
1

How can negative numbers be represented using only binary 0’s and 1’s so that a computer can

“read” them accurately?

The concept is this: Consider the binary numbers from 0000 to 1111 (i.e., 0 to 15 in base ten).

 0001 0111 will represent the positive numbers 1  7 respectfully

 and, 10011111 will represent the negative numbers 7  1, respectfully.

In a computer, numbers are stored in registers where there is reserved a designated number of

bits for the storage of numbers in binary form. Registers come in different sizes. This handout

will assume a register of size 8 for each example.

It is easy to change a negative integer in base ten into binary form using the method of two’s

complement.

First make sure you choose a register that is large enough to accommodate all of the bits

needed to represent the number.

Step 1: Write the absolute value of the given number in binary form. Prefix this number with 0
indicate that it is positive.

Step 2: Take the complement of each bit by changing zeroes to ones and ones to zero.
Step 3: Add 1 to your result. This is the two’s complement representation of the negative

integer.

EXAMPLE: Find the two’s complement of 17

Step 1: 1710 = 0001 00012

Step 2: Take the complement: 1110 1110

Step 3: Add 1: 1110 1110 + 1 = 1110 1111.

Thus the two’s complement for -17 is 1110 11112. It begins on the left with a 1, therefore we

know it is negative.

Now you try some:

Find the two’s complement for

a. 11

b. 43

c. 123

To translate a number in binary back to base ten, the steps

are reversed:

Step 1: Subtract 1:  1110 1111  1 = 1110 1110

Step 2: Take the complement of the complement: 0001 0001

Step 3: Change from base 2 back to base 10 16 + 1 = 17

Step 4: Rewrite this as a negative integer: 17

Two’s Complement

2

This suggests a new way to subtract in binary due to the fact that subtraction is defined in the
following manner:
 X – Y = X + (-Y)

EXAMPLE 1: Subtract 17 from 23, as a computer would, using binary code.

Given a register of size 6, 23 – 17 = 23 + (-17) becomes

 0001 0111 + 1110 1111 = 10000 0110. (Verify both the binary form of 23 and the

addition.) Since this result has 9 bits, which is too large for the register chosen, the leftmost bit

is truncated, resulting in the binary representation of the positive (it starts with a 0) integer

00000110. When this is changed to a decimal number, note that 4 + 2 = 6 which is the answer

expected.

Note that a register of size eight can only represent decimal integers between 2(8-1) and +2(8-1)

and, in general, a register of size n will be able to represent decimal integers between 2(n-1) and

+2(n-1)

EXAMPLE 2: Subtract 29 from 23, as a computer would, using binary code.

Again we use a register of size 8, so that 23 – 29 = 23 + (-29) becomes

 0001 0111 + 1110 0011 = 1111 1010. (Verify both the binary form of 29 and the
addition.) Note that no truncation of the leftmost bit is necessary here. The result is the
negative (it starts with a 1) integer 1111 1010. This needs to be “translated” to change it back
to a decimal (see the steps on how to do this in the box above). Hence, going backwards,
1111 1010 – 1 = 1111 1001. The complement of which is 0000 0110 which is 6 in decimal.
Negating this we get -6 as expected.

Now you try some:

Subtract each, as a computer out, using binary

code using registers of size 8.

a) 26 – 15

b) 31 – 6

c) 144 – 156

d) Make up your own exercises as needed.

3

ANSWERS

11 = 1111 01012

43 = 1101 01012

123 = 1000 01012

26 – 15 = 26 + (-15) = 0001 1010 + 1111 0001 = 10000 1011, and truncating the leftmost 1 to

remain within a register of 8, the answer is 0000 10112

31 – 6 = (31) + (6) = 1110 0001 + 1111 1010 = 11101 1011, and truncating the leftmost 1

to remain within a register of 8, the answer is 1101 10112

144 – 156 = 144 + (156) = 1001 0000 + 0110 0100 = 1111 0100, which remains within the

register of 8 bits (so nothing gets truncated), thus the answer is 1111 01002.

