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How can negative numbers be represented using only binary 0’s and 1’s so that a computer can 

“read” them accurately?  

The concept is this: Consider the binary numbers from 0000 to 1111 (i.e., 0 to 15 in base ten).  

   0001 0111 will represent the positive numbers 1  7 respectfully 

  and, 10011111 will represent the negative numbers  7  1, respectfully.  

In a computer, numbers are stored in registers where there is reserved a designated number of 

bits for the storage of numbers in binary form. Registers come in different sizes. This handout 

will assume a register of size 8 for each example.  

It is easy to change a negative integer in base ten into binary form using the method of two’s 

complement.  

First make sure you choose a register that is large enough to accommodate all of the bits 

needed to represent the number. 

Step 1: Write the absolute value of the given number in binary form. Prefix this number with 0 
indicate that it is positive. 

Step 2: Take the complement of each bit by changing zeroes to ones and ones to zero.  
Step 3: Add 1 to your result. This is the two’s complement representation of the negative 

integer. 
 

EXAMPLE:    Find the two’s complement of 17  

Step 1:  1710 = 0001 00012    

Step 2:  Take the complement: 1110 1110 

Step 3:   Add 1: 1110 1110 + 1 = 1110 1111.  

Thus the two’s complement for -17 is 1110 11112. It begins on the left with a 1, therefore we 

know it is negative.  

 

 

 

Now you try some: 

Find the two’s complement for 

a. 11 

b. 43 

c. 123 

 

 

To translate a number in binary back to base ten, the steps 

are reversed: 

Step 1: Subtract 1:  1110 1111  1 = 1110 1110 

Step 2: Take the complement of the complement: 0001 0001 

Step 3: Change from base 2 back to base 10 16 + 1 = 17 

Step 4: Rewrite this as a negative integer: 17 

Two’s Complement 
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This suggests a new way to subtract in binary due to the fact that subtraction is defined in the 
following manner: 
      X – Y = X + (-Y) 
 

EXAMPLE 1: Subtract 17 from 23, as a computer would, using binary code. 

Given a register of size 6, 23 – 17 = 23 + (-17) becomes  

 0001 0111 + 1110 1111 = 10000 0110. (Verify both the binary form of 23 and the 

addition.) Since this result has 9 bits, which is too large for the register chosen, the leftmost bit 

is truncated, resulting in the binary representation of the positive (it starts with a 0) integer 

00000110. When this is changed to a decimal number, note that 4 + 2 = 6 which is the answer 

expected.  

Note that a register of size eight can only represent decimal integers between 2(8-1) and +2(8-1)
  

and, in general, a register of size n will be able to represent decimal integers between 2(n-1) and 

+2(n-1)
   

 

EXAMPLE 2: Subtract 29 from 23, as a computer would, using binary code. 

Again we use a register of size 8, so that 23 – 29 = 23 + (-29) becomes  

 0001 0111 + 1110 0011 = 1111 1010. (Verify both the binary form of 29 and the 
addition.) Note that no truncation of the leftmost bit is necessary here. The result is the 
negative (it starts with a 1) integer 1111 1010. This needs to be “translated” to change it back 
to a decimal (see the steps on how to do this in the box above). Hence, going backwards,  
1111 1010 – 1 = 1111 1001. The complement of which is 0000 0110 which is 6 in decimal. 
Negating this we get -6 as expected.  
 

 

 

 

 

 

 

Now you try some: 

Subtract each, as a computer out, using binary 

code using registers of size 8. 

a) 26 – 15 

b) 31 – 6  

c) 144 – 156  

d) Make up your own exercises as needed. 
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ANSWERS 

 

 

 

 

 

 

11 = 1111 01012 

43 = 1101 01012 

123 = 1000 01012 

26 – 15 = 26 + (-15) = 0001 1010 + 1111 0001 = 10000 1011, and truncating the leftmost 1 to 

remain within a register of 8, the answer is 0000 10112 

31 – 6 = (31) + (6) = 1110 0001 + 1111 1010 = 11101 1011, and truncating the leftmost 1 

to remain within a register of 8, the answer is 1101 10112 

144 – 156 = 144 + (156) = 1001 0000 + 0110 0100 = 1111 0100, which remains within the 

register of 8 bits (so nothing gets truncated), thus the answer is 1111 01002. 


