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ABSTRACT: The main benefit of genomic selection for 
Australian sheep is to increase the accuracy of hard to 
measure traits including carcass, adult wool and reproduc-
tion traits. A genotyped reference population has been es-
tablished to measure these traits, and genomic predictions 
from this population show moderate accuracies, in the 
range 0.2 – 0.5. Genomically enhanced breeding values for 
traits in the current evaluation system have been delivered 
to breeders using the “blending” selection index method to 
combine genomic predictions with pedigree based estimat-
ed breeding values, and for carcass traits using the “single 
step” method. The goal for genomic evaluation is to move 
to single step analyses for all traits. One of the challenges is 
to accommodate breed and strain within breed structure, 
particularly for animals with unknown pedigree and no da-
ta. Marker information can be used to define genetic groups 
which correlate reasonably well with genetic groups de-
fined from pedigree information. 
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Introduction 
 

The Australian sheep industry has a well-
developed genetic evaluation system (Brown et al., 2007) 
featuring three separate analyses: Merinos, maternal sires 
(with the major breeds being Border Leicester, Coopworth, 
and more recently maternal composites), and terminal sires 
(dominated by the Poll Dorset and White Suffolk breeds). 
The Merino is dominant in commercial production systems, 
and while wool is a key component of farm income, most of 
the sheep meat produced in Australia is from progeny of 
Merino or Merino cross dams. Maternal and terminal sire 
breeds on the other hand are used in crossing systems for 
meat production. The three analyses are all conducted 
across-flock, and there are currently 1.7 million animals in 
the pedigree for Merinos, 1.5 million for maternal sires, and 
2.3 million for terminal sires, with approximately 125 thou-
sand, 70 thousand, and 130 thousand new animals entering 
the system each year respectively. 

 
Significant genetic gains have been made, particu-

larly in the terminal and maternal sire sectors (Swan et al., 
2009), and from 2007 the industry has invested heavily in 
research to develop genomic selection to further increase 
rates of gain. Unlike in dairy cattle where genomic selection 
has a major impact through shorter generation intervals 
made possible by more accurate evaluations of bulls with 

less progeny testing (Schaeffer, 2006), sheep are typically 
evaluated with reasonable accuracy from an early age in 
both sexes, at least for traits which are easy to measure. 
This means that the gains from genomic selection in sheep 
are predicted to be more modest (van der Werf, 2009), and 
likely to be derived mainly from increased accuracy of hard 
to measure traits including carcass and meat quality, disease 
resistance, reproduction, and adult wool production. Be-
cause these are typically not measured in industry breeding 
programs, much of the effort to develop genomic selection 
for the Australian sheep industry has been in establishing a 
comprehensively phenotyped reference population to de-
velop genomic predictions. 

 
In this paper we describe how this reference popu-

lation has been used to develop genomic predictions for a 
range of traits, and how these predictions have been incor-
porated in genetic evaluations to deliver genomically en-
hanced estimated breeding values (GEBVs). One of the key 
issues has been how to deal with the multi-breed nature of 
the data because there are a number of influential breeds in 
the terminal and maternal sire evaluations, and strains with-
in Merino evaluations. 

 
Development of the Reference Population 

 
The main reference population is the Information 

Nucleus (IN) flock established in 2007 (Van der Werf et al., 
2010). This flock was run at 8 locations representing the 
major sheep production environments across Australia. Ap-
proximately 5,000 mainly Merino ewes were mated annual-
ly to Merino (n≈40), maternal (n≈20), and terminal sires 
(n≈40) selected on the basis of industry relevance and to 
represent the diversity of the respective populations (Banks 
et al., 2006). An earlier research flock with phenotypes and 
genotypes (Oddy et al., 2007) also contributes to the refer-
ence. 

 
An extensive measurement program was conduct-

ed in the IN flock, including measurement of carcass and 
meat traits on slaughter progeny, a comprehensive wool 
measurement program, growth and ultrasound scanning of 
muscle and fat, resistance to gastrointestinal nematodes 
(worm egg count, or WEC), visually assessed traits for 
wool and body conformation, and reproduction data col-
lected on female progeny of the Merino and maternal sires. 
Progeny were genotyped using the Ilumina 50K ovine SNP 
chip (Illumina Inc., San Diego, CA). The number of proge-



	
  

	
  

ny in the reference with both genotypes and phenotypes for 
different trait groups is shown in Table 1. 

 
Table 1. Approximate size of genomic reference popula-
tions for Merino, maternal and terminal sire breeds for 
wool traits, body weight and ultrasound muscle and fat 
scanning (WT/SCAN), worm egg count (WEC), and 
carcass traits, as of March 2014. 
Trait group Merino Maternal Terminal 
Wool 5,100   
WT/SCAN 3,800 2,200 5,800 
WEC 4,200 2,000 5,200 
Carcass 2,800 1,300 6,100 

 
 
In addition to the reference population, a pool of 

widely used industry sires with accurate estimated breeding 
values (EBVs) from the main genetic evaluation analyses 
were also genotyped as a resource for validating genomic 
predictions. At the time of writing there were 536 Merino 
validation sires, 130 maternal sires, and 618 terminal sires. 
Seedstock breeders in each sector have also begun to geno-
type young male selection candidates, and it is these ani-
mals which are of interest for genomic evaluation. 

 
Accuracy of Genomic Predictions 

 
Genomic predictions of breeding value (GBVs) 

have been calculated using GBLUP, from the model 
𝑦 = 𝑋β + ZQg + Za + e where 𝑦 is a vector of trait meas-
urements for reference population animals only (and ex-
cluding progeny from validation sires for example), 𝛽 is a 
vector of fixed effects, 𝑔 is a vector of random genetic 
group effects, 𝑎 is a vector of GBVs for all animals of in-
terest including the reference population, validation sires, 
and young male selection candidates, and 𝑒 is a vector of 
random residuals distributed as 𝑁(0, 𝐼𝜎!!). 𝑋 is an incidence 
matrix for fixed effects, 𝑍 is an incidence matrix aligning 
animals with records and their GBVs, and 𝑄 is a matrix 
describing the genetic group content for all animals with 
GBVs. Elements of 𝑄 are fractions of each genetic group 
for each animal, with rows (corresponding to animals) 
summing to 1. Distributions for 𝑔 and 𝑎 are 𝑁(0, 𝐼𝜎!!) and 
𝑁(0,𝐺𝜎!!) respectively, where 𝐺  is the genomic relation-
ship matrix (VanRaden, 2008) calculated from SNP geno-
types following Yang et al. (2010). Note that this model is a 
modified version of the “genetic groups” model (Quaas, 
1988) used in many genetic evaluation systems, the modifi-
cations being that the covariance structure for animal genet-
ic effects is modelled using genomic rather than pedigree 
information and that genetic groups are fitted as random 
rather than fixed effects. While genetic groups are often 
considered to be fixed effects, treating them as random is a 
pragmatic approach to assist with estimability issues which 
can result from confounding between genetic groups and 
environmental classifications such as management groups 
or small numbers of records contributing to genetic groups.  

 

Although breed and Merino strain structure can be 
identified in the 50K SNP genotypes of this population 
(Daetwyler et al., 2012a; Brown et al., 2013), genetic 
groups are derived from the extended pedigree, and are 
defined for maternal and terminal sires by breed (e.g. Bor-
der Leicester, Coopworth, Poll Dorset, White Suffolk, Tex-
el) and for Merinos by strain (Ultra-fine wool, Fine-
medium wool, and Strong wool).  

 
For traits in the main genetic evaluation analyses, 

accuracies of genomic predictions have been calculated by 
correlating GBVs for validation sires with their inde-
pendently estimated EBVs (Moghaddar et al., 2013a). Ac-
curacies estimated for these traits have generally been mod-
erate, in the range 0.2 to 0.5, although for some traits in 
Merinos initial estimates were very high (fleece weight, 
0.63 to 0.75; fibre diameter, 0.65 to 0.72; and body weight, 
0.49 to 0.63). This runs counter to expectations that accura-
cy in Merinos would be lower than in maternal and terminal 
sire breeds due to the larger effective population size of 
Merinos (Kijas et al., 2012). We have shown that this is due 
to population structure and the large differences in trait per-
formance between strains of Merino. When accuracies for 
validation sires are calculated within strains for these traits 
they fall within the 0.2 to 0.5 range (Moghaddar et al., 
2013a).  

 
Inflated accuracy estimates suggest that GBVs are 

not free of population structure even though we have used a 
genetic groups model. It seems likely that this is because 
the genetic groups defined from the pedigree are somewhat 
arbitrary, and not fully consistent with the genetic architec-
ture described by the SNP genotypes. 

 
We have also used bivariate REML analyses to es-

timate accuracies with reduced influence from population 
structure effects, fitting progeny records of validation sires 
as the first trait, and GBVs of validation sires as the second 
trait. Reference progeny are excluded from the first trait, 
and population structure is accounted for by fitting the ge-
netic groups model described above in bivariate form 
(while population structure effects are still present within 
GBVs, when the genetic groups model is fitted to both traits 
in this analysis population structure effects are reduced). 
Genomic prediction accuracies are then estimated as the 
genetic correlation between traits. Accuracies estimated 
using this approach are shown in Table 2 for body weight, 
ultrasound muscle and fat scan traits, gastrointestinal para-
site resistance (worm egg count, WEC), and wool traits. 
These results are similar to the within strain estimates re-
ported by Moghaddar et al. (2013a). 

 
Table 2. Accuracies of genomic predictions for Merino, 
maternal and terminal sire breeds for body weight, ul-
trasound muscle and fat scanning, worm egg count, and 
wool traits. 
Trait1 Merino Maternal Terminal 
bwt 0.54 0.41 0.19 
wwt 0.19 0.47 0.23 



	
  

	
  

pwt 0.48 0.62 0.23 
ywt 0.58 0.33  
hwt 0.55 0.22  
awt 0.47 0.45  
pemd 0.33 0.34 0.41 
pfat 0.27 0.34 0.37 
pwec 0.26 0.10 0.32 
ygfw 0.37   
ycfw 0.34   
yfd 0.52   
ydcv 0.32   
yss 0.32   
ysl 0.42   
1 bwt = birth weight, wwt = weaning body weight, pwt = post-weaning 
body weight, ywt = yearling body weight, hwt = hogget body weight, awt 
= adult body weight, pemd = post-weaning eye muscle depth, pcf = post-
weaning fat depth, pwec = post-weaning worm egg count, ycfw = yearling 
clean fleece weight, yfd = yearling fibre diameter, ydcv = yearling CV of 
fibre diameter, yss = yearling staple strength. 

 
 
GBLUP genomic predictions have also been de-

veloped for carcass and meat quality traits, including car-
cass weight, muscle and fat depth, lean meat yield, shear 
force and intramuscular fat. Because there is no existing 
data outside the reference population, the validation sire 
approach to estimate accuracy is not possible, and internal 
cross validation has been used instead (Daetwyler et al., 
2012b). Accuracies estimated for these traits were in the 
range 0.15 to 0.20 for the three breed groups. 

 
Female reproduction traits are classic candidates 

for genomic selection because they are economically im-
portant in breeding objectives, lowly heritable, sex limited, 
expressed late in life, and are often not recorded in seed-
stock flocks in Australia. Developing genomic predictions 
for reproduction has been difficult precisely because it is 
hard to record, and there are limited records in the reference 
population. In order to maximise the available data, Daetw-
yler et al. (2013) developed a GBLUP analysis combining 
Trait Deviations (corrected phenotypes) from genotyped 
females in the IN reference population with Daughter Trait 
Deviations calculated from phenotypes of daughters of 
genotyped validation sires recorded in industry flocks. Ac-
curacy was estimated by cross validation, and although es-
timates were low they were always higher than accuracy 
from pedigree BLUP models. Updated estimates of these 
accuracies are presented in these proceedings (Daetwyler et 
al., 2014), and are in the range 0.11 to 0.31 for Merinos and 
0.05 and 0.15 for maternal breeds. 

 
The ability to develop genomic predictions across 

breeds is highly desirable in all livestock populations, to 
make best use of available reference populations and to 
provide predictions for small breeds. At the current 50K 
SNP density the IN reference population is not able to pre-
dict across breeds (Daetwyler et al., 2010; Moghaddar et 
al., 2013b), and there is some evidence that including ani-
mals from another breed can decrease the accuracy for the 
target breed.  

 
Within breeds there is evidence in the IN popula-

tion that accuracies are higher for animals which are more 
closely related to the reference (Clark et al. 2012). The im-
plications of this are that at the current SNP density the 
reference population needs to be maintained because refer-
ence animals born in the early years of the program will be 
less related to current selection candidates, and that seed-
stock breeders should ensure that they have adequate rela-
tionships to the reference population. 

 
Genomic selection with the accuracies estimated in 

the current reference population is predicted to increase 
genetic gain in the overall breeding objective in the order of 
15 to 20% (van der Werf, 2009). These are gains from with-
in flock (and within breed) selection, but as noted above, 
higher accuracies in Merinos are possible if across flock 
effects due to population structure are considered. Howev-
er, these will rarely be useful to breeders, firstly because for 
those making the fastest rates of genetic gain who have 
typically been the early adopters of genomic testing, finding 
superior animals outside their own flocks is uncommon, 
and secondly, for breeders within the current evaluation 
system the existing benchmarking information from pedi-
gree and performance data is already highly accurate. The 
main beneficiaries of these higher levels of accuracy arising 
from across flock effects are therefore likely to be breeders 
outside the evaluation system, or breeders with limited trait 
recording programs. 

 
Genomic Evaluations 

 
The methods used to produce genomically en-

hanced EBVs (GEBVs) for the Australian sheep industry 
have been described by Swan et al. (2012). For traits cur-
rently in the genetic evaluation analyses, the “blending” 
approach is used, in which GEBV is an index of the EBV 
and the genomic prediction, 𝐺𝐸𝐵𝑉 = 𝑤!𝐸𝐵𝑉 + 𝑤!𝐺𝐵𝑉 
where the weights 𝑤! and 𝑤! are derived from the accura-
cies of GBVs and EBVs. For GBVs the accuracies used are 
derived from the population estimates summarised in Table 
2 for wool, weight and scan traits, and worm egg count, 
while for EBVs individual animal accuracies from the ge-
netic evaluation analyses are used. An assumption of the 
blending method implemented is that EBVs and GBVs are 
independent. This is not strictly true because data from the 
IN reference population are included in the genetic evalua-
tion analyses, but it is likely that potential effects of double 
counting are reduced because the selection candidates of 
interest are not part of the reference population, or reference 
population sires. They can have relatives in the reference 
population who contribute information through both EBVs 
and GBVs, but not in large numbers relative to the total size 
of the reference population. 

 
A key issue for blending is that GEBVs for geno-

typed animals must be compared relative to the same genet-
ic mean as the EBVs of their un-genotyped contemporaries, 
particularly in the current situation in which the proportion 



	
  

	
  

of the total animals entering the genetic evaluation system 
which have been genotyped is small. In fact flocks involved 
to date have typically genotyped 10 – 20% of available se-
lection candidates. To ensure GEBVs are comparable in 
this situation, they are centred on the genetic group effects 
from the main evaluation, and the blending equation im-
plemented is 𝐺𝐸𝐵𝑉 =   𝑄𝑔 + 𝑤!(𝐸𝐵𝑉 − 𝑄𝑔) + 𝑤!𝐺𝐵𝑉 , 
where 𝑄𝑔 are the estimates of genetic group effects from 
the main evaluation. As described above genetic group ef-
fects are fitted in GBLUP models but are not included in 
GBVs for blending. Use of estimated genetic group effects 
from GBLUP models in blending can cause difficulties in 
comparing GEBVs for genotyped animals with EBVs of 
their un-genotyped contemporaries because GBLUP genetic 
groups are estimated with lower accuracy from the refer-
ence population, and are not always defined with the same 
level of detail as genetic groups in the main evaluation (van 
der Werf et al., 2013).  

 
GEBVs for carcass traits are computed using the 

single step method (Misztal et al., 2009; Aguilar et al., 
2010) with the genetic groups model. Although carcass 
phenotypes are available only from the reference popula-
tion, a number of slaughter animals have not been geno-
typed. The benefit of the single step analysis in this situa-
tion is that all records can be included whether animals are 
genotyped or not. Initially, six carcass traits have been in-
cluded in single trait analyses. Accuracies calculated from 
prediction error variances for young male selection candi-
dates outside the reference population (i.e. without meas-
urements) increased by 0.14 – 0.24 compared to equivalent 
pedigree only BLUP analyses (Swan et al., 2011). 
 

Genetic Groups from  
Marker Information 

 
One of the opportunities for the use of genomic in-

formation in sheep is to extend evaluations to flocks outside 
the current system which may have limited phenotypic data 
and pedigree linkage. While it is straightforward to make 
genomic predictions from reference population data for 
animals in these flocks, in order to make their GEBVs 
comparable a genetic group effect needs to be included. The 
issue for these flocks is that most will not have sufficient 
data and linkage to estimate their own genetic group effects. 
One possibility is to use genomic information to identify 
genetic groups. 

 
Techniques including principal components analy-

sis have been used to identify population structures from 
marker genotypes (Price et al., 2010), and have been used 
to study strains within the Australian Merino (Brown et al., 
2013) and to identify breeds within the New Zealand sheep 
population (Dodds et al., 2013). The Merino is an interest-
ing case because there is a very large range in trait perfor-
mance between flocks in the evaluation system. Genetic 
groups are essentially defined by flock, and flocks are allo-
cated into three strains for EBV reporting purposes: Ultra-
fine wool, Fine-medium wool, and Strong wool. These al-

locations are partly based on trait performance and partly 
arbitrary. 

 
The Merino portion of the genotyped population 

including reference, validation sires and young rams is 
highly representative of the genetic diversity within the 
breed. The ADMIXTURE software (Alexander et al., 2009) 
was used to identify four sub-population genetic groups 
(GG1 – GG4) within 9,945 genotyped Merinos. A subset of 
11,922 markers corresponding to a low density SNP panel 
currently in use by the industry was selected from the 50K 
SNP genotypes for this analysis.  

 
ADMIXTURE gives estimates of the fractions of 

each of the four groups for each animal (referred to below 
as admixture fractions). The separation of animals between 
the groups is demonstrated in Figure 1, which shows the 
first two principal components of the genomic relationship 
matrix, and animals plotted by group when their admixture 
fraction for the largest group is greater than 0.5. Comparing 
the admixture fractions with the allocation of animals to 
strains in the evaluation system, all Ultra-fine strain animals 
had a very high GG3 fraction, while animals with high GG4 
fractions were almost all from the Strong wool strain. How-
ever, approximately half of animals that were classified as 
Strong wool in the evaluation system had significant contri-
butions from GG1 – GG3. The Fine-medium strain is the 
largest in the evaluation system, and around half of the an-
imals classified as such had very high fractions of either 
GG1 or GG2. The remaining Fine-medium animals were a 
mixture of GG1 – GG3 with very little contribution from 
GG4. 

 

 
Figure 1: First two principle components (PC1 and 
PC2) of the genomic relationship matrix for Merino 
animals with high content of ADMIXTURE sub-
population groups GG1 - GG4.  

 
 
The ADMIXTURE sub-population groups GG1 – 

GG4 were fitted as genetic group effects using admixture 
fractions as the genetic groups matrix 𝑄!. Estimates of the 
effects for a range of traits measured on reference popula-
tion animals are shown in Table 3. As expected, GG3 (more 
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Ultra-fine wool animals) and GG4 (more Strong wool ani-
mals) represent the extremes of performance, with GG3 
having the lowest fleece weight (ycfw), fibre diameter 
(yfd), and body weight (ywt), and GG4 having the highest 
fibre diameter and body weight. GG1 and GG2 (more Fine-
medium animals) were intermediate, with GG1 closer to 
GG3 and GG2 closer to GG4. Correlations between admix-
ture genetic group and pedigree genetic group effects for 
individual animals were also estimated and are shown in 
Table 3 (𝑟! = 𝑟[𝑍𝑄!𝑔!,𝑍𝑄!𝑔!]). For most traits the cor-
relations were moderate, in the range 0.45 – 0.71. A corre-
lation of 0.05 for staple strength (yss) is not unexpected 
given that there is very little variation in performance be-
tween flocks and strains for this trait. Fibre diameter traits 
(yfd and ydcv) on the other hand do show considerable var-
iation between flocks and the low correlations (0.12 for 
both) were therefore unexpected. These correlations were 
reduced by a cohort of animals in which the pedigree group 
effects were opposite to the marker group effects. This 
could be due to poor allocation of animals to pedigree 
groups, or alternatively that the marker information at this 
density is not sufficient to detect variants with a significant 
effect on trait performance. 

 
Table 3. Estimates of ADMIXTURE sub-population 
genetic group effects GG1 – GG4 and correlation be-
tween allocation to genetic groups by marker and pedi-
gree information (rq). 

Trait1 GG1 GG2 GG3 GG4 rq 
ycfw 0.25 0.21 -0.62 0.16 0.52 
yfd -0.90 1.28 -2.25 1.87 0.12 
ydcv 1.78 0.20 -1.58 -0.39 0.12 
yss -0.93 -0.23 1.77 -0.60 0.05 
ysl -6.48 4.41 -12.04 14.11 0.49 
ycuv -6.45 -0.04 20.13 -13.64 0.71 
ybdwr 1.16 -0.05 0.04 -1.14 0.45 
ywt -4.23 5.40 -8.17 6.99 0.65 

1 ycfw = yearling clean fleece weight (kg), yfd = yearling fibre diameter 
(microns), ydcv = yearling CV of fibre diameter (%), yss = yearling staple 
strength (Newtons per ktex), ycuv = yearling fibre curvature (degrees), 
ybdwr = yearling body wrinkle (1 – 5 visual score), and ywt = yearling 
body weight (kg). 

 
 
In summary, use of genomic information to define 

genetic groups is a realistic proposition. Agreement be-
tween estimated marker and pedigree based genetic group 
effects is reasonable across a range of traits but not perfect.  
Particularly in single step analyses for sheep it will be nec-
essary to further develop methods to define genetic groups 
using both pedigree and marker information to ensure that 
genetic group information from un-genotyped animals can 
be used alongside genetic group differences derived from 
genomic data. 

 

Development of Single Step Evaluations 
 
The ultimate goal for genomic evaluation of Aus-

tralian sheep is to implement single step analyses for all 
traits. The benefits of single step in Australian sheep are 
that genomic information can be propagated to more ani-
mals, the size of reference populations can be increased, 
and the potential for double counting inherent in blending 
methods can be avoided. 

 
In the Misztal – Aguilar single step method the 

sub-matrix of the inverse numerator relationship matrix 
(𝐴!!) in the BLUP equations for genotyped animals is re-
placed by 𝐺!! − 𝐴!!!! where 𝐺 is the genomic relationship 
matrix and 𝐴!!  is the numerator relationship matrix for 
genotyped animals, with the resulting modified inverse rela-
tionship matrix denoted as 𝐻!! . Forming 𝐻!!  is more 
computationally demanding than 𝐴!!  because of a large 
matrix multiplication necessary to build 𝐺 and the need for 
direct inversion of 𝐺 and 𝐴!!. Solving the single step BLUP 
equations with 𝐻!! is also more demanding because of the 
increased density of equations for genotyped animals. Us-
ing highly optimised versions of the BLAS (Dongarra et al., 
1988) and LAPACK (Anderson et al., 1999) matrix librar-
ies it has been possible to solve problems with several tens 
of thousands of genotyped animals on a routine basis. The 
method has been implemented on a small scale in single 
trait models for carcass traits as described above. At the 
time of writing these models included approximately 
20,000 genotyped animals, 60,000 animals in the extended 
pedigree, with the equations solved by direct inversion in 
order to obtain accuracies for GEBVs from prediction error 
variances. In addition, test analyses have been conducted on 
data sets with up to one million animals in the pedigree, 5 
traits, and 5,000 animals genotyped. These analyses con-
verged within an acceptable time frame, but as the number 
of genotyped animals grows this will become increasingly 
challenging for the Misztal – Aguilar single step method. It 
is likely that as the number of animals genotyped and densi-
ty of marker information increases new computing strate-
gies and analysis models will be required in the not too dis-
tant future. 

 
Fitting genetic groups in the single step method 

requires special consideration. Traditionally groups have 
been fitted in genetic evaluations using the “implicit” model 
in which groups are included as dummy ancestors in the 
𝐴!! matrix (Quaas, 1988). However, this does work when 
using 𝐻!! in the single step method (Misztal et al., 2013). 
We have observed that GEBVs are biased by incorrect ge-
netic group effects when using the implicit model with the 
single step method. This can be addressed by fitting groups 
as separate effects outside the 𝐻!! matrix. 

 
Population structure can also be included when 

building the genomic relationship matrix for example by 
using allele frequencies calculated per breed or strain group 
(Harris and Johnson, 2010). Experience to date in our data 
is that this has a small impact on the accuracy of genomic 



	
  

	
  

predictions (Moghaddar et al., 2013b), or on GEBVs from 
single step analyses, provided the genomic relationship 
matrix is scaled appropriately to be compatible with the 
numerator relationship matrix. 

 
Conclusion 

 
Considerable progress has been made in the incor-

poration of genomic information into genetic evaluations 
for Australian sheep. Reference populations have been es-
tablished and provide genomic predictions with moderate 
accuracy, and genomically enhanced breeding values have 
been available to seedstock breeders since 2011. The next 
challenge is to develop single step analyses for all traits so 
that the benefits of genomic selection can be maximised. 
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