
Gb with realized accuracies using Ga for different breed 
sets. The line of equality is also shown. 
 

Another possibility is that the rA could be lower 
than the population values they are meant to represent. De-
ficiencies in the GRM should affect traits with similar her-
itability in a similar way, but e.g., WWT appears to be con-
siderably overestimated by rB while FEC1 does not, even 
though these have similar heritability (see PA values in 
Table 2). The traits with the greatest difference between rA 
and rB are those that are measured early in life (WWT) or 
are correlated with such traits (LW8, FW12). The animals 
used in training and validation are mostly already sires and 
therefore represent a selected subset, particularly for traits 
with reasonably accurate EBV at the time of selection, 
which are the ones showing the greatest discrepancy. A 
selection effect will lower the realized accuracy (Edel et al. 

(2012)) which is consistent with these results. Further evi-
dence that these are selection effects is that the differences 
between rA and rB are generally small for several other traits 
not presented here, such as disease traits (Pickering (2013); 
Phua et al. (2014)) or carcass composition traits. 

 
Table 2. Realized molecular breeding value accuracies 
for Romney (R), Coopworth (C), Perendale (P), Compo-
site (Comp) and Texel (T) breed groups for weaning 
weight (WWT), WWT maternal (WWTM), live weight 
at 8 months (LW8), greasy fleece weight at 12 months 
(FW12), log faecal egg count (FEC1) and number of 
lambs born (NLB)  
        Breed     
Trait PA† R C P Comp T 
WWT 0.30 0.32 0.25 0.15 0.29 0.23 
WWTM 0.24 0.37 0.25 0.37 0.24 0.14 
LW8 0.45 0.39 0.25 0.21 0.30 0.24 
FW12 0.42 0.55 0.67 0.10 0.41 -0.06 
NLB 0.22 0.53 0.38 0.27 0.40 0.16 
FEC1 0.28 0.63 0.70 0.24 0.51 0.02 
†The EBV accuracy that would be obtained from parent 
average with a single trait record on each parent. 

 
 
Effect of principal component covariates. Anal-

yses with differing numbers of PCs, namely ν = 0, 6, 50, 
and 200, were undertaken with a subset of traits to study the 
effect of including these covariates when using GRM Ga. In 
addition to calculating rA from the predictions after adjust-
ing for the PCs as has been done for the other values of rA 
in this article, mBVs were also computed adding back in 
the values predicted by the PCs. To assist with these calcu-
lations, PCs were calculated using the full set of training 
and validation animals, rather than just the training animals 
as previously. 
 

Figure 5 shows the accuracies (without adding the 
effects of PCs) for WWT, NLB and FEC1. On average, the 
rA drop by 0.02 between ν = 0 and ν = 6, which is minor 
compared to differences observed between rA and rB. This is 
despite these 6 PCs explaining a large proportion of the 
variation (82%). Increasing ν further tends to cause further 
decreases in accuracy, despite these components explaining 
a low proportion of variation (12% for the next 194 PCs). A 
similar effect was found in a mixed-breed sheep resource 
by Daetwyler et al. (2012) who fitted each value of ν be-
tween 0 and 200. They found that the accuracies within this 
range plateaued between ν = 50 and ν = 150, depending on 
the trait and prediction breed. This plateau was interpreted 
as the contribution to prediction accuracy due to linkage 
disequilibrium, in contrast to that from close relationships.  

 



 

 
Figure 5. Effect of fitting different numbers of principal 
components of Ga on the realized accuracy of weaning 
weight (WWT), number of lambs born (NLB) and log 
faecal egg count (FEC1). 

 
The trend in the combined R, C, P and Comp vali-

dation sets (shown as ‘All breeds’ in Figure 5) is similar to 
the within breed trends, so these trends are not an artefact of 
calculating the accuracies within breed. We have chosen to 
retain ν = 6 to safeguard against simply predicting differ-
ences associated with population substructure (e.g. breed 
differences) and because there appears to be only a minor 
sacrifice in accuracy. For these analyses, the PC analysis 
used data from training plus validation, rather than just 
training animals, as above. In most cases this had little ef-
fect, with accuracies differing by less than 0.01 for 8 of the 
15 comparable (ν = 6) cases. However, using training plus 
validation improved the accuracy of WWT mBVs in C by 
0.26. It is not clear why this has occurred for this one com-
bination, but appears to be related to a subset of flocks. 

 

 
Figure 6. Effect of fitting different numbers of principal 
components of Ga on the realized accuracy of weaning 
weight (WWT), number of lambs born (NLB) and log 
faecal egg count (FEC1) if principal component effects 
are added to the predictions. 

 
Adding the effects of PCs back into these analyses 

gives accuracies that are largely independent of ν (Figure 6) 
with the main exception being for NLB in composites, 
where the accuracies still drop with increasing ν. These 
results suggest that adding back PC effects does not have 
any advantage over fitting zero or a few PCs. 

 
The spread of mBV. The values of k (ratio of the 

expected spread in mBV to that observed) are shown in 
Table 3. In dairy cattle, it is common to assess ‘genomic 
inflation’ by looking at the slope of EBV based on a proge-
ny test with the mBV. This does not account for changes in 
spread of these variables due to the accuracy of their selec-
tion, however in dairy cattle applications, both accuracies 
are usually high and so this is not an issue. The k values 
given here are designed as a measure of genomic inflation 
which can be used more generally. The values are all less 
than one (Table 3), indicating that the mBV are more 



spread than expected. The k values vary considerably be-
tween trait-breed combinations.  

 
Table 3. The ratio, k, of expected (assuming accuracies 
rA) spread to observed spread of molecular breeding 
values (adjusted for PCs), calculated using Ga, for Rom-
ney (R), Coopworth (C), Perendale (P), and Composite 
(Comp) breed groups for weaning weight (WWT), 
WWT maternal (WWTM), live weight at 8 months 
(LW8), greasy fleece weight at 12 months (FW12), log 
faecal egg count (FEC1) and number of lambs born 
(NLB) 
  Breed  
Trait R C P Comp 
WWT 0.43 0.32 0.23 0.47 
WWTM 0.56 0.45 0.66 0.45 
LW8 0.67 0.45 0.45 0.61 
FW12 0.81 0.77 0.16 0.64 
NLB 0.64 0.54 0.48 0.61 
FEC1 0.80 0.90 0.51 0.86 

 
 
Commercial application. The results of this re-

search and similar calculations from other industry EBV 
have been commercialized via a third party for use in the 
NZ industry. Initially mBV were calculated by the third 
party, and IP constraints meant that they required prediction 
equations, rather than direct calculation from the research 
data set. Ga is the only GRM that allows such direct calcu-
lation, via the use of ‘SNP coefficients’ in a regression pre-
diction equation (vanRaden (2008)). Individual model-
based accuracies could not directly be calculated under this 
scenario, so breed-trait combinations of accuracies were 
given. Because there appear to be deficiencies in both rA 
and rB, the average of these two methods was given (rA 
from using Ga as in the predictions, and rB from using Gbz 
as it appeared to be more conservative). The traits which 
are mostly penalized by this approach are those that showed 
a selection effect for rA, but these are the traits which will 
benefit the least from GS, as they have phenotypic infor-
mation early in life. The k values were also recalculated 
based on the above average accuracy, and these values used 
to rescale the mBV so they had the expected spread. 

 
In general, mBV are not reported if the rA for that 

particular breed-trait combination was not significantly 
positive. In some cases rA changed from significant to non-
significant in an updated analysis. These fell just below the 
significance cut-off and may reflect changes in validation 
sets rather than true loss of predictive ability, therefore the-
se combinations continued to be reported allowing continui-
ty of product. This was the case for WWT and FW12 in P 
among results reported here. 

 
Genomic calculations have now moved to within 

the national evaluation system, SIL, which allows more 
flexibility in their calculation, including the calculation of 
individual accuracies. Results (scaled by k as above) are 
blended using the method of Harris and Johnson (2010) 
with EBV from an across flock evaluation encompassing all 
client flocks as well as other flocks to provide better con-

nectedness. Young animals are evaluated using a lower 
density (5000-6000 SNPs) chip (at a lower price than the 
50K chip) and genotypes imputed to the 50K prediction set. 
An ad-hoc small adjustment is made to the individual accu-
racies calculated to compensate for imputation. 

 
Conclusion 

 
Genomic selection in the NZ dual purpose sheep 

industry is possible using a mixed breed training set, allow-
ing predictions in purebreds and composites. It is important 
to account for breed structure in the genomic relationship 
matrix when calculating model-based accuracies, but the 
predictions were similar with and without this adjustment. 
Realized accuracies may be biased downwards due to selec-
tion of genotyped animals. The results of this research are 
available commercially in NZ. 
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