
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 2, MARCH 1992 569

Fast Algorithms for Discrete and Continuous
Wavelet Transforms

Olivier Rioul and Pierre Duhamel

Abstract-Several algorithms are reviewed for computing var-
ious types of wavelet transforms: the Mallat algorithm, the “a
trous” algorithm and their generalizations by Shensa. The goal
is 1) to develop guidelines for implementing discrete and contin-
uous wavelet transforms efficiently, 2) to compare the various
algorithms obtained and give an idea of possible gains by
providing operation counts. The computational structure of the
algorithms rather than the mathematical relationship between
transforms and algorithms, is focused upon. Most wavelet trans-
form algorithms compute sampled coefficients of the continuous
wavelet transform using the filter bank structure of the discrete
wavelet transform. Although this general method is already
efficient, it is shown that noticeable computational savings can
be obtained by applying known fast convolution techniques
(such as the FFT) in a suitable manner. The modified algorithms
are termed “fast” because of their ability to reduce the compu-
tational complexity per computed coefficient from L to log L
(within a small constant factor) for large filter lengths L. For
short filters, we obtain smaller gains: “fast running FIR filter-
ing” techniques allow one to achieve typically 30% save in
computations. This is still of practical interest when heavy
computation of wavelet transforms is required, and the resulting
algorithms remain easy to implement.

Index Terms-Discrete wavelet transform, continuous wavelet
transform, octave-band filter banks, computational complexity,
fast Fourier transform, fast FIR filtering algorithms.

I. INTRODUCTION

AVELET transforms have become well known as W useful tools for various signal processing applications.
The continuous wavelet transform is best suited to signal
analysis [2], [l l] , [13], [14], [17], [18], [34]. Its semi-
discrete version (wavelet series) and its fully discrete one (the
discrete wavelet transform) have been used for signal coding
applications, including image compression [l], 1211 and vari-
ous tasks in computer vision [191, [20]. Wavelet transforms
also find application in many other fields, too numerous to be
listed here (see e.g., [34]).

Given a time-varying signal x(t) , wavelet transforms con-
sist of computing coefficient that are inner products of the
signal and a family of “wavelets.” In a continuous wavelet
transform, the wavelet corresponding to scale a and time

Manuscript received February 1, 1991; revised September 20, 1991. This
work was presented in part at the IEEE International Conference on Acous-
tics, Speech, and Signal Processing, Toronto, Canada, May 14-17, 1991.

The authors are with CNET, Centre Paris B, CNET/PAB/RPE/ETP,
38-40, rue du GinCral Leclerc, 92131 Issy-Les-Moulineaux, France.

IEEE Log Number 9104791.

location b is

where $ (t) is the wavelet “prototype,” which can be thought
of as a band-pass function. The factor 1 a 1 -‘I2 is used to
ensure energy preservation [13], [14], [18], [34]. There are
various ways of discretizing time-scale parameters (b , a),
each one yields a different type of wavelet transform. We
adopt the following terminology, which parallels the classical
one used for Fourier transforms.

The continuous wavelet transform (CWT) was originally
introduced by Goupillaud, Grossmann, and Morlet [131.
Time t and the time-scale parameters vary continuously:

CWT{x(t) ; a, b] = 1 x(t)$: ,b (t) dt (2)

(the asterisk stands for complex conjugate).
Wavelet series (WS) coefficients are sampled CWT coef-

ficients. Time remains continuous but time-scale parameters
(6, a) are sampled on a so-called “dyadic” grid in the
time-scale plane (b, a) [41, [5], [151, 1161, [191, [201, 1221,
[33], [34]. A common definition is

CJ,k = CWT{x(t) ; U = 2J , b = k 2 J } ,

The wavelets are in this case

j , k e Z . (3)

$ J t) = 2-J’2$(2-’f - k) . (4)

Wavelet series have been popularized under the form of a
signal decomposition onto “orthogonal wavelets” by Meyer,
Mallat, Daubechies, and other authors [4], [lo], [191, [201,
[22], [34]. However, we consider the general (nonorthogo-
nal) case in this paper because nonorthogonal wavelet series
are used in practical systems [l]. Computational issues for
the orthogonal case are briefly discussed in section I1.F.

The discrete wavelet transform (DWT) has been recog-
nized as a natural wavelet transform for discrete-time signals
by several authors (see e.g., [lo], [26], [32], [33]). Both
time and time-scale parameters are discrete. As far as the
structure of computations is concerned, the DWT is in fact
the same as an octave-band filter bank [lo], [19], [26]-[29],
[32], [33], depicted in Fig. 1. The filter bank has a regular
structure; it is easily implemented by repeated application of
identical cells. It is also computationally efficient [25], [29].
Therefore, if the computation of a wavelet transform can be
reduced to a DWT, then the resulting implementation is
likely to be efficient. Precise definitions and basic properties

0018-9448/92$03.00 0 1992 IEEE

570 IEEE ‘I ‘RANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 2, MARCH 1992

high-pass

coefficients

;1 SCALE O

j=log,a

0

0

0 0 0

0

0

0

0

0

Fig. 1. Basic computational cell of (a) the DWT and (b) the inverse DWT.
(c) Overall organization gives wavelet coefficients that correspond to a
dyadic grid in the time-scale plane. Signal is reconstructed using the
transposed scheme (b).

of various wavelet transforms are reviewed in Sections 11-A
and 11-B.

Several discrete algorithms have been devised for comput-
ing wavelet coefficients. The Mallat algorithm [19], [20] and
the ‘‘A trous” algorithm of Holschneider et al. [17] have
been known for some time. Shensa was among the first to
provide a unified approach [26] for the computation of dis-
crete and continuous wavelet transforms. The material pre-
sented next has been derived independently and the overlap
with the work of Shensa is pointed out throughout this paper.
We also briefly outline other algorithms proposed by the
Bertrands and Ovarlez [2] and by Gopinath and Burrus [12].

This paper is divided into two (related) parts. The first
(Sections I1 and 111) is devoted to the computation of Wavelet
Series coefficients (3). The second (sections IV and V) uses
the first to compute CWT coefficients on an arbitrary dense
set of time-scale samples, in order to approach a full two-
dimensional CWT representation in the time-scale plane
(6 , a). The operation counts required by the various algo-
rithms obtained are provided in tables.

Section 11 first reviews some basics of WS coefficients and
the DWT. Then, the connection is made: WS coefficients are
computed as a DWT applied to a prefiltered version of the
signal. This topic is very close to Shensa’s [26] but the spirit
is slightly different: we focus deliberately on discrete-time
implementation issues; the analog signal x(t) is discretized
from the start with a more general (hence more flexible)
scheme than natural sampling, regardless of any parameter in
the wavelet transform algorithm, and we work with discrete-
time equivalents to Shensa’s conditions [26] under which the
DWT is exact for all signals. Finally, denser sampling in
scale (a = a<, a, < 2) and the inverse transform case are
discussed.

Section 111 focuses on the computation of the DWT, for
use either in the computation of WS coefficients or by itself.
It is central in this paper. Known fast convolution techniques,

including most recent ones, are applied to the computation of
the (already efficient) DWT filter bank structure. This appli-
cation is not as straightforward as it might seem. One has to
take advantage of the special structure of the computations on
a DWT. We derive two modified versions of the DWT, one
uses the FFT and is efficient for long filters (L 2 16), the
other is most efficient for short ones. Reduction of complex-
ity is achieved in any case of interest; complexity can be
further reduced in the orthogonal case.

Sections IV and V apply sections I1 and 111, respectively,
to the computation of CWT coefficients on an arbitrary
regular grid in the time-scale plane (b , a) , given by a = a<
and b = k (the sampling rate is assumed equal to one).
Because the aim is here to approach a nearly continuous
two-dimensional CWT representation in the time-scale plane,
the resulting class of algorithms will be called “CWT algo-
rithms.” We start with a computation of WS coefficients for
a = 2 j , b = k 2 J . Then, additional grids are included in the
time-scale plane, resulting in a computation of the wavelet
coefficients for all integer values of b. Finally, additional
scales, a = a i , a, < 2, are included to obtain a denser sam-
pling in scale. We use the same method as was derived
independently by Shensa [26] that utilizes even and odd
sequences at each stage in the algorithm. This can be under-
stood as a modification of the basic ‘‘i trous” algorithm, to
which fast filtering techniques are applied as in section 111.

A distinguishing feature of the topic of wavelets is that
many results have been largely spread among researchers
before publication, even as unpublished papers. As a result,
it is often difficult to give the right credit to the right papers.
We shall try to be as clear as possible when presenting
results. Unless otherwise stated, the material of this paper is
of tutorial nature since there is a large overlap with several
other works.

11. USING THE DWT TO COMPUTE WAVELET SERIES
COEFFICIENTS

A . Review of the Wavelet Series Transform (WST)
Various data compression schemes, although fully discrete

in nature, have been described using the wavelet series
formalism. Two-dimensional versions were successfully used
for image compression [1 1 , [191 - [2 13. Wavelet series are
also closely related to octave-band filter banks used in split-
band coding via the DWT filter bank structure [27]-[28].

A wavelet series [31-[5], 1151, 1161, 1191, 1201, 1221, 1261,
[34] decomposes a signal x(t) onto a basis of continuous-time
wavelets $j, k (t) as shown.

(5)

As in (4) , these “synthesis wavelets” usually correspond to
discretized parameters a = 2’ (j is called the “octave”) and
b = k 2 J . But other choices are sometimes considered [5]
(see section 11-E). The WS coefficients are defined as

RIOUL AND DUHAMEL: FAST ALGORITHMS FOR WAVELET TRANSFORMS 57 1

where the “analysis wavelets”’ II;., k (t) satisfy (4). Note that
the WS scheme is a signal transformation and can be termed
the “wavelet series transform (WST).” The direct transform
is defined by (6) , while the inverse transform, IWST{ Cj, k},
is defined by (5).

The analysis and synthesis wavelet prototypes $ (t) and
& t) are equal in the orthogonal case [4], [19], [201, [221.
The more general “biorthogonal” case [3], [32], [33] and
“wavelet frames” [5] , [16] are not restricted to $(t) = J (t) ,
however. Whenever the inverse transform is used in the
following, we assume that $ (t) and $ (t) have been suitably
designed so that (5) , (6) hold exactly (as in the orthogonal or
biorthogonal case), or maybe with sufficient accuracy [5],
D61.

This paper is concerned with implementation issues, not
with the wavelet design. Therefore, even though design
constraints on the shape of wavelets (such as orthogonality)
can sometimes be used to reduce the computational load, we
do not take advantage of them so as to be as general as
possible. However, we shall briefly address the orthogonal
case in Section 111-F.

B. Review of the Discrete Wavelet Transform (D WT)
The DWT has been used implicitly or explicitly by many

[32] - [34]). It mainly finds application in image compression
[l] , [19], [20] (in a two-dimensional form), but is also
closely related to octave-band decompositions of filter banks
that were used for some time in one-dimensional coding
schemes [27], [29]. In section IV, we shall consider a
generalization of the DWT which was used by Holschneider
et al. [17] for analysis of sound signals. We restrict our
description in this section to the “standard” DWT whose
coefficients are sampled over the dyadic grid a = 2’, b =
k 2 J in the time-scale plane.

The DWT is in fact very close to wavelet series but in
contrast applies to discrete-time signals x [n] , n E H . It
achieves a multiresolution decomposition of x [n] on J oc-
taves labelled by j = 1, a * , J , given by

authors (see e.g., [I] , [31, VI, [l o] , U21, 1191, [201, [221,

+ m

j = l kcY k e 8
x [n] = cj, k & j [n - 2’k] + bj, k g j [n - 2 J k] .

(7)

This equation is to be compared with (5). The h j [n - 2’kI
are th_e synthesis wavelets, the discrete equivalents to
2-’/* $(2 - j (t - 2 ’k)) . An additional (low-pass) term is used
to ensure perfect reconstruction; the corresponding basis
functions g,[n - 2 J k] are called (synthesis) “scaling se-
quences” (“scaling functions” can be defined in a similar
fashion for wavelet series [l] , [3] , [4] , [12], [19], [20], [22],
P61, [W , 1341).

The DWT computes “wavelet coefficients” cj, for j =
1 , . * e , J and “scaling coefficients” bJ, k , given by

DWT (x[n] ; 2’, k2’) = Cj, k = X[n] hj*[- 2’k]
n

and

bJ , k = g? [- 2 J k] 3 (8b)
n

where the h j [n - 2’kI’s are the analysis discrete wavelets
(compare (8a) with (6)) and the g J [n - 2 j k] are the analy-
sis scaling sequences. The inverse DWT reconstructs the
signal from its coefficients by (7).

The DWT is not fully described yet; wavelets and scaling
sequences must be deduced from one octave to the next. Let
us restrict ourselves to the analysis part for convenience-the
treatment of synthesis “basis functions” is similar. Consider
two filter impulse responses g [n] and h[n] . (Here, h stands
for high-pass-or discrete wavelet, like in [5]-and g stands
for low-pass. This results in notations which differ from
some previous ones [4] , [26], [33] .) The wavelets and scaling
sequences are obtained iteratively as

i.e., one goes from one octave j to the next (j + 1) by
applying the interpolation operator

which should be thought of as the discrete equivalent to the
dilation f (t) -, 2-’ l2 f (t /2) .

In fact, it is well known that the structure of computations
in a DWT is exactly an octave-band filter bank [l o] , [19],
[26], [27], [29], [32], [33] as depicted in Fig. 1. The DWT
corresponds to the analysis filter bank, whereas the IDWT
corresponds to the synthesis one. The filters pre_sent in the
filter bank are precisely g [n] , h[n] , E[n] , and h[n]. Note
that this filter bank is critically sampled; given N input
samples, the DWT computes about N / 2 + N / 4
+ .. . + N 2 - J + N 2 - J = N coefficients. In keeping with
the critical sampling, the octave parameter j is restricted to
j 2 1 so that the sampling rate of wavelet coefficients is
always less than that of the signal.

Whenever the inverse DWT is used in the follo_wing, we
assume that the filters g [n] , h[n] , g [n] , and h[n] have
been suitably designed so that (7), (8) hold exactly. That is,
the filter bank of Fig. 1 allows perfect reconstruction. For
more details on the design the reader is referred to [3], [4] ,
1271, 1281, 1321, Wl.
C. The Shensa Algorithm

Among all types of wavelet transforms, the DWT is the
only one that can be computed exactly (except for round-
off errors) using a computer, since it deals with discrete-
time signals and wavelets. Therefore, we deliberately take a
discrete-time approach for the calculation of WS coefficients
and avoid taking continuous-time properties into considera-
tion as much as possible when describing the algorithm. We
address the following problem: what conditions must the

512 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 2 , MARCH 1992

parameters of the DWT algorithm satisfy so that the DWT
computes WS coefficients (on J octaves) exactly for any
signal x(t)?

The analog input x(t) is discretized from the start, and the
whole computation is made in discrete-time. An obvious way
to discretize the input is to sample it [17], [26].

x [n] = x (t = n) , n e 2 (11)

(the sampling rate is assumed to be equal to one). This will
be called “natural sampling.” However, we now use a
different discretization scheme, in which the original input
x(t) is related to the discrete sequence x [n] (to be input to
the algorithm) by a D/A converter as shown.

x (t) - i (t) = C x [n] x (t - n). (12)
n

We have chosen (12) instead of (11) because the resulting
scheme is more flexible. Note that (12) includes natural
sampling (1 1) as a special case when x(n) = 6,, . For exam-
ple, if x (t) is band-limited, then X(t) is then a (sin t) / t
function. More generally, the choice of X(t) and the way
x [n] is computed is chosen so that x(t) is well approximated
by i (t) . This requires some knowledge on ~ (t) . For exam-
ple, the choice x (t) = 1 for 0 5 t < 1 and X(t) = 0, other-
wise (zero-order holder) amounts to a piecewise constant
approximation to x (t) . It is important to note that this
discretization is made prior to the algorithm and that the
choice of ~ (t) is completely independent of the wavelets or
any other parameter in the algorithm.

The algorithm itself, derived independently of Shensa [26],
can be described as follows. Given the continuous-time
wavelet $ (t) , one first approximates by it $ (t) in such a way
that

2-J/24(2- J t ’) - - h j [n] 4 (t - n), j = l; . . , J ,
n

(13)

where h j [n] are discrete wavelets present in a DWT (see
Section 11-B), and 4 (t) is some interpolating function. The
precise way these J simultaneous approximations can be
accomplished will be given in the next section.

The derivation of the algorithm is now straightforward.
Substituting (12) and (1 3) into the equation defining the WS
coefficients (6) gives

Cj,k = J’ i (t)2-’ / ’4*(2-’ t - k) dt

* (C h i [n] 4 (t - 2 J k - n)) * d t
n

- hy[n - 2 j k]

= DWT { x’[n] ,2’ , k 2 ’) . (14)

The last equality comes from (8a). The sequence x’[n] is a
prefiltered version of x [n] given by

where

(15)

This ends the derivation of the Shensa algorithm: the ,WS
coefficients with respect to the approximated wavelet $(t)
are computed exactly for all signals using a DWT, the input
of which is appropriately prefiltered. The accuracy of this
algorithm is balanced by the approximations made for the
input (12) and for the wavelets (13); the algorithm is exact
only once the input and the wavelets have been replaced by
their approximations. In the next section, the wavelet approx-
imation is discussed in more detail.

Of course, we could have written

x ’ [n] = J ’ i (t) 4 * (t - n) d t , (16)

instead of (15) since x (t) and x [n J are related by (12). But
the discrete prefilter f[n] (15) is easy to implement on a
computer (its coefficients can be precomputed), whereas (16)
is not since it involves analogue filtering. Equation (16) has
mathematical significance, however. It hints at the fact that
the approximations made in the algorithm consist of replacing
the signal and wavelets by their (nonorthogonal) projections
onto suitably defined “multiresolution spaces,” as defined by
Meyer and Mallat [19], [20], [22]. A complete mathematical
treatment is out of the scope of this paper. We content
ourselves with noting that (16) is just another way of saying
that prefiltering (15) must be present.

Note that we have three different types of inputs at work:
the original analog signal x (t) , its approximation i (t) de-
fined by (12), of which the discrete-time equivalent is x [n] ,
and the filtered version ~ ’ [n] defined by (15). They involve
two successive approximations: the first one is the approxi-
mation x(t) --* i(t) , which is made regardless of the parame-
ters in the algorithm. The second one is the prefiltering (15),
which depends on the parameters of the algorithm, and which
amounts to a nonorthogonal projection of i (t) . We shall
briefly come back to the concept of nonorthogonal projection
in Section 11-F.

D. A Closer Look at the Wavelet Approximation
Conditions (13) were introduced to simplify the derivation

of the Shensa algorithm. In practice, it is appropriate to
replace them by two more tractable conditions equivalent to
(13): a first one on $ (t) (in fact, condition (13) written for
j = 1)

1 / & 4 (t / 2) = h [n] + (t - n) (17)
n

and the other reflecting the parallelism between the way
discrete wavelets are defined using “discrete dilation” (10)
and the way continuous-time wavelets ,are defined using the
continuous-time dilation $(t) --t 2-J/’$(2- j t) . The latter is

RIOUL AND DUHAMEL: FAST ALGORITHMS FOR WAVELET TRANSFORMS 573

derived by rewriting (13) at some octave j in two equivalent
forms:

Thus, +(?) must satisfy the following “two-scale difference
equation”

+(I) = J z C g [n] + (2 t - n) . (19)
n

Two-scale difference equations were studied in detail by
Daubechies and Lagarias in [6]. They showed that given
suitably normalized g[n], there exists at most one integrable
solution +(t) to (19). But whether the resulting solution is a
suitable interpolation function is another matter. For exam-
ple, to find a necessary and sufficient condition on g [n] such
that a solution +(t) exists and is N-times continuously
differentiable is a difficult problem [6]. However, there exists
standard choices for g[n] and $ (t) satisfying (19), such as
binomial filters and B-spline functions (see below).

The wavelet approximations made in the Shensa algorithm
thus, reduce to conditions (17) and (19). These approxima-
tions are important because their accuracy determines that of
the whole algorithm. There are two steps involved. First,
determine a low-pass filter g[n] and an interpolating function
$ (t) satisfying (19). Second, approximate $(t) by linear
combinations of integer translates of $(t) (1 7). This step
determines the high-pass filter h[n]. Of course, it is crucial
to choose a good interpolating function +(t) satisfying (19)
so that $ (t) can be accurately approximated. Note, however,
that once $ (t) is accurately approximated by $ (t) for which
(1 7) and (1 8) hold, the J approximations at all scales (13) are
satisfied automatica!ly ; for example, minimizing the error’s
energy 1 1 $(t) - $(t) 1 dt minimizes the maximum error
I Cj, - C], I of the wavelet coefficients at all scales. In
the following we briefly mention several “standard” choices
for I$([).

In a case of a band-limited wavelet $ (t) (e.g., whose
frequency range is restricted to the interval [-0.5,0.5]), a
solution to (19) is given by +(t) = sin (a t) / a t and g [n] =
l / & r$(n/2). For this choice, the discrete wavelets are
precisely the samples of the continuous-time ones

and (14) reduces to a simple discretization of the integral
defining the WS coefficients (6). However, this choice is
impractical because it involves an ideal low-pass filter g [n] ,
with slow decay as n -+ 00.

Another possibility is to choose an orthogonal family of
functions $(t - n) (n E Z) Satisfying (19), as in the Mallat
algorithm [4], [19], [20], [26]. In fact, the computation of the
WS coefficients using the DWT reduces exactly to the Mallat
algorithm under several conditions: the wavelets and the
+(t - n)’s (called the “scaling functions”) are orthonormal,

and one has ~ (t) = +(t) in (12), which implies that pre-
filtering (15) is avoided. In the previous context, the latter
condition is very unlikely since the A/D characteristic ~ (t)
is chosen independently of the parameters in the algorithm.
In fact, the Mallat algorithm takes place within a different
framework: Given an orthogonal basis of wavelet functions
(with corresponding filters g [n] and h [n]) , and a discrete
signal x[n], one constructs an analog signal x(t) satisfying
(16) in order for the DWT of x [n] to compute orthogonal
WS coefficients exactly. Similarly, the synthesis Mallat algo-
rithm is related to the inverse WST computation derived in
Section 11-F.

Yet another solution of (19) is the classical “basic spline”
interpolating function of some degree k , whose Fourier
transform is

sin af k + ‘

+(f) = (7)
Rewriting (19) in the frequency domain and solving for
g [n] , one finds, within a shift, the binomial filter

In this case, (17) reduces to a classical curve fitting problem.
This allows a greater flexibility in the wavelet approximation
than for the natural sampling case for which one must have
[26] the extra condition g[2n] = 0 if n # 0. Therefore, one
may obtain a better accuracy in the computation of WS
coefficients compared to the popular ‘‘A trous” filters [9],
[17], [26] for which 4(t) does not admit a simple closed
form expression.

We have left out many details concerning the wavelet
approximation. In particular, a precise determination of the
error made in the algorithm remains a topic for future
investigation. However, we conjecture that wavelet approxi-
mation using splines of second or third order suffices for
most applications.

E. Finer Sampling in Scale
Shensa’s result (14) states that the DWT can be regarded

as the basic structure for computing wavelet coefficients. We
use this fact throughout this paper to derive various efficient
wavelet transform algorithms, concentrating on the computa-
tion of the DWT on J octaves. However, a set of points
(a , b) , denser than the octave-by-octave grid of Fig. l(c)
may be required. It is, therefore, sometimes appropriate to
generalize (14) to obtain more samples in the time-scale
plane. This is especially useful for signal analysis, where one
usually “oversamples” the discretization (3), to obtain “ M
voices per octave” [5], [18], [34]. That is, a = 2 J is re-
placed by

3 m = O; . . , M - 1 (23) a = 2 J + m / M

where m is called the “voice.”
The following simple method [17] allows one to com-

pute WS coefficients on M voices per octave, using
only the standard “octave-by-octave’’ algorithm (14). For

574

each m, replace $ (t) by the slightly stretched wavelet
2 - m / Z M $ (2 - m / M t) in the expression of $ j , k (t) =
2-’/’$(2-’t - k) . The wavelets basis functions become

2 - (J + m / M) / 2 $ (2 - (j + m l M) (t - k 2 ’)) ,

j , k ~ H , n z = O ; . . , M - 1 . (24)

The grid obtained in the time-scale plane (6, a) is shown in
Fig. 2. Now, a computation on M voices per octave is done
by applying the octave-by-octave algorithm (14) M times,
with M different prototypes

2 - m / 2 M $ (2 - m / M t) , m = 0; * - , M - 1. (25)

Of course, the parameters of each octave-by-octave algor-
ithm must be recomputed for each m using the procedure
described in Section II-D. Clearly, the whole algorithm
requires about M times the computational load of one
octave-by-octave algorithm (14).

This method is perhaps not the best one for an “M voices
per octave” computation, because it does not take advantage
of the fact that the various prototypes (25) are related in a
simple manner. It would be more appropriate to devise a
method that takes advantage of both time redundancy and
scale redundancy (with more scales than in the octave-by-
octave case). The algorithm devised by the Bertrands and
Ovarlez in [2] is based on scale redundancy but is suited for
another type of computation (see Section V-G).

F. Using the Inverse D WT to Compute the Inverse WST
We have seen that the WST (6) can be computed using a

DWT (8). Similarly, its inverse transform (5) can be com-
puted using an inverse DWT, defined by (7) , under a condi-
tion similar to (13), but written for synthesis wavelets
$j, k(t) :

2 - j / 2 ~ (2 - j t) = C T r j [n] $ (t - n) , j = I; . . , J .
n

(26)

Of course, this condition is, in practice, replaced by more
tractable conditions as explained in Section 11-D. Substituting
(26) for 2-’/’$(2-jt) in the formula defining the inverse
WST (5) results in

where the Cj ,k are the WS coefficients (6) and y [n] is
defined by

y [n] = IDWT { Cj , k}. (28)

Thus, the IDWT, followed by a D/A converter with
characteristic $ (t) , computes the IWST exactly. The accu-
racy of the algorithm again depends on that of the signal and
wavelet approximation. The resulting analysis/synthesis WST
scheme is depicted in Fig. 3. First, the analog signal x (t) is
discretized according to (12). The discrete-time signal x [n]
is then prefiltered (15) and fed into the DWT algorithm.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 2, MARCH 1992

.). j=log,a

Fig. 2. Sampling of the time-scale plane corresponding to 3 voices per
octave in a WST. The imbrication of the computation is shown using points
labelled by circles, squares, and crosses, which can be computed separately
using octave-by-octave DWT algorithms.

c -

---c

X W - -
Fig. 3. Full analysis/synthesis WST scheme. Exact reconstruction holds

under certain conditions on x (l) (see text).

During synthesis, the signal is reconstructed using an IDWT,
followed by the interpolation (or D/A conversion) (27).

Note that in this WST/IWST Shensa algorithm, the analy-
sis and synthesis discrete wavelets do not necessarily form a
perfect reconstruction filter bank pair. However, we now
restrict to the perfect reconstruction case to derive conditions
under which the original signal x (t) is recovered exactly.

When the DWT allows perfect reconstruction, one has
y [n] = x’[n] . It can be shown that we are in fact in the
“biorthogonal” case [3] , [32], [33], and that one has

J ’ $ (t - n)&*(t - m) dt =

Since y [n] = x’[n] , we also have

IWST {WST { x (t) } }

= [/ i (u) + * (u - m) d u) $ (t - n) . (30)
n \ J I

The right-hand side of (30) is easily recognized to be a
projection of A(t) ogto the subspace V spanned by linear
combinations o,f the 4 (t - n): if i (t) belongs to V , i.e., if
i (u) = C , c k 4 (t - k) , then using (29), equation (30) sim-
plifies to i (t) . Therefore, unless i (t) belongs to the appro-
priate subspace V , it cannot be recovered at the output of a
WST/IWST Shensa algorithm. Only its projected approxima-
tion onto V is recovered.

We, therefore, have two types of loss of information at the
reconstruction of a WST/IWST: One is, of course, due to the
approximation x (t) -, i (t) , which may not be invertible.
The other is due to the projection of A(t) onto the subspace
V. This can be seen as the fact that the discrete equivalent to
A(t) , x [n] , may not be recovered from its filtered version
~ ’ [n] that is obtained at the output of the IDWT. The
condition that i (t) belongs to V clearly depends on the
parameters of the algorithm. Therefore, the output error in
the algorithm is produced by the discretization scheme, and
the way the continuous-time signal and wavelets are recov-
ered from their discrete-time counterparts.

RIOUL AND DUHAMEL: FAST ALGORITHMS FOR WAVELET TRANSFORMS 575

111. EFFICIENT IMPLEMENTATIONS OF THE DWT

In the following, we derive efficient implementations of the
DWT, which can be used to compute WS coefficients using
the Shensa algorithm.

A . Preliminaries

In this section, we specify the framework in which the
algorithms will be derived. We also briefly motivate the need
for further reduction of complexity in a DWT.

We assume real data and filters (of finite length), but the
results extend easily to the complex-valued case. It can be
shown that the FFT-based algorithms described next require
about twice as many multiplications in the complex case than
in the real case, a property shared by FFT algorithms [SI,
[24]. However, a straightforward filter bank implementation
of the DWT (Fig. l) , or the “short-length’’ algorithms
described in Section 111-E require about three times as many
multiplications in the complex case, assuming that a complex
multiplication is carried out with three real multiplications
and additions [24].

In our derivations, we do not take advantage of possible
constraints (such as orthogonality), even though these can be
used to further reduce the complexity. The resulting algo-
rithms therefore apply in general. (See Section 111-F for a
brief discussion of the orthogonal case.)

The derivation of fast algorithms is primarily based on the
reduction of computational complexity. Here, “complexity”
means the number of real multiplications and real additions
required by the algorithm, per input point. In the DWT case,
this is also the complexity per output point since the DWT is
critically sampled (see Section 11-B). Of course, complexity
is not the only relevant criterion. For example, regular
computational structures (i.e., repeated application of identi-
cal computational cells) are also important for implementa-
tion issues. However, since most algorithms considered in
this paper have regular structures, a criterion based on
complexity is fairly instructive for comparing the various
DWT algorithms. We have chosen the total number of opera-
tions (multiplications + additions) as the criterion. With to-
day’s technology, this criterion is generally more useful than
the sole number of multiplications [23], at least for general
purpose computers (another choice would have been to count
the number of multiplication-accumulations).

Due to the lack of space, we shall not derive algorithms
explicitly for the inverse DWT. However, a IDWT algorithm
is easily deduced from a DWT algorithm as follows: If the
wavelets form an orthogonal basis, the exact inverse algo-
rithm is obtained by taking the Hermitian transpose of the
DWT flowgraph. Otherwise, only the structure of the inverse
algorithm is found that way, the filter coefficients g[n] , h[n]
have to be replaced by g [n] , h [n] , respectively. In both
cases, any DWT algorithm, once transposed, can be used to
implement an IDWT. It can be shown that this implies that
the DWT and IDWT require exactly the same number of
operations (multiplications and additions) per point.

The filters involved in the computation of the DWT (cf.
Fig. 1) usually have equal length L . This is true in the

orthogonal case, while in the biorthogonal case the filter
lengths may differ by a few samples only. Although
an implementation of “Morlet-type” wavelets used in [9],
[17] uses a short low-pass filter g [n] and a long high-pass
filter h [n] , we restrict in this section to the case of equal
filter lengths for simplicity. If lengths differ, one can pad the
filter coefficients with zeros. Section 111-G discusses the case
when filters are of very different lengths.

It is important to note that the standard DWT algorithm,
implemented directly as a filter bank, is already “fast.” This
fact was mentioned by Ramstad and Saramaki in the context
of octave-band filter banks [25]. What makes the DWT
“fast” is the decomposition of the computation into elemen-
tary cells and the subsampling operations (called decimations),
which occur at each stage. More precisely, the operations
required by one elementary cell at the jth octave (Fig. l(a))
are counted as follows. There are two filters of equal length
L involved. The “wavelet filtering” by h [n] directly pro-
vides the wavelet coefficients at the considered octave, while
filtering by g [n] and decimating is used to enter the next
cell. A direct implementation of the filters g [n] and h[n]
followed by decimation requires 2 L multiplications and 2(L
- 1) additions for every set of two inputs. That is, the
complexity per input point for each elementary cell is

L mults/point/cell and L - 1 adds/point/cell. (31)

Since the cell at the jth ocatve has input subsampled by
2J- ’ , the total complexity required by a filter bank imple-
mentation of the DWT on J octaves is (1 + 1/2 + 1/4
+ ... + 1/2”-’) = 2(1 - 2-”) times the complexity (31).
That is

2 L (l - 2-”) mults/point and

2 (L - 1) (1 - 2-”) adds/point. (32)

The DWT is therefore roughly equivalent, in terms of com-
plexity, to one filter of length 2 L . A remarkable fact is that
the complexity remains bounded as the number of octaves,
J , increases [25].

We remark, in passing, that a naive computation of the
DWT would implement (8) exactly as written, with precom-
puted discrete wavelets hj[n] . This does not take advantage
of the dilation property of wavelets (9), and therefore is not
effective. Since the length of h j [n] is (L - 1)(2’ - 1) f 1 ,
one would have, at the jth octave, (L - 1)(2’ - 1) + 1 real
multiplications and (L - 1)(2’ - 1) real additions for each
set of 2 j inputs. For a computation on J octaves (j =
l ; . . , J), this gives

J (L - 1) + 1 mults/point and J (L - 1) adds/point.

(33)

This complexity increases linearly with J , while that of the
“filter bank” DWT algorithm is bounded as J increases.
The use of the filter bank structure in the DWT computation
thus reduces the complexity from JL to L. This is a huge
gain; the DWT already deserves the term “fast.”

576

The aim of the following sections is to further reduce the
computational load of the DWT. We briefly motivate this
with a brief analogy to fast filtering. FFT’s are used for
implementing long filters (typically L 2 64) because they
greatly reduce the complexity: Compared to a direct imple-
mentation of the filter, the number of operations per input
point is reduced from L to log L, hence the term “fast.”
For short filters, however, the FFT is no longer efficient and
other fast filtering techniques are used [23], [24], [31]; the
resulting gain is fairly modest, but still interesting when
heavy computation of short filters is required, provided that
the accelerated algorithm does not require a much more
involved computation compared to the initial one. The situa-
tion of the DWT is identical: using FFT’s, we shall be able to
reduce the complexity of the DWT from 2 L to 4 log L , when
the filter length L is large. However, DWT’s have been
mostly used with short filters so far (although nothing ensures
that this will last forever). For them, (using different tech-
niques) we shall obtain smaller gains, typically 30% save in
computations, which can still be desirable. The algorithms
derived in the following are therefore called “fast DWT
algorithms,” even though it can be argued that this can be
confused with the already fast straightforward implementa-
tion of the DWT.

B. Reorganization of the Computations
From the operation counts above (32), it is clear that if all

of the elementary cells require the same complexity, then a
filter bank implementation of the DWT requires 2(1 - 2 9
times the complexity of one cell. To further reduce the
computational load of the DWT, it, therefore, suffices to
apply fast convolution techniques to only one elementary
cell. We propose two classes of fast algorithms: one based on
the FFT [8], [24] and the other on short-length FIR filtering
algorithms [23], [3 11.

The basic DWT elementary cell, depicted in Fig. l(a),
contains two filters. But these do not appear alone, since they
are always followed by subsampling (or decimation), which
discards every other output. It is well known that reducing
the arithmetic complexity of an FIR filter implementation is
obtained by bringing together the computation of several
successive outputs [24]. Since the filter outputs are decimated
in Fig. l(a), it is necessary to reorganize the computations in
such a way that “true” filters appear. To do this, we apply a
classical reorganization of filter banks building blocks [29],
[32] based on “biphase decomposition,” which consists of
separating into even and odd sequences. At this point, it is
convenient to use the z-transform notation. The biphase
decomposition expresses the z-transform of the input se-
quence x[n] ,

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 2, MARCH 1992

x(z) = c .[.I Z - n
n

in the form

x(2) = xo(z 2) + z-’x1(z 2)

(34)

where

Xo(z) = x[2n] and X , (z) = x[2n + 11 z-”.
n n

(35)

Similarly, apply the biphase decomposition to the L-tap
filters G(z) and H(z) involved in the computation. The cell
output Y (z) that enters the next stage is obtained by first
filtering by G (z) , then subsampling. Since we have

G(2) x (4
= (Go(2’) + z-IG,(z’))(Xo(z’) + z - ’ X , (2’))

= G O (z 2) X O (z 2) + Z - ~ G ~ (~ ~) X ~ (Z ~) +odd terms,
(36)

Y (z) = G,(z)X,(z) + z - ’ G , (z) X , (z) . (37)

picking out the even part of G(z) X (z) results in

Now that this rearrangement has been made, the output
Y (z) is obtained differently: First the even and odd-indexed
input samples X o (z) and z - IX , (z) are extracted as they
flow by (hence, the delay factor z-I for odd-indexed sam-
ples). Then, L /2-tap filters Go(z) and GI(z) are applied to
the even and odd sequences, respectively. Finally, the results
are added together. The other output of the elementary cell
(the one corresponding to the filter H (z)) is obtained simi-
larly using Ho(z) and HI(z) .

The resulting flow graph is depicted in Fig. 4 (the corre-
sponding IDWT cell is simply obtained by flow graph trans-
position). Compare with Fig. l(a): there are now four “true”
filters of length L/2, whose impulse responses are the
decimated initial filters G(z) and H (z) .
C. A n FFT-Based D WT Algorithm

This method consists of computing the four L /2-tap filters
of Fig. 4 using the FFT. More precisely, we use the “split-
radix” FFT algorithm 181 which, among all practical FFT
algorithms, has the best known complexity for lengths

N = 2 ” (38)

(n = log, N is typed boldface to avoid confusion with the
samples index n). For real data, the split-radix FFT (or
inverse FFT) requires exactly

2”- ’ (n - 3) + 2 (real) mults

2”-’(3n - 5) + 4 (real) adds. (39)

We now briefly recall the standard method for computing
filters using the FFT. The input of the DWT cell is blocked
B samples by B samples (the decimated sequences input to
the filters therefore flow as blocks of length B / 2) . Each
discrete filter is performed by computing the inverse FFT
(IFFT) of the product of the FFT’s of the input and filter.
Since the latter FFT can be precomputed once and for all,
only one IFFT and one FFT are required per block for one
filter. It is well known, however, that this does not give a
true filter convolution, but a cyclic convolution [24]. There-

RIOUL AND DUHAMEL: FAST ALGORITHMS FOR WAVELET TRANSFORMS 571

Fig. 4. Rearrangement of the DWT cell of Fig. l(a) that avoids subsam-
pling and, hence, allows the application of fast filtering techniques.

fore some time processing must be done in order to avoid
wrap-around effects. There are two well-known methods for
this, called the overlap-add and overlap-save methods [24].
One is the transposed form of the other and both require
exactly the same complexity. For one filter of length L/2,
with input block length B/2, wrap-around effects are avoided
if the FFT-length N satisfies the inequality

N > L / 2 + B/2 - 1. (40)

The block length is therefore determined by

B = 2 N - (L - 2) . (41)

The DWT algorithm is thus modified as follows. As
before, each elementary cell has the same structure, pictured
in Fig. 5. The input is first split into even- and odd-indexed
sequences. Then, a length-N FFT is performed on each
decimated input, and four frequency-domain convolutions are
performed by multiplying the (Hermitian symmetric) FFT of
the input by the (Hermitian symmetric) FFT of the filter.
This requires 4N/2 complex multiplications for the four
filters. Finally two blocks are added (2N/2 additions) and
two IFFT's are applied. Assuming that a complex multiplica-
tion is done with three real multiplications and three real
additions [24], this gives

2 FFT, + 4.3. N/2 mults + 4.3. N/2 adds

+ 2N/2 adds + 2 IFFT,

per cell, for B inputs. That is

n2"+' + 8
mults/point /cell

(L - 2) 2"+' -

(3n - ,),"+I + 16
adds/point/cell. (42)

(L - 2) 2"+' -

Note that L has typically the same order of magnitude as N,
hence, the number of operations in (49) is roughly propor-
tional to n = log L . More precisely, for a given length L
there is an optimal value of B = 2 N - (L - 2), i.e., an
optimal value of N = 2" that minimizes (42). Table I and I1
show the resulting minimized complexities for different
lengths L in comparison with the direct method (31)
(straightforward filter bank implementation). The comparison
is evidently in favor of the FFT version of the DWT algo-
rithm for medium to large filter lengths (L B 16).

Fig. 5 . FFT-based implementation of the DWT cell of Fig. 4. Overlap-add
(or overlap-save) procedure is not explicitly shown.

A more precise comparison with (3 1) can be done for large
filter lengths by minimizing the criterion (mults + adds) of
(42)

(410g, N- 1) N + 12
C (N) = N - (L / 2 - 1) ' (43 1

with respect to N. The minimal value of C (N) attained
when N = N* is such that the first derivative of C (N)
vanishes. One has

C (N *) = min,C(N) = 41og, N* + (4/ln2 - 1) (44)

where N* satisfies the relation N* = (L / 2 - l)(ln N* + 1
- In 2/4) + 3 In 2. For large filter lengths L this gives
In N* = In L + O(ln1n L), hence,

min,C(N) = 41og, L + O(log1og L) . (45)

This is to be compared with (31), for which the value of the
criterion (mults + adds) equals 2 L - 1. The FFT-based
DWT algorithm significantly improves the direct method for
large lengths L. The gain is about L /(2 log, L). However,
as seen in Table I, the FFT implementation of the DWT is
not effective for short filters.

There is a subtlety to keep in mind when wrap-around
effects at the cell output are eliminated in the time-domain.
One could immediately take the output blocks (now of length
B/2 instead of B) as inputs to the next cell, but this would
halve the block length at each stage. This method is not
effective eventually because the FFT is most efficient for an
optimized value of the block length B (at fixed filter length
L). It is therefore advisable to work with the same, optimized
degree of efficiency at each cell, by waiting for another block
before entering the next cell, so that each cell has the same
input block length B and FFT length N. This method
involves strictly identical cells: they not only have the same
computational structure, but they also process blocks of equal
length. As usual, the resulting total complexity of the DWT
is, as shown in Section 111-A, 2(1 - 2 J , times the complex-
ity of one cell.

D. A Generalization: The Vetterli Algorithm

The FFT-based DWT algorithm described above can be
improved by gathering J , consecutive stages, using a method
due to Vetterli (originally in the filter bank context [30], and
then applied to the computation of the DWT [32]). The idea
is to avoid subsequent IFFT's and FFT's by performing the
subsampling operation in the frequency domain. This is done

578 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 2, MARCH 1992

TABLE I
FFT-BASED DWT ALGORITHMS: ARITHMETIC COMPLEXITY PER POINT AND PER OCTAVE*

Filter Straightforward FFT-Based Vetterli’s Alg. Vetterli’s Alg. Vetterli’s Alg.
Length Filter Bank Algorithm (2 octaves merged) (3 Octaves merged) (4 Octaves merged)

L (Section 111-A) (Section 111-B) (Section 111-C) (Section 111-C) (Section 111-C)

2 2 + 1 3 + 6

4 4 + 3 4 + 9.33

8 8 + 7 5.23 + 14.15

16 1 6 + 15 6.56 + 18.24

32 32 + 31 7.92 + 22.37

64 64 + 63 9.12 + 26.20

128 128 + 127 10.27 + 29.67

(2)

(4)

(16)

(32)

(64)

(256)

(512)

3.17 + 5.83
(2)

4.56 + 10.97
(16)

5.68 + 14.67
(64)

6.61 + 17.41
(128)

7.50 + 20.05
(256)

8.25 + 22.55
(1024)

9 + 24.79
(2048)

3.07 + 6.07

5.17 + 12.43
(4)

(32)
6.10 + 15.53

(128)
6.88 + 18.10

7.56 + 20.14
(1024)

8.23 + 22.13
(2048)

8.89 + 24.10
(4096)

(512)

3.17 + 6.17
(4)

5.58 + 14.00
(128)

6.61 + 16.90
(256)

7.25 + 19.06
(1024)

7.90 + 21.01
(2048)

8.54 + 22.90
(4096)

9.16 + 24.76
(8192)

* Each entry gives the number of operations per input or output point in the form mults + adds, and the corresponding initial
FFT length. Complexities should be multiplied by 2(1 - 2-J) for a computation of the DWT on J Octaves.

octaves, an average of TABLE 11
ARITHMETIC COMPLEXITY PER POINT AND PER CELL* FOR VARIOUS

DWT ALGORITHMS 2 4 - l 2”(2n + 5 - 10.2-’O) + 2(J,+ 3)
Filter Straightforward FFT-Based Short-Length ____

Length Filter Bank Algorithm Algorithm 2 4 - 1 2 ” + ’ - (243- l) (L - 2)
L (Section 111-A) (Section III-B) (Section 111-C)

4 4 + 3 4 + 9.33 3 + 4
mults/point/cell

(4) 4 + (2) 6.3 2J0-1 2 “ (6 n + 5 - 14.2-JO) + 4 (J 0 + 3) 6 6 + 5 4.67 + 12

8 8 + 7 5.23 + 14.15 4.5 + 8.5
(8) (3) 2 4 - 1 2 ” + l - (2 4 - l) (L - 2)

(16) (2 x 2)
10 10 + 9 5.67 + 15.33 4.8 + 14.2

(16)

(16)
12 1 2 + 11 6.18 + 16.73

16 16 + 15 6.56 + 18.24

18 18 + 17 6.83 + 19

20 20 + 19 7.13 + 19.83

(32)

(32)

(32)

(64)

(64)

(64)

24 24 + 23 7.32 + 20.68

30 30 + 29 7.76 + 21.92

32 32 + 31 7.92 + 22.37

* Each entry gives the number of operations per input or output point in
the form mults + adds, and either the FFT length or the type of fast
running FIR algorithm used (see text). Complexities should be multiplied by
2(1 - 2 - l) for a computation of the DWT on J octaves.

by inverting the last stage of a decimation-in-time radix-2
FFT algorithm [30], [32]. The FFT length is then necessarily
halved at each DWT stage, whereas the filter lengths remain
constant, equal to L /2.

Unfortunately, this class of algorithms have two major
limitations. First, the structure of computations is less regular
than for the simple FFT algorithm of the preceding section
because FFT’s have different lengths. Second, the relative
efficiency of an FFT scheme per computed point decreases at
each stage. The difficulties brought by this method are easily
understood even by evaluating its arithmetic complexity. One
finds, assuming the DWT is computed on a multiple of J ,

adds /point /cell (46)

per elementary cell (this complexity was calculated such that
the total complexity of the DWT algorithm is exactly 2(1 -
2-J) times the average complexity per cell (46), so as to
permit a precise comparison with (42)). Note that (46) re-
duces to (42) for J , = 1.

Table I lists the resulting complexities for J , = 2,3, and
4, minimized against N = 2”. Vetterli algorithms are more
efficient than the initial FFT-based computation of the DWT
(J,, = l), but only for long filters (L 2 32) and small J,.
Efficiency is lost in any case when Jo is greater than 3.

E. D WT Algorithms for Short Filters
We have seen that for small filter lengths (L < 16),

FFT-based algorithms do not constitute an improvement
compared to the initial filter bank computation. Therefore, it
is appropriate to design a specific class of fast algorithms for
short filters. In this section, we apply short-length “fast
running FIR” algorithms [23], [31] to the computation of the
DWT. The class of “fast running FIR algorithms” is inter-
esting because the multiply /accumulate structure of computa-
tions is partially retained. These algorithms are in fact very
easily implemented [23], [3 11.

A detailed description of fast running FIR algorithms can
be found in [23]. Basically, a filter of length L is imple-
mented as follows. The involved sequences (input, output,
and filters) are separated into subsequences, decimated with
some integer ratio R. Assuming L is a multiple of R ,
filtering is done in three steps.

NOUL AND DUHAMEL: FAST ALGORITHMS FOR WAVELET TRANSFORMS 579

1) The input is decimated and the resulting R sequences
are suitably combined, requiring A ; additions per point,
to provide M subsampled sequences.

2) The resulting sequences serve as inputs to M decimated
subfilters of length L / R .

3) The outputs are recombined, with A , additions per
point, to give the exact decimated filter outputs.

Fig. 6 provides an example for R = 2, A ; = 2, M = 3,
and A , = 2. We have also applied other algorithms derived
in [23], corresponding to the values R = 3, A ; = 4, M = 6,
A , = 6, and R = 5, A ; = 14, M = 12, A , = 26.

This computation can be repeated: the subfilters of length
L / R are still amenable to further decomposition. For exam-
ple, to implement a 15-tap filter, one can either use a fast
running FIR algorithm for R = 3 or R = 5, or decompose
this filter by a “3 x 5 algorithm,” which first applies the
procedure with R = 3, then again decompose the subfilters
(of length 5) using the procedure associated with R = 5.
Alternatively, a “5 x 3 algorithm” can be used. Each of
these algorithms yield different complexities, which are dis-
cussed in detail in [23]. We restrict ourselves here to at most
two nested applications of fast running FIR algorithms (as in
the previous example), so that the resulting computation
remains simple, even though this is at the cost of a slight loss
of efficiency.

The short-length DWT algorithm is derived as follows.
One applies fast running FIR algorithms to the four filters of
length L / 2 in the elementary cell of the DWT (Fig. 4).
Here, since two pairs of filters share the same input, all
pre-additions (A ;) can be combined together on a single
input.

Table 11 lists the resulting complexities, using the fast
running FIR algorithm that minimizes the criterion (multipli-
cations + additions). When two different decompositions
yield the same total number of operations, we have chosen
the one that minimizes the number of multiplications (another
choice would have been to minimize the number of multipli-
cation-accumulations). Table I1 shows that short-length DWT
algorithms are more efficient than the FFT-based DWT algo-
rithms for lengths up to L = 18.

Since, in practice, DWT’s are generally computed using
short filters [11, [191, [20], the short-length algorithms proba-
bly give the best practical alternative. Compared to the
straightforward filter bank implementation, they do provide
noticeable savings: As an example, for L = 18, the short-
length algorithm requires a total of 25 operations per point
instead of 35 for the direct method. Such a gain is interesting
when heavy DWT computation is required.

F. The Orthogonal Case
In our derivations, we did not take advantage of orthogo-

nality constraints [4], [lo], [19], [20], [22], [34] so as to be
as general as possible. However, orthogonality is worthy of
consideration because of its simplicity: the analysis and syn-
thesis filters coincide (within time reversal and complex
conjugation). Furthermore, it allows one to further reduce
the complexity of the DWT: Using a lattice implementation

- x(zqq-q-T31 ;2p
Ho(z)+HI(zJ

XNZ)

W Z)
1-1

Y N Z)

Fig. 6. Simple example of fast running FIR filtering algorithm with
decimation ratio R = 2 [23]. Subscripts 0 and 1 indicate biphase decomposi-
tion.

of the DWT filter bank cell of Fig. l(a), Vaidyanathan and
Hoang have shown in [28], [29] that the complexity can be
reduced by a factor of 50% in the orthogonal case.

Preliminary work on this subject using the relation

h [n] = (- l > ” g [L - 1 - n] , (47)

which holds for orthogonal wavelets (see e.g., [4], [19]),
shows that 25% reduction of computational complexity is
attainable (with techniques similar to the ones previously
stated), while preserving the classical FIR filtering structure.
This indicates that this 25% reduction will be preserved in
accelerated algorithms based on the above techniques.
Whether or not 50% reduction can be attained while preserv-
ing the inner products (unlike the lattice structure implemen-
tation) is an open problem. A complete treatment remains a
topic for future investigation. In any case, Tables I and I1 do
not provide a fair and detailed comparison between various
algorithms in the orthogonal case.

G. Unequal Filter Lengths
In the previous derivations, we have restricted ourselves to

filters of equal lengths for simplicity. However, as pointed
out to us by one of the reviewers, it may happen that one uses
a low-pass interpolation filter g [n] of small length (L , Q 16)
and a very long high-pass filter h[n] of length L , 9 16.
This is the case in [9], [17], where one typically uses a first
order interpolation filter g [n] (L g = 3) to approximate the
“Morlet wavelet,” a modulated Gaussian.

Obviously, for a direct implementation of the DWT filter
bank, it is in this case absurd to assume equal filter lengths
since the complexity (31) then becomes (L g + L,)/2 mults
and (L g + Lh - 1)/2 adds. (Padding the short filter coeffi-
cients with zeros as previously suggested would require L ,
mults and L , adds instead.)

However, the equal length assumption is still valid for the
derivation of fast (FFT-based) DWT algorithms for two
reasons.

1) If one of the lengths is large (L h 9 16), then clearly
the most suitable algorithm for improving efficiency
compared to a straightforward filter bank implementa-
tion is an FFT-based DWT algorithm. One can use the
one described in Section 111-C, although the fact that
one filter is of small length is then not taken advantage
of. Alternatively, this algorithm can be modified to
compute the short filter directly as inner products and
use the FFT only for the long one. But then, as is clear
from Fig. 5 , four FFT’s are still required for the inputs

5 80

2)

In

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 2, MARCH 1992

and outputs just as in the initial FFT-based algorithm,
and saving is only obtained for the frequency domain
multiplications (2 instead of 4).

For a wavelet of length L, = 64 and interpolation
filters of length L, of 3, 7, and 11, the modified
“unequal lengths” FFT-based algorithm give gains
over a standard DWT of 49.9%, 47.1% and 44.5%,
respectively. However, for the same lengths the initial
FFT-based algorithm of Section 111-C give respective
gains over a standard DWT of 46.9%, 49.9% and
52.6%. More generally, we found that the modified
FFT-based algorithm is more efficient than the initial
FFT-based one only for very short interpolation filters
(L g I 4), and in any case the complexities of both
methods are about the same.

Therefore, for very different lengths L , 4 L,, some
efficiency of FFT-based algorithms is lost compared to
a direct implementation based on the pessimistic as-
sumption L , = L , (because the direct implementation
is then significantly more efficient), but the FFT-based
algorithm of Section 111-C, which is based on the very
same pessimistic assumption, cannot be greatly im-
proved. Note that in such a case it is still more interest-
ing to use an FFT-based algorithm that yields a substan-
tial gain over a standard, straightforward filter bank
implementation of the DWT.
One can, and indeed should, reduce the difference
between L , and L , as much as possible in the wavelet
approximation procedure, since the complexity can then
be significantly reduced using one of the accelerated
algorithms described earlier. For the Morlet example, it
is possible to use higher order splines as suggested in
Section 11-D to obtain discrete filters of moderate lengths
L , and L , with a comparable approximation error,
thereby resulting in a much more efficient “equal
length” implementation, that is, one of the accelerated
algorithms given above, as applicable.

the previous discussion, we did not take other properties
of filters into account, such as the linear phase property
which holds for the Morlet wavelet. Obviously we cannot
describe all specific cases in detail (this would require much
more space). Nevertheless, the linear phase case can be
treated just as easily as the previous general case, and one
still obtains reduction of complexity in any case of interest
using appropriate methods.

IV . CONTINUOUS WAVELET TRANSFORM ALGORITHMS
A . C WT Coeficients Sampled on Arbitrary Grids and the
“h Trous” Algorithm

In this section, we review how the Shensa algorithm [26]
reviewed in Section 11-C, is applied to the computation of
CWT coefficients sampled on arbitrary grids in the time-scale
plane. As in the WS case, the DWT can be used as an
intermediate step. The time-scale parameters are discretized
as shown:

a = ad
b = k , (48)

where 1 < a, 5 2. Notice that a is restricted to positives
values. This implicitly assumes that the signal and wavelets
are either both real-valued or both complex analytic (i.e.,
their Fourier transforms vanish for negative frequencies).
One interest of (48) is the possibility to approximate a nearly
continuous CWT representation in the time-scale plane for
analysis purposes. For this reason, the algorithms described
in the following will be called “CWT algorithms.”

Let us first restrict to an octave-by-octave computation,
i.e., a = 2J. In the next section, we shall consider the
computation if the CWT on a fine grid in the time-scale
plane. We remark that the computation of the WS coefficients
treated in Sections I1 and I11 is nothing but part of the
computation required here: One has

Cj, = CWT { X(t) ; 2’, k 2 j) . (49)

Now, the Shensa algorithm for the WS coefficients (cf.,
Section 11-C) can be readily extended to the required compu-
tation of CWT { x(t); 2J, k } [26]. We have a result similar
to (14), namely,

CWT{x(t) ;2’ , k} = DWT{x’[n] ;2j , k } , (50)

where x’[n] is a prefiltered discrete input defined by (15).
The difference with (14) is, of course, that the DWT is
computed for all integer values of b. In contrast, in the
standard description of the DWT (Section 11-B), the wavelet
coefficients are only output every 2 J samples (b = k2j) .
Equation (50) indicates that CWT coefficients sampled on an
arbitrary grid in the time-scale plane can be computed using a
filter bank structure derived from the initial DWT. This fact
was mentioned by Gopinath and Burrus in [12] and subse-
quently discussed in detail by Shensa in [26]: The resulting
CWT algorithm was recognized to be identical with the ‘‘A
trous” algorithm of Holschneider et al. [9], [17].

In fact, the framework of Section 11-C is more general than
that found in [171, in which a sampled version of the integral
in (6) is the starting point. This corresponds, in our case, to
the extra condition that perfect sampling is used for both the
input (11) and the wavelets (20). This implies that the
low-pass filter g [n] (cf. Section 11-D) in [17] should fulfill
the condition

&+n] = h . 0 , (51)

which comes from g [n] = (1/&)4(n/2) in (19). This
forbids the “binomial” choice (22) for spline orders greater
than one. In [17], Holschneider et al. use instead a second
order Lagrangian filter for which $ (t) cannot be written in
closed form (such + (t) ’ s were studied in detail by Deslauri-
ers and Dubuc [7]). Therefore, the curve fitting problem (13)
is more tedious to solve in the “perfect sampling” case. This
is a possible disadvantage considering that the accuracy of the
algorithm is governed by the solution to (13). Unlike [17],
[26], the more flexible framework of equations (12), (13) has
allowed us to use a classical curve fitting problem using
splines in the wavelet approximation (see Section 11-D).

RIOUL AND DUHAMEL: FAST ALGORITHMS FOR WAVELET TRANSFORMS

~

581

B. Finer Sampling in Scale

In signal analysis, an octave-by-octave computation of the
CWT (i.e., with a = 2’) is generally not enough. It is
desirable to obtain more wavelet coefficients, with finer
sampling in the scale parameter a , namely, a = 23/M, where
M is the number of “voices per octave” [5], 1181, 1341.

To do that we apply the same trick [17] as in section 11-E.
An “ M voices per octave” CWT Computation results from
A4 successive applications of the octave-by-octave algorithm,
each one corresponding to a different basic wavelet proto-
type:

2-m’M$(2-m/Mt), m = O ; - . , M - 1. (52)

The approximation (17) must be satisfied for each of these
slightly stretched wavelet prototypes (52), and the whole
algorithm requires about M times the computational load of
an octave-by-octave algorithm.

C. Computation of the Inverse Continuous Wavelet
Transform

It is well known that the CWT brings a lot of redundancy
into the representation of the signal (a one-dimensional signal
is mapped to a two-dimensional plane). As a result, there are
several possibilities to reconstruct the signal x(t) from its
CWT coefficients (2).

One can use the classical (but computationally expensive)
inversion formula [131, [141

x (t) = c// CWT{x(t) ; a ,

(53)

where c is a constant depending only on $(t).
More efficient is to use an inverse WST on the coefficients

Cj,k = CWT{x(t);2’, k2’}, when $(t) is carefully cho-
sen. Reference [5] contains a detail treatment of questions of
accuracy if perfect reconstruction is not ensured by the
choice of the wavelet $(t). The algorithms presented in
Section 111 apply to this method. We have mentioned in
Section HI-A that a DWT and an inverse DWT algorithm
have identical complexities if the latter is obtained by flow-
graph transposing the former. Thus, the complexity is easy to
estimate in this case.

Still another way is to use Morlet’s formula [13], [14],
1171

(54)

which requires a single itegration. This computation is per-
formed from available CWT coefficients, which should be
known for a sufficient number values of a in order to give an
accurate reconstruction. The issue of convergence remains
open.

V. EFFICIENT IMPLEMENTATIONS OF THE CONTINUOUS
WAVELET TRANSFORM

In the following, we derive efficient implementations of the
CWT, or, more properly, of CWT coefficients sampled on

regular grids in the time-scale plane (b , a), restricting to an
octave-by-octave computation, a = 23, b = k (see Section
IV-B for a generalization to a = ai). We assume that the
discrete input has been prefiltered in a suitable manner as
explained in Sections 11-C and IV-A, and concentrate on the
computation of DWT { x[n]; 2*, k } .

A . Reorganization of the “h Trous” Computational
Structure

There are several ways of deriving a filter bank implemen-
tation of the CWT. In [17], Holschneider et al. proposed an
“A trous” structure pictured in Fig. 7(a). (The term “A
trous”-with holes-was coined by Holschneider et al. in
reference to the fact that only one every 2’-’ coefficients is
nonzero in the filter impulse responses at the jth octave.)
From (50) it is also possible to derive a CWT algorithm by
combining several DWT algorithms with a = 2/, b = k 2 /
+ k,, k , = 0, * , 2 J - 1 in a suitable manner. In this case,
the algorithms of Section 111 could be readily used, although
we found that the resulting CWT algorithms would not be the
most efficient ones. All of these variations (including the one
used next) require exactly the same complexity when filters
are implemented directly as inner products (and multiplica-
tion by zero is avoided for the ‘‘A trous” structure).

However, we now use another variation of filter bank
implementation of the CWT, which was also derived inde-
pendently by Shensa in [26], because it is more suited to
further reduction of complexity using fast filtering tech-
niques. Consider the filter bank structure of Fig. 7(c), where
the elementary cell is depicted in Fig. 7(b). This filter bank
structure is easily deduced from the one of Fig. 7(a) [26].

Since the accelerated algorithms of Section 111 apply to the
computation of the DWT filter bank structure of Fig. 1, it is
important to relate it to the new filter bank structure of Fig.
7(c). Consider, more specifically, the computation performed
at the first octave (j = 1) of Fig. 7 and compare it to Fig.
l(a). In the latter structure, half the wavelet coefficients
required for the CWT at this octave are computed: the
missing ones are the outputs of H (z) that are discarded by
the decimation process. It is sufficient to remove the subsam-
pling on H (z) to obtain the required wavelet coefficients of
the first octave, as shown in Fig. 7(a).

Also, in Fig. l(a) the output of the filter G (z) is used to
compute the wavelet coefficients for the next stage (j = 2)
for even values of the time-shift parameter b. The missing
sequence, which allows to obtain the coefficients with odd
values of b is nothing but the discarded subsampled se-
quence; it is recovered in Fig. 7(a).

At the next octave j = 2, both inputs are processed sepa-
rately using identical cells. One provides the same points as
in the WST computation (round dots in Fig. 7(c)), while the
other allows to start a new computation of the same type,
shifted in time, and beginning at the next scale (squared dots
in Fig. 7(c)). The whole process is iterated as shown in Fig.
7(c).

In the overall organization, the outputs of both filters have
to be computed, those of G (z) are used to build two inter-
leaved sequences, while those of N(z) are simply the wavelet

582 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 2, MARCH 1992

I p i y I

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

o x + o o x + o o
S C A E

j = l o g , a

(C)

Fig. 7. ''A trous" structure as derived by Holschneider et al. (b) Basic
computational cell used for computing CWT coefficients Octave and octave.
(c) Connection of the cells used in this paper and corresponding location of
the wavelet coefficients in the time-scale plane.

coefficients. Note that the basic computational cells of the fast
DWT algorithms were specifically designed in Section III for
decimated outputs. Their structure is therefore not adapted to
the new situation, and the operation counts have to be
reworked. This is done next.

B. Straightforward Filter Bank Implementation of the
CWT

Consider the filter bank implementation of Fig. 7(c), and
assume, as in Section ID, that both filters g[n] and h[n] are
FIR filters and have same length L . (Section V-F discusses
the case of unequal filter lengths). When the filters are
directly implemented as inner products, the octave-by-octave
CWT algorithm requires

2 L mults/input point/cell

2(L - 1) adds/input point/cell. (5 5)

Note that there are 2 j - ' elementary cells at the jth octave
in Fig. 7. These cells are identical but "work" at a different
rate: a cell at the jth octave is fed by an input which is
subsampled by 2J- l compared to the original input x (t) .
Therefore, the total complexity required by an octave-by-
octave CWT algorithm on J octaves, is exactly
&2j-1/2j-1 = J times the complexity of one cell. Thus,
the complexity of any filter bank implementation of a CWT
grows linearly with the number of octaves.

In case of a direct implementation (55), the total complex-

ity required by a CWT on J octaves is simply
2 LJ mults/input point

2(L - 1) J adds/input point. (56)
As mentioned in [17], this is a significant improvement
compared to the "naive method" that would consist in
directly implementing the CWT and would not take advan-
tage of the fact that wavelets are easily related by dilation
(this would reqquire a complexity exponentially increasing
with J) . Since the whole CWT algorithm requires J times
the complexity of one cell, the latter is the total complexity of
the CWT per input point and per octave. Hence the complex-
ity of one cell is also the total complexity of the CWT per
output point, i.e., per computed wavelet coefficient.

Since the elementary cell contains filters, its arithmetic
complexity can be reduced using the techniques described
previously in section I11 for WS coefficients. Furthermore, in
the CWT case filter lengths are comparatively twice as long
as in the WST case. This will increase the efficiency of the
accelerated algorithms described below.

C. An FFT-Based CWT Algorithm
As in Section III.C, the FFT can be used to accelerate the

two filter computations in the elementary cell of the filter
bank of Fig. 7@), (c). In the CWT case, wrap-around effects
are avoided if the FFT-length N is such that

N ? L + B - l (57)
where B is the input block length, and where L is the filter
length. The block length is, therefore, chosen as B = N -
(L - 1) . Each elementary cell is computed by first perform-
ing an FFT of length N = 2" on the input, then performing
two frequency-domain convolutions by multiplying (Hermi-
tian symmetric) length-N FFT's of g [n] and h [n] , and
finally applying two inverse FFT's on the results. This
requires 2FFTN + 2 N / 2 complex mults + IFFT, per cell
(for B input points). Under the same conditions as in Section
111-C, we obtain

3.2"-'(n - 1) + 6

2 " - L + 1
mults/input point/cell

9.2"-'(n - 1) + 12

2 " - L + 1
adds/input point/cell (58)

for each elementary cell. Once a cell is computed, wrap-
around effects are cancelled in the time domain and one waits
for one block before entering the next stage, so that each cell
has the same input block length B and the same FFT length
N . Table I11 lists the obtained complexities (58) , minimized
for an optimal value of N, for different values of the filter
length L . Since all cells are computed with FFT's of the
same length N , once N is optimal for one cell, it is optimal
for the whole algorithm.

Table I11 shows that compared to the direct implementation
(5 3 , the FFT computation is more efficient than the direct
method for L 1: 9, in terms of total number of operations
(multiplications + additions). By deriving this criterion with
respect to N , one finds that the optimal FFT length satisfies
the relation N = (0.69n + 0.31)(L - 1). For large L , the

RIOUL AND DUHAMEL: FAST ALGORITHMS FOR WAVELET TRANSFORMS 583

TABLE III
ARITHMETIC COMPLEXITY PER COMPUTED POINT* FOR VARIOUS CWT ALGORITHMS

Filter Straightforward FFT-Based FFT-Based Short-Length
length Filter Bank Algorithm (two octaves merged) Aglorithm

L (Section V-A) (Section V-B) (Section V-C) (Section V-D)

2

3

4

5

6

8

9

10

12

15

16

18

20

24

25

27

30

32

64

128

4 + 2

6 + 4

8 + 6

10 + 8

12 + 10

16 + 14

18 + 16

20 + 18

24 + 22

30 + 28

32 + 30

36 + 34

40 + 38

48 + 46

50 + 48

54 + 52

60 + 58

64 + 62

128 + 126

256 + 254

4 + 10
(4)

5 + 14
(8)

6 + 16.8
(8)

6.5 + 19
(16)

7.1 + 20.7
(16)

7.9 + 23.5

8.2 + 24.5

8.6 + 25.6

9.2 + 27.4
(64)

9.7 + 29
(64)

9.9 + 29.6
(64)

10.3 + 30.9
(64)

10.6 + 31.8
(128)

11 + 33
(128)

11.1 + 33.3
(128)

11.3 + 34
(128)

11.7 + 35
(128)

11.9 + 35.7
(128)

13.7 + 41.1

15.4 + 46.2
(1024)

(32)

(32)

(32)

(512)

4.8 + 12

5.8 + 15.2

6.5 + 17.2

6.9 + 18.7
(64)

7.3 + 19.8
(64)

7.8 + 21.6
(128)

8.1 + 22.3
(128)

8.3 + 22.9
(128)

8.6 + 24.2
(256)

9 + 25.2
(256)

9.1 + 25.5
(256)

9.4 + 26.3
(256)

9.6 + 27
(512)

9.8 + 27.8

9.9 + 27.9

10 + 28.3

10.2 + 28.9

10.4 + 29.4

11.6 + 33.1
(2048)

12.7 + 36.4
(4096)

(16)

(32)

(32)

(512)

(512)

(512)

(512)

(512)

3 + 3
(2)

4 + 5.3
(3)

4.5 + 7.5
(2 x 2)

4.8 + 13.2
(5)

6 + 11
(2 x 3)
9 + 12
(2 x 2)
8 + 16
(3 x 3)

7.2 + 20.4
(5 x 2)
12 + 17
(2 x 3)

9.6 + 26
(5 x 3)
18 + 21
(2 x 2)
16 + 24
(3 x 3)

14.4 + 27.6
(5 x 2)

(2 x 3)
11.5 + 44.9

(5 x 5)
24 + 32
(3 x 3)

19.2 + 35.6
(5 x 3)
36 + 39
(2 x 2)
72 + 75
(2 x 2)

144 + 147
(2 x 2)

24 + 29

*Each entry gives the number of operations per computed wavelet coefficient (i.e., per input point per octave) in the form
mults + adds, and either the FFT length or the type of fast running FIR algorithm used (see text).

corresponding minimized total number of operations per
computed point is

6 log, L + O(1og log L) .

This is a significant improvement compared to (5 9 , for
which the total number of operations per input point is about
4 L . The gain of the FFT computation is therefore asymptoti-
cally 2L/310g2 L for large filter lengths L . This gain is
larger than in the WST case (Section 111-C).

D. A Generalization Using the Vetterli Algorithm
The method shortly presented in Section III-D, that Vet-

terli [30], [32] derived in the DWT case, can also be used for
the octave-by-octave CWT computation. The discussion of
Section 111-D could have been made here as well.

We provide an example, when two octaves are gathered
together. Three elementary cells of Fig. 7(c) are merged into
one 1-input, 7-output cell that covers two octaves. Here the
FFT length N = 2" must be greater than or equal to B +

3(L - 1) to avoid wrap-around effects (compare with (57)).
This results in an average of

2"-'(2n - 1) + 6

2" - 3L + 3
mults/input point

6 .2"- ' (n - 1) + 12

2" - 3L + 3
adds/input point (60)

6 .2"- ' (n - 1) + 12

L - 3 L t J
-.'+/input point (60)

per octave (more precisely, twice this complexity per
cell). Table 111 shows that the resulting complexities,
when minimized against N, are significantly lower than
(58) for large lengths only, although they slightly reduce
the complexity as soon as L 2 8 . The price to pay is a
more involved implementation, with much larger FFT
lengths.

E. C WT Algorithms for Short Filters
Fast running FIR algorithms with decimation ratios R =

2 , 3 , 5 , described in Section 111-E, can easily be applied to
the CWT case. Furthermore, in one elementary cell of Fig.

584 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 2, MARCH 1992

7(b), both filters share the same input and pre-additions can
therefore be combined on the single input.

Table III lists the resulting complexities, using the fast
running FIR decomposition that minimizes the total number
of operations (multiplications + additions). When two dif-
ferent decompositions yield the same number of operations,
we have chosen the one that minimizes the number of multi-
plications. As in Section III-E, we have restricted ourselves
to at most two nested fast running FIR algorithms. Otherwise
the resulting implementation becomes more involved.

Table III shows that short-length CWT algorithms are
more efficient than the FFT-based algorithm of Section V-C
for lengths up to 20. It even remains more efficient than the
generalized algorithm of Section V-D (which gathers two
octaves) for lengths up to 12. If the CWT is computed with
medium filter lengths so as to maintain the complexity at a
reasonable level, short-length algorithms may be a good
trade-off both in terms of structure and complexity.

F, Unequal Filter Lengths
The situation here is almost the same as the one discussed

earlier (see Section III-G for more details). Assume that the
length of h[n] is much larger than the length of g [n]
(L,, P L g) . If the FFT-based algorithm described in Section
V-C is modified to compute the short filter directly as inner
products and use the FFT only for the long one, then one
obtains a more efficient FFT-based algorithm only for very
short low-pass filters (although the gain made here is compar-
atively larger than in the WST case). Both variations of
FFT-based algorithms require about the same complexity
(again we have left out linear phase considerations). The
conclusions are the same as in section 111-G.

It should be clear from the discussions made in this paper
that using appropriate methods it is always possible to take
advantage of specific constraints and to reduce (more or less
significantly) the complexity involved in the computation of
wavelet coefficients in any case of interest (i.e., for all filter
lengths). In any case, the tables provided in this paper for the
general case give a rough idea of possible savings achievable
by the various methods.

G. Other CWT Algorithms
Several algorithms for computing CWT coefficients, which

differ notably from those described above, have been pro-
posed recently. Gopinath and Burrus [12] proposed a method
that also uses DWT's. The signal is assumed to be com-
pletely determined from its WS coefficients. Therefore, these
alone can be used to compute all CWT coefficients by some
reproducing kernel equation. The introduction of an auxiliary
wavelet moreover allows to precompute the kernel and to
obtain a method particularly suited to the computation of
CWT coefficients with respect to several wavelets. In con-
trast, the algorithms described above "oversample" the dis-
cretization a = 2 J , b = k 2 J by computing more coefficients
directly from the signal. This should result in a faster imple-
mentation compared to [121 which uses a computationally
expensive kernel expansion.

Another CWT algorithm, which uses the scaling property

of wavelets $(t) + a P ' I 2 $ (t / a) rather than the convolu-
tional form of (l) , (2) - x (t) convolved with
a- / 2 II, (t / a) - has been proposed by the Bertrands and Ovar-
lez [2] . Let us briefly outline the derivation of this algorithm.
Write (2) in the frequency domain, assuming that the signal
x (t) and wavelet $ (t) are complex analytic. This gives

C W T { x (t) ; a , b } = 1 X (f) e 2 ' " f b & $ * (a f) d f ,
t m

0

(61)

where X (f) = / x(t)e-2'"f' dt and $(f) are the Fourier
transforms of x (t) and $ (t) , respectively. Then perform the
changes of variable (o = In f . A correlation form in a = In a
appears in the integral.

CWT { x (t) ; a , b)
a+P

~

X (eP) eP/2e2iae'b$ (ea+@) e d p . (62)

After suitable discretization, this correlation can be per-
formed using an FFT algorithm. As stated in [2] , the Mellin
Transform M,(P) of x (t) plays a central role, since it turns
out to be exactly the inverse Fourier transform of fix(f)
in the variable (o = In f :

= s,

K (P) = / X (f) f - 1 / 2 + 2 ; " @ df
f > 0

= 1 e"/*X(@) e2i*@@ d(o. (63)

As a result, the FFT's involved in the computation of (62)
are "discrete Mellin transforms," as defined in [2] .

This algorithm requires the precomputation of the whole
Fourier transform of x (t) , which makes a running imple-
mentation (in case of infinite duration signals) cumbersome.
To overcome this difficulty we propose a variation on the
Bertrands-Ovarlez algorithm, based on the time-domain
rather than on the frequency domain. Assume that the signal
and wavelets are causal (i.e., supported by t 2 0) , and make
the change of variable 7 = In t in (2) . One obtains a convolu-
tion in CY = In a

CWT { x (t) ; a , b }

= J' e 7 / 2 x (e r + b) e (7 - a) / 2 $ * (e ' - a) d r . (64)

The CWT coefficients are obtained, for a given b, by
discretizing the convolution (a), resulting in a discrete fil-
tering operation that can be implemented for running data.

Both algorithms (62), (64) have common characteristics.
Some of them can be considered as drawbacks: first, they
involve a geometric sampling of either X (f) or x (t) .
Second, the approximation error made by discretizing (62) or
(64) is difficult to estimate. Finally, in contrast with the
octave-by-octave CWT implementation previously described
the regular structure of time shifts b has completely disap-
peared, and one has to recompute the input for each value of
b. As a result, the complexity of such algorithms (about two

RIOUL AND DUHAMEL: FAST ALGORITHMS FOR WAVELET TRANSFORMS 585

FFT’s of length 2 JM per input point, where J is the number
of octaves and M is the number of voices per octave) is
found higher than the one obtained for the accelerated algo-
rithm of Section V-C.

However, a nice property of the Bertrands-Ovarlez
algorithms (62), (64) is that the CWT coefficients are com-
puted for all desired values of In a at the same time (for
given value of b) , which is much more straightforward than
in the algorithms previously described. It makes the
Bertrands-Ovarlez algorithms very useful when a ‘‘zoom, ”
or a refinement of the wavelet analysis in a short extent
around some time location b is desired.

VI. CONCLUSION
This paper has provided several methods for implementing

efficiently various kinds of wavelet transforms, from the fully
discrete version to the fully continuous one, and for any type
of wavelet. Prefiltering the signal allows one to use the DWT
as an intermediate computation for any type of wavelet
transform. Guidelines were given for the design of the appro-
priate prefilter. A detailed treatment of questions of accuracy
remains a topic for future investigation.

Fast DWT algorithms were derived for computing WS
coefficients and were modified to compute wavelet coeffi-
cients with oversampling in the time-scale plane (“CWT
algorithms”).

Two different classes of fast algorithms have been derived:
the first one is based on the FFT, and is efficient for medium
to large wavelet prototypes. The second one is based on
short-length “fast running FIR algorithms” [23] and is effi-
cient for small to medium size filters. Compared to the
situation encountered for fixed coefficient filtering [23], [24],
DWT fast algorithms are useful for shorter filters, while the
reduction of the arithmetic complexity, although substantial,
is lower. The modified “CWT” algorithms are efficient for
even shorter wavelet prototypes than in the DWT case, with
an improvement which is asymptotically greater.

The availability of both FFT-based and fast-running-FIR-
based algorithms allows one to reduce the complexity of the
existing algorithms in any case of interest.

ACKNOWLEDGMENT
The authors would like to thank anonymous reviewers for

useful comments and suggestions that helped improve the
presentation of this paper. Fruitful, passionate discussions
with Prof. M. Vetterli of Columbia University, New York,
NY, are also gratefully acknowledged.

REFERENCES
M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Imaging
coding using vector quantization in the wavelet transform domain,” in
Proc. 1990 IEEE Int. Con5 Acoust., Speech, Signal Processing,
Albuquerque, NM, Apr. 3-6, 1990, pp. 2297-2300.
J. Bertrand, P. Bertrand, and J. P. Ovarlez, “Discrete Mellin trans-
form for signal analysis,” in Proc. 1990 IEEE Int. Conf. Acoust.,
Speech, Signal Processing, Albuquerque, NM, Apr. 3-6, 1990, pp.
1603-1606.
A. Cohen, I. Daubechies, and J. C. Feauveau, “Biorthogonal bases
of compactly supported wavelets,” Tech. Memo. # 11217-900529-07,
AT&T Bell Labs.; to appear in Comm. Pure Applied Math.

I . Daubechies, “Orthonormal bases of compactly supported
wavelets,” Comm. in Pure Applied Math., vol. 41, no. 7, pp.

-, “The wavelet transform, time-frequency localization and signal
analysis,” IEEE Trans. Inform. Theory, vol. 36, pp. 961-1005,
Sept. 1990.
I. Daubechies and J . C. Lagarias, “Two-scale difference equations I.
Existence and global regularity of solutions, ” SIAM J. Math. Anal.,
vol. 22, no. 5 , pp. 1388-1410, Sept. 1991.
G. Deslauriers and S. Dubuc, “Symmetric iterative interpolation
processes,” Constructive Approximation, vol. 5, pp. 49-68, 1989.
P. Duhamel, “Implementation of split-radix FFT algorithms for
complex, real, and real-symmetric data,” IEEE Trans. Acoust.,
Speech, Signal Processing, Vol. ASSP-34, pp. 285-295, Apr. 1986.
P. Dutilleux, “An implementation of the ‘Algorithme h Trous’ to
compute the wavelet transform,” in Wavelets, Time-Frequency
Methods and Phase Space, J. M. Combas, A. Grossmann, and Ph.
Tchamitchian, Eds.
G. Evangelista, “Orthogonal wavelet transforms and filter banks,”
presented at Proc. 23rd Asilomar Conf., IEEE, Nov. 1989.
P. Flandrin, “Some aspects of non-stationary signal processing with
emphasis on time-frequency and time-scale methods,” in Wavelets,
Time-Frequency Methods and Phase Space, J. M. Combes, A.
Grossmann, and Ph. Tchamitchian, Eds. Berlin: Springer, IPTI,
1989, pp. 68-98.
R. A. Gopinath and C. S. Burrus, “Efficient computation of the
wavelet transforms,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Processing, Albuquerque, NM, Apr. 3-6, 1990, pp.

P. Goupillaud, A. Grossmann, and J. Morlet, “Cycle-octave and
related transforms in seismic signal analysis,” Geoexploration , vol.

A. Grossmann and R. Kronland-Martinet, “Time and scale represen-
tations obtained through continuous wavelet transforms, ” in Proc.
Int. Con f . EUSIPC0’88, Signal Processing IV: Theories and
Applications, J. L. Lacoume et al., Eds. New York: Elsevier
Science Pub., 1988, pp. 475-482.
C. E. Heil and D. F. Walnut, “Continuous and discrete wavelet
transforms,” SIAMRev., vol. 31, no. 4, pp. 628-666, Dec. 1989.
C. E. Heil, “Wavelets and frames,” in Signal Processing, Part I:
Signal Processing Theory, vol. 22, L. Auslander, T. Kailath, S.
Mitter, Eds., Institute for Mathematics and its Applications. New
York: Springer, 1990.
M. Holschneider, R. Kronland-Martinet, J. Morlet, and Ph.
Tchamitchian, “A real-time algorithm for signal analysis with the
help of the wavelet transform,’’ in Wavelets, Time-Frequency Meth-
ods and Phase Space, J. M. Combes, A. Grossmann, and Ph.
Tchamitchian, Eds.
R. Kronland-Martinet, J . Morlet, and A. Grossmann, “Analysis of
sound patterns through wavelet transforms,” Znt. J. Pattern Recogn.
Artijicial Intel/., vol. 1, no. 2, 1987. pp. 273-302.
S. Mallat, “A theory for multiresolution signal decomposition: The
wavelet representation,” IEEE Trans. Pattern Anal. Machine In-
tell., vol. 11, pp. 674-693, July 1989.
- , ‘‘Multifrequency channel decompositions of images and wavelet
models,’’ IEEE Trans. Acoust., Speech, Signal Processing, vol.
37, pp. 2091-2110, Dec. 1989.
S. Mallat and S. Zhong, “Signal characterization from multiscale
edges,” in Proc. 10th Int. Conf. Pattern Recogn., Pattern
Recogn., Syst. Applica., Los Alamitos, CA, 16-21 June 1990, pp.

Y. Meyer, Ondelettes et Opkateurs, Tome I . Paris: Herrmann,
1990.
Z. J . Mou and P. Duhamel, “Short-length FIR filters and their use in
fast nonrecursive filtering,” IEEE Trans. Signal Proc., vol. 39, pp.
1322-1332, June 1991.
H. J . Nussbaumer, Fast Fourier Transform and Convolution Algo-
rithms. Berlin: Springer, 1981.
T. A. Ramstad and T. Saramaki, “Efficient multirate realization for
narrow transition-band FIR filters,” in IEEE 1988 Int. Symp. Cir.
and Systems, 1988, pp. 2019-2022.
M. J. Shensa, “Affine wavelets: Wedding the Atrous and Mallat
algorithms,” to appear in IEEE Trans. Acoust., Speech, Signal
Proc.
M. J . T. Smith and T. P. Barnwell, “Exact reconstruction for
tree-structured subband coders,” IEEE Trans. Acoust., Speech,

909-996, 1988.

Berlin: Springer, IPTI, 1989, pp. 298-304.

1599- 1601.

23, pp. 85-102, 1984/85.

Berlin: Springer, IPTI, 1989, pp. 286-297.

89 1-896.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 2, MARCH 1992

Signal Processing, vol. ASSP-34, pp. 434-441, June 1986.
P. P. Vaidyanathan and P.-Q. Hoang, “Lattice structures for optimal
design and robust implementation of two-channel perfect-reconstruc-
tion QMF banks,” IEEE Trans. Acoust., Speech, Signal Process-
ing, vol. 36, pp. 81-94, Jan. 1988.
P. P. Vaidyanathan, “Multirate digital filters, filter banks, polyphase
networks, and applications: A tutorial,” Proc. IEEE, vol. 78, pp.

M. Vetterli, “Analyse, Synthkse et Complexit6 de Calcul de Bancs de
Filtres Num&iques,” Ph.D. thesis, B o l e Polytechique FBdkrale de
Lausanne, 1986.
-, “Running FIR and IIR filtering using multirate filter banks,”

56-93, Jan. 1990.

IEEE Trans. Acoust., Speech, Signal Proc., vol. ASSP-36, pp.
730-738, May 1988.
M. Vetterli and C. Herley, “Wavelets and filter banks: Relationships
and new results,” in Proc. 1990 IEEE Int. Conf. Acoust., Speech,
Signal Processing, Albuquerque, NM, Apr. 3-6, 1990, pp.

M. Vetterli and C. Herley, “Wavelets and filter banks: Theory and
design,” to appear in IEEE Trans. Acoust., Speech, Signal Pro-
cessing.
J. M. Combes, A. Grossmann, Ph. Tchamitchian, Eds., Wavelets,
Time-Frequency Methods and Phase Space, Berlin: Springer, IPTI,
1989.

1723 - 1726.

