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Fast Algorithms for Discrete and Continuous 
Wavelet Transforms 

Olivier Rioul and Pierre Duhamel 

Abstract-Several algorithms are reviewed for  computing var- 
ious types of wavelet transforms: the Mallat algorithm, the “a 
trous” algorithm and their generalizations by Shensa. The goal 
is 1) to develop guidelines for  implementing discrete and contin- 
uous wavelet transforms efficiently, 2) to  compare the various 
algorithms obtained and give an idea of possible gains by 
providing operation counts. The computational structure of the 
algorithms rather than the mathematical relationship between 
transforms and algorithms, is focused upon. Most wavelet trans- 
form algorithms compute sampled coefficients of the continuous 
wavelet transform using the filter bank structure of the discrete 
wavelet transform. Although this general method is already 
efficient, it is shown that noticeable computational savings can 
be obtained by applying known fast convolution techniques 
(such as the FFT) in a suitable manner. The modified algorithms 
are termed “fast” because of their ability to  reduce the compu- 
tational complexity per computed coefficient from L to  log L 
(within a small constant factor) for large filter lengths L. For 
short filters, we obtain smaller gains: “fast running FIR filter- 
ing” techniques allow one to achieve typically 30% save in 
computations. This is still of practical interest when heavy 
computation of wavelet transforms is required, and the resulting 
algorithms remain easy to  implement. 

Index Terms-Discrete wavelet transform, continuous wavelet 
transform, octave-band filter banks, computational complexity, 
fast Fourier transform, fast FIR filtering algorithms. 

I. INTRODUCTION 

AVELET transforms have become well known as W useful tools for various signal processing applications. 
The continuous wavelet transform is best suited to signal 
analysis [2], [ l l ] ,  [13], [14], [17], [18], [34]. Its semi- 
discrete version (wavelet series) and its fully discrete one (the 
discrete wavelet transform) have been used for signal coding 
applications, including image compression [l], 1211 and vari- 
ous tasks in computer vision [ 191, [20]. Wavelet transforms 
also find application in many other fields, too numerous to be 
listed here (see e.g., [34]). 

Given a time-varying signal x(  t ) ,  wavelet transforms con- 
sist of computing coefficient that are inner products of the 
signal and a family of “wavelets.” In a continuous wavelet 
transform, the wavelet corresponding to scale a and time 
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location b is 

where $ ( t )  is the wavelet “prototype,” which can be thought 
of as a band-pass function. The factor 1 a 1 -‘I2 is used to 
ensure energy preservation [13], [14], [18], [34]. There are 
various ways of discretizing time-scale parameters ( b ,  a), 
each one yields a different type of wavelet transform. We 
adopt the following terminology, which parallels the classical 
one used for Fourier transforms. 

The continuous wavelet transform (CWT) was originally 
introduced by Goupillaud, Grossmann, and Morlet [ 131. 
Time t and the time-scale parameters vary continuously: 

CWT{x( t ) ;  a,  b]  = 1 x( t )$ : ,b ( t )  dt (2) 

(the asterisk stands for complex conjugate). 
Wavelet series (WS) coefficients are sampled CWT coef- 

ficients. Time remains continuous but time-scale parameters 
(6,  a) are sampled on a so-called “dyadic” grid in the 
time-scale plane ( b, a) [41, [5], [ 151, 1161, [ 191, [201, 1221, 
[33], [34]. A common definition is 

CJ,k = CWT{x(t) ;  U = 2J ,  b = k 2 J } ,  

The wavelets are in this case 

j ,  k e Z .  (3) 

$ J t )  = 2-J’2$(2-’f - k ) .  (4) 

Wavelet series have been popularized under the form of a 
signal decomposition onto “orthogonal wavelets” by Meyer, 
Mallat, Daubechies, and other authors [4], [lo], [191, [201, 
[22], [34]. However, we consider the general (nonorthogo- 
nal) case in this paper because nonorthogonal wavelet series 
are used in practical systems [l]. Computational issues for 
the orthogonal case are briefly discussed in section I1.F. 

The discrete wavelet transform (DWT) has been recog- 
nized as a natural wavelet transform for discrete-time signals 
by several authors (see e.g., [lo], [26], [32], [33]). Both 
time and time-scale parameters are discrete. As far as the 
structure of computations is concerned, the DWT is in fact 
the same as an octave-band filter bank [lo], [19], [26]-[29], 
[32], [33], depicted in Fig. 1. The filter bank has a regular 
structure; it is easily implemented by repeated application of 
identical cells. It is also computationally efficient [25], [29]. 
Therefore, if the computation of a wavelet transform can be 
reduced to a DWT, then the resulting implementation is 
likely to be efficient. Precise definitions and basic properties 
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Fig. 1. Basic computational cell of (a) the DWT and (b) the inverse DWT. 
(c) Overall organization gives wavelet coefficients that correspond to a 
dyadic grid in the time-scale plane. Signal is reconstructed using the 
transposed scheme (b). 

of various wavelet transforms are reviewed in Sections 11-A 
and 11-B. 

Several discrete algorithms have been devised for comput- 
ing wavelet coefficients. The Mallat algorithm [19], [20] and 
the ‘‘A trous” algorithm of Holschneider et al. [17] have 
been known for some time. Shensa was among the first to 
provide a unified approach [26] for the computation of dis- 
crete and continuous wavelet transforms. The material pre- 
sented next has been derived independently and the overlap 
with the work of Shensa is pointed out throughout this paper. 
We also briefly outline other algorithms proposed by the 
Bertrands and Ovarlez [2] and by Gopinath and Burrus [12]. 

This paper is divided into two (related) parts. The first 
(Sections I1 and 111) is devoted to the computation of Wavelet 
Series coefficients (3). The second (sections IV and V) uses 
the first to compute CWT coefficients on an arbitrary dense 
set of time-scale samples, in order to approach a full two- 
dimensional CWT representation in the time-scale plane 
( 6 ,  a). The operation counts required by the various algo- 
rithms obtained are provided in tables. 

Section 11 first reviews some basics of WS coefficients and 
the DWT. Then, the connection is made: WS coefficients are 
computed as a DWT applied to a prefiltered version of the 
signal. This topic is very close to Shensa’s [26] but the spirit 
is slightly different: we focus deliberately on discrete-time 
implementation issues; the analog signal x( t )  is discretized 
from the start with a more general (hence more flexible) 
scheme than natural sampling, regardless of any parameter in 
the wavelet transform algorithm, and we work with discrete- 
time equivalents to Shensa’s conditions [26] under which the 
DWT is exact for all signals. Finally, denser sampling in 
scale ( a  = a<, a, < 2) and the inverse transform case are 
discussed. 

Section 111 focuses on the computation of the DWT, for 
use either in the computation of WS coefficients or by itself. 
It is central in this paper. Known fast convolution techniques, 

including most recent ones, are applied to the computation of 
the (already efficient) DWT filter bank structure. This appli- 
cation is not as straightforward as it might seem. One has to 
take advantage of the special structure of the computations on 
a DWT. We derive two modified versions of the DWT, one 
uses the FFT and is efficient for long filters ( L  2 16), the 
other is most efficient for short ones. Reduction of complex- 
ity is achieved in any case of interest; complexity can be 
further reduced in the orthogonal case. 

Sections IV and V apply sections I1 and 111, respectively, 
to the computation of CWT coefficients on an arbitrary 
regular grid in the time-scale plane (b ,  a) ,  given by a = a< 
and b = k (the sampling rate is assumed equal to one). 
Because the aim is here to approach a nearly continuous 
two-dimensional CWT representation in the time-scale plane, 
the resulting class of algorithms will be called “CWT algo- 
rithms.” We start with a computation of WS coefficients for 
a = 2 j ,  b = k 2 J .  Then, additional grids are included in the 
time-scale plane, resulting in a computation of the wavelet 
coefficients for all integer values of b. Finally, additional 
scales, a = a i ,  a, < 2,  are included to obtain a denser sam- 
pling in scale. We use the same method as was derived 
independently by Shensa [26] that utilizes even and odd 
sequences at each stage in the algorithm. This can be under- 
stood as a modification of the basic ‘‘i trous” algorithm, to 
which fast filtering techniques are applied as in section 111. 

A distinguishing feature of the topic of wavelets is that 
many results have been largely spread among researchers 
before publication, even as unpublished papers. As a result, 
it is often difficult to give the right credit to the right papers. 
We shall try to be as clear as possible when presenting 
results. Unless otherwise stated, the material of this paper is 
of tutorial nature since there is a large overlap with several 
other works. 

11. USING THE DWT TO COMPUTE WAVELET SERIES 
COEFFICIENTS 

A .  Review of the Wavelet Series Transform (WST) 
Various data compression schemes, although fully discrete 

in nature, have been described using the wavelet series 
formalism. Two-dimensional versions were successfully used 
for image compression [ 1 1 ,  [ 191 - [2 13. Wavelet series are 
also closely related to octave-band filter banks used in split- 
band coding via the DWT filter bank structure [27]-[28]. 

A wavelet series [31-[5], 1151, 1161, 1191, 1201, 1221, 1261, 
[34] decomposes a signal x( t )  onto a basis of continuous-time 
wavelets $j,  k ( t )  as shown. 

( 5 )  

As in (4) ,  these “synthesis wavelets” usually correspond to 
discretized parameters a = 2’ ( j  is called the “octave”) and 
b = k 2 J .  But other choices are sometimes considered [5] 
(see section 11-E). The WS coefficients are defined as 
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where the “analysis wavelets”’ II;., k ( t )  satisfy (4). Note that 
the WS scheme is a signal transformation and can be termed 
the “wavelet series transform (WST).” The direct transform 
is defined by (6) ,  while the inverse transform, IWST{ Cj, k}, 
is defined by (5). 

The analysis and synthesis wavelet prototypes $ ( t )  and 
& t )  are equal in the orthogonal case [4],  [19], [201, [221. 
The more general “biorthogonal” case [3], [32], [33] and 
“wavelet frames” [5] ,  [16] are not restricted to $( t )  = J ( t ) ,  
however. Whenever the inverse transform is used in the 
following, we assume that $ ( t )  and $ ( t )  have been suitably 
designed so that (5 ) ,  (6)  hold exactly (as in the orthogonal or 
biorthogonal case), or maybe with sufficient accuracy [5],  
D61. 

This paper is concerned with implementation issues, not 
with the wavelet design. Therefore, even though design 
constraints on the shape of wavelets (such as orthogonality) 
can sometimes be used to reduce the computational load, we 
do not take advantage of them so as to be as general as 
possible. However, we shall briefly address the orthogonal 
case in Section 111-F. 

B. Review of the Discrete Wavelet Transform (D WT) 
The DWT has been used implicitly or explicitly by many 

[32] - [34]). It mainly finds application in image compression 
[ l ] ,  [19], [20] (in a two-dimensional form), but is also 
closely related to octave-band decompositions of filter banks 
that were used for some time in one-dimensional coding 
schemes [27], [29]. In section IV, we shall consider a 
generalization of the DWT which was used by Holschneider 
et al. [17] for analysis of sound signals. We restrict our 
description in this section to the “standard” DWT whose 
coefficients are sampled over the dyadic grid a = 2’, b = 
k 2 J  in the time-scale plane. 

The DWT is in fact very close to wavelet series but in 
contrast applies to discrete-time signals x [ n ] ,  n E H .  It 
achieves a multiresolution decomposition of x [ n ]  on J oc- 
taves labelled by j = 1, a * ,  J ,  given by 

authors (see e.g., [ I ] ,  [31, VI, [ l o ] ,  U21, 1191, [201, [221, 

+ m  

j = l  kcY k e 8  
x [  n] = cj, k & j [  n - 2’k] + bj, k g j [  n - 2 J k ] .  

(7) 

This equation is to be compared with (5). The h j [ n  - 2’kI 
are th_e synthesis wavelets, the discrete equivalents to 
2-’/* $(2 - j (  t - 2 ’k)) .  An additional (low-pass) term is used 
to ensure perfect reconstruction; the corresponding basis 
functions g,[n - 2 J k ]  are called (synthesis) “scaling se- 
quences” (“scaling functions” can be defined in a similar 
fashion for wavelet series [ l ] ,  [3] ,  [4] ,  [12], [19], [20], [22], 
P61, [ W ,  1341). 

The DWT computes “wavelet coefficients” cj, for j = 
1 , .  * e ,  J and “scaling coefficients” bJ, k ,  given by 

DWT (x[ n] ; 2’, k2’) = Cj, k = X[ n] hj*[ - 2’k] 
n 

and 

bJ ,  k = g? [ - 2 J k ]  3 (8b) 
n 

where the h j [ n  - 2’kI’s are the analysis discrete wavelets 
(compare (8a) with (6)) and the g J [  n - 2 j k ]  are the analy- 
sis scaling sequences. The inverse DWT reconstructs the 
signal from its coefficients by (7). 

The DWT is not fully described yet; wavelets and scaling 
sequences must be deduced from one octave to the next. Let 
us restrict ourselves to the analysis part for convenience-the 
treatment of synthesis “basis functions” is similar. Consider 
two filter impulse responses g [  n ]  and h[ n ] .  (Here, h stands 
for high-pass-or discrete wavelet, like in [5]-and g stands 
for low-pass. This results in notations which differ from 
some previous ones [4] ,  [26], [33] .) The wavelets and scaling 
sequences are obtained iteratively as 

i.e., one goes from one octave j to the next ( j  + 1 )  by 
applying the interpolation operator 

which should be thought of as the discrete equivalent to the 
dilation f ( t )  -, 2-’ l2 f ( t /2 ) .  

In fact, it is well known that the structure of computations 
in a DWT is exactly an octave-band filter bank [ l o ] ,  [19], 
[26], [27], [29], [32], [33] as depicted in Fig. 1. The DWT 
corresponds to the analysis filter bank, whereas the IDWT 
corresponds to the synthesis one. The filters pre_sent in the 
filter bank are precisely g [  n ] ,  h[ n ] ,  E[ n ] ,  and h[ n]. Note 
that this filter bank is critically sampled; given N input 
samples, the DWT computes about N / 2  + N / 4  
+ .. .  + N 2 - J  + N 2 - J  = N coefficients. In keeping with 
the critical sampling, the octave parameter j is restricted to 
j 2 1 so that the sampling rate of wavelet coefficients is 
always less than that of the signal. 

Whenever the inverse DWT is used in the follo_wing, we 
assume that the filters g [  n ] ,  h[ n ] ,  g [  n ] ,  and h[ n ]  have 
been suitably designed so that (7), (8) hold exactly. That is, 
the filter bank of Fig. 1 allows perfect reconstruction. For 
more details on the design the reader is referred to [3],  [4] ,  
1271, 1281, 1321, Wl. 
C. The Shensa Algorithm 

Among all types of wavelet transforms, the DWT is the 
only one that can be computed exactly (except for round- 
off errors) using a computer, since it deals with discrete- 
time signals and wavelets. Therefore, we deliberately take a 
discrete-time approach for the calculation of WS coefficients 
and avoid taking continuous-time properties into considera- 
tion as much as possible when describing the algorithm. We 
address the following problem: what conditions must the 
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parameters of the DWT algorithm satisfy so that the DWT 
computes WS coefficients (on J octaves) exactly for any 
signal x(t)? 

The analog input x(  t )  is discretized from the start, and the 
whole computation is made in discrete-time. An obvious way 
to discretize the input is to sample it [17],  [26].  

x [ n ]  = x ( t  = n ) ,  n e 2  (11) 

(the sampling rate is assumed to be equal to one). This will 
be called “natural sampling.” However, we now use a 
different discretization scheme, in which the original input 
x( t )  is related to the discrete sequence x [  n] (to be input to 
the algorithm) by a D/A converter as shown. 

x ( t )  - i ( t )  = C x [ n ] x ( t -  n). (12) 
n 

We have chosen (12) instead of (11) because the resulting 
scheme is more flexible. Note that (12) includes natural 
sampling (1 1) as a special case when x( n) = 6,, . For exam- 
ple, if x ( t )  is band-limited, then X(t )  is then a (sin t ) / t  
function. More generally, the choice of X(t)  and the way 
x [  n]  is computed is chosen so that x(  t )  is well approximated 
by i ( t ) .  This requires some knowledge on ~ ( t ) .  For exam- 
ple, the choice x ( t )  = 1 for 0 5 t < 1 and X(t )  = 0, other- 
wise (zero-order holder) amounts to a piecewise constant 
approximation to x ( t ) .  It is important to note that this 
discretization is made prior to the algorithm and that the 
choice of ~ ( t )  is completely independent of the wavelets or 
any other parameter in the algorithm. 

The algorithm itself, derived independently of Shensa [26],  
can be described as follows. Given the continuous-time 
wavelet $ ( t ) ,  one first approximates by it $ ( t )  in such a way 
that 

2-J/24(2- J t  ’ ) - - h j [ n ] 4 ( t  - n), j = l; . . ,  J ,  
n 

(13) 

where h j [ n ]  are discrete wavelets present in a DWT (see 
Section 11-B), and 4 ( t )  is some interpolating function. The 
precise way these J simultaneous approximations can be 
accomplished will be given in the next section. 

The derivation of the algorithm is now straightforward. 
Substituting (12) and ( 1 3 )  into the equation defining the WS 
coefficients (6) gives 

Cj,k = J’ i ( t )2-’ / ’4*(2-’ t  - k )  dt 

* ( C h i [ n ] 4 ( t  - 2 J k -  n ) ) * d t  
n 

- hy[ n - 2 j k ]  

= DWT { x’[  n] ,2’ ,  k 2 ’ ) .  (14) 

The last equality comes from (8a). The sequence x’[n]  is a 
prefiltered version of x [ n ]  given by 

where 

(15) 

This ends the derivation of the Shensa algorithm: the ,WS 
coefficients with respect to the approximated wavelet $( t )  
are computed exactly for all signals using a DWT, the input 
of which is appropriately prefiltered. The accuracy of this 
algorithm is balanced by the approximations made for the 
input (12) and for the wavelets (13); the algorithm is exact 
only once the input and the wavelets have been replaced by 
their approximations. In the next section, the wavelet approx- 
imation is discussed in more detail. 

Of course, we could have written 

x ’ [ n ]  = J ’ i ( t ) 4 * ( t  - n) d t ,  (16) 

instead of (15) since x ( t )  and x [ n J  are related by (12). But 
the discrete prefilter f[n] (15) is easy to implement on a 
computer (its coefficients can be precomputed), whereas (16) 
is not since it involves analogue filtering. Equation (16) has 
mathematical significance, however. It hints at the fact that 
the approximations made in the algorithm consist of replacing 
the signal and wavelets by their (nonorthogonal) projections 
onto suitably defined “multiresolution spaces,” as defined by 
Meyer and Mallat [19], [20],  [22]. A complete mathematical 
treatment is out of the scope of this paper. We content 
ourselves with noting that (16) is just another way of saying 
that prefiltering (15) must be present. 

Note that we have three different types of inputs at work: 
the original analog signal x ( t ) ,  its approximation i ( t )  de- 
fined by (12), of which the discrete-time equivalent is x [ n ] ,  
and the filtered version ~ ’ [ n ]  defined by (15). They involve 
two successive approximations: the first one is the approxi- 
mation x(  t )  --* i( t ) ,  which is made regardless of the parame- 
ters in the algorithm. The second one is the prefiltering (15), 
which depends on the parameters of the algorithm, and which 
amounts to a nonorthogonal projection of i ( t ) .  We shall 
briefly come back to the concept of nonorthogonal projection 
in Section 11-F. 

D. A Closer Look at the Wavelet Approximation 
Conditions (13) were introduced to simplify the derivation 

of the Shensa algorithm. In practice, it is appropriate to 
replace them by two more tractable conditions equivalent to 
(13): a first one on $ ( t )  (in fact, condition (13) written for 
j =  1) 

1 / & 4 ( t / 2 )  = h [ n ] + ( t  - n) (17) 
n 

and the other reflecting the parallelism between the way 
discrete wavelets are defined using “discrete dilation” (10) 
and the way continuous-time wavelets ,are defined using the 
continuous-time dilation $( t )  --t 2-J/’$(2- j t ) .  The latter is 
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derived by rewriting (13) at some octave j in two equivalent 
forms: 

Thus, +(?) must satisfy the following “two-scale difference 
equation” 

+(I) = J z C g [ n ] + ( 2 t  - n ) .  (19) 
n 

Two-scale difference equations were studied in detail by 
Daubechies and Lagarias in [6]. They showed that given 
suitably normalized g[n], there exists at most one integrable 
solution +(t)  to (19). But whether the resulting solution is a 
suitable interpolation function is another matter. For exam- 
ple, to find a necessary and sufficient condition on g [  n] such 
that a solution +(t)  exists and is N-times continuously 
differentiable is a difficult problem [6]. However, there exists 
standard choices for g[n] and $ ( t )  satisfying (19), such as 
binomial filters and B-spline functions (see below). 

The wavelet approximations made in the Shensa algorithm 
thus, reduce to conditions (17) and (19). These approxima- 
tions are important because their accuracy determines that of 
the whole algorithm. There are two steps involved. First, 
determine a low-pass filter g[  n] and an interpolating function 
$ ( t )  satisfying (19). Second, approximate $( t )  by linear 
combinations of integer translates of $( t )  (1 7). This step 
determines the high-pass filter h[n]. Of course, it is crucial 
to choose a good interpolating function +( t )  satisfying (19) 
so that $ ( t )  can be accurately approximated. Note, however, 
that once $ ( t )  is accurately approximated by $ ( t )  for which 
(1 7) and (1 8) hold, the J approximations at all scales (13) are 
satisfied automatica!ly ; for example, minimizing the error’s 
energy 1 1 $( t )  - $( t )  1 dt minimizes the maximum error 
I Cj, - C], I of the wavelet coefficients at all scales. In 
the following we briefly mention several “standard” choices 
for I$([).  

In a case of a band-limited wavelet $ ( t )  (e.g., whose 
frequency range is restricted to the interval [ -0.5,0.5]), a 
solution to (19) is given by +( t )  = sin (a t ) /  a t and g [  n ]  = 
l / &  r$(n/2).  For this choice, the discrete wavelets are 
precisely the samples of the continuous-time ones 

and (14) reduces to a simple discretization of the integral 
defining the WS coefficients (6).  However, this choice is 
impractical because it involves an ideal low-pass filter g [  n ] ,  
with slow decay as n -+ 00. 

Another possibility is to choose an orthogonal family of 
functions $(t  - n ) ( n  E Z) Satisfying (19), as in the Mallat 
algorithm [4], [19], [20], [26]. In fact, the computation of the 
WS coefficients using the DWT reduces exactly to the Mallat 
algorithm under several conditions: the wavelets and the 
+(t - n)’s (called the “scaling functions”) are orthonormal, 

and one has ~ ( t )  = +(t)  in (12), which implies that pre- 
filtering (15) is avoided. In the previous context, the latter 
condition is very unlikely since the A/D characteristic ~ ( t )  
is chosen independently of the parameters in the algorithm. 
In fact, the Mallat algorithm takes place within a different 
framework: Given an orthogonal basis of wavelet functions 
(with corresponding filters g [ n ]  and h [ n ] ) ,  and a discrete 
signal x[ n], one constructs an analog signal x(  t )  satisfying 
(16) in order for the DWT of x [ n ]  to compute orthogonal 
WS coefficients exactly. Similarly, the synthesis Mallat algo- 
rithm is related to the inverse WST computation derived in 
Section 11-F. 

Yet another solution of (19) is the classical “basic spline” 
interpolating function of some degree k ,  whose Fourier 
transform is 

sin af k + ‘  

+(f) = (7) 
Rewriting (19) in the frequency domain and solving for 
g [  n ] ,  one finds, within a shift, the binomial filter 

In this case, (17) reduces to a classical curve fitting problem. 
This allows a greater flexibility in the wavelet approximation 
than for the natural sampling case for which one must have 
[26] the extra condition g[2n] = 0 if n # 0. Therefore, one 
may obtain a better accuracy in the computation of WS 
coefficients compared to the popular ‘‘A trous” filters [9], 
[17], [26] for which 4(t) does not admit a simple closed 
form expression. 

We have left out many details concerning the wavelet 
approximation. In particular, a precise determination of the 
error made in the algorithm remains a topic for future 
investigation. However, we conjecture that wavelet approxi- 
mation using splines of second or third order suffices for 
most applications. 

E. Finer Sampling in Scale 
Shensa’s result (14) states that the DWT can be regarded 

as the basic structure for computing wavelet coefficients. We 
use this fact throughout this paper to derive various efficient 
wavelet transform algorithms, concentrating on the computa- 
tion of the DWT on J octaves. However, a set of points 
( a ,  b ) ,  denser than the octave-by-octave grid of Fig. l(c) 
may be required. It is, therefore, sometimes appropriate to 
generalize (14) to obtain more samples in the time-scale 
plane. This is especially useful for signal analysis, where one 
usually “oversamples” the discretization (3), to obtain “ M  
voices per octave” [5], [18], [34]. That is, a = 2 J  is re- 
placed by 

3 m = O; . . ,  M - 1 (23) a = 2 J + m / M  

where m is called the “voice.” 
The following simple method [17] allows one to com- 

pute WS coefficients on M voices per octave, using 
only the standard “octave-by-octave’’ algorithm (14). For 
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each m, replace $ ( t )  by the slightly stretched wavelet 
2 - m / Z M $ ( 2 - m / M t )  in the expression of $ j , k ( t )  = 
2-’/’$(2-’t - k ) .  The wavelets basis functions become 

2 - ( J + m / M ) / 2 $ ( 2 - ( j + m l M ) ( t  - k 2 ’ ) ) ,  

j , k ~ H ,  n z = O ; . . , M -  1 .  (24) 

The grid obtained in the time-scale plane (6, a) is shown in 
Fig. 2. Now, a computation on M voices per octave is done 
by applying the octave-by-octave algorithm (14) M times, 
with M different prototypes 

2 - m / 2 M $ ( 2 - m / M t ) ,  m = 0; * - , M - 1. (25) 

Of course, the parameters of each octave-by-octave algor- 
ithm must be recomputed for each m using the procedure 
described in Section II-D. Clearly, the whole algorithm 
requires about M times the computational load of one 
octave-by-octave algorithm (14). 

This method is perhaps not the best one for an “M voices 
per octave” computation, because it does not take advantage 
of the fact that the various prototypes (25) are related in a 
simple manner. It would be more appropriate to devise a 
method that takes advantage of both time redundancy and 
scale redundancy (with more scales than in the octave-by- 
octave case). The algorithm devised by the Bertrands and 
Ovarlez in [2] is based on scale redundancy but is suited for 
another type of computation (see Section V-G). 

F. Using the Inverse D WT to Compute the Inverse WST 
We have seen that the WST (6) can be computed using a 

DWT (8). Similarly, its inverse transform (5) can be com- 
puted using an inverse DWT, defined by (7) ,  under a condi- 
tion similar to (13), but written for synthesis wavelets 
$j,  k( t ) :  

2 - j / 2 ~ ( 2 - j t )  = C T r j [ n ] $ ( t  - n ) ,  j = I; . . ,  J .  
n 

(26) 

Of course, this condition is, in practice, replaced by more 
tractable conditions as explained in Section 11-D. Substituting 
(26) for 2-’/’$(2-jt) in the formula defining the inverse 
WST (5) results in 

where the Cj ,k  are the WS coefficients (6) and y [ n ]  is 
defined by 

y [  n]  = IDWT { Cj ,  k}. (28) 

Thus, the IDWT, followed by a D/A converter with 
characteristic $ ( t ) ,  computes the IWST exactly. The accu- 
racy of the algorithm again depends on that of the signal and 
wavelet approximation. The resulting analysis/synthesis WST 
scheme is depicted in Fig. 3. First, the analog signal x ( t )  is 
discretized according to (12). The discrete-time signal x [  n] 
is then prefiltered (15) and fed into the DWT algorithm. 
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.). j=log,a 

Fig. 2. Sampling of the time-scale plane corresponding to 3 voices per 
octave in a WST. The imbrication of the computation is shown using points 
labelled by circles, squares, and crosses, which can be computed separately 
using octave-by-octave DWT algorithms. 

c -  

---c 

X W  - -  
Fig. 3. Full analysis/synthesis WST scheme. Exact reconstruction holds 

under certain conditions on x ( l )  (see text). 

During synthesis, the signal is reconstructed using an IDWT, 
followed by the interpolation (or D/A conversion) (27). 

Note that in this WST/IWST Shensa algorithm, the analy- 
sis and synthesis discrete wavelets do not necessarily form a 
perfect reconstruction filter bank pair. However, we now 
restrict to the perfect reconstruction case to derive conditions 
under which the original signal x ( t )  is recovered exactly. 

When the DWT allows perfect reconstruction, one has 
y [  n]  = x’[ n ] .  It can be shown that we are in fact in the 
“biorthogonal” case [ 3 ] ,  [32], [33], and that one has 

J ’ $ ( t  - n)&*(t - m )  dt = 

Since y [  n] = x’[ n ] ,  we also have 

IWST {WST { x ( t ) } }  

= [ / i ( u ) + * ( u  - m )  d u ) $ ( t  - n ) .  (30) 
n \ J  I 

The right-hand side of (30) is easily recognized to be a 
projection of A(t )  ogto the subspace V spanned by linear 
combinations o,f the 4 ( t  - n): if i ( t )  belongs to V ,  i.e., if 
i ( u )  = C , c k 4 ( t  - k ) ,  then using (29), equation (30) sim- 
plifies to i ( t ) .  Therefore, unless i ( t )  belongs to the appro- 
priate subspace V ,  it cannot be recovered at the output of a 
WST/IWST Shensa algorithm. Only its projected approxima- 
tion onto V is recovered. 

We, therefore, have two types of loss of information at the 
reconstruction of a WST/IWST: One is, of course, due to the 
approximation x ( t )  -, i ( t ) ,  which may not be invertible. 
The other is due to the projection of A(t )  onto the subspace 
V. This can be seen as the fact that the discrete equivalent to 
A(t ) ,  x [ n ] ,  may not be recovered from its filtered version 
~ ’ [ n ]  that is obtained at the output of the IDWT. The 
condition that i ( t )  belongs to V clearly depends on the 
parameters of the algorithm. Therefore, the output error in 
the algorithm is produced by the discretization scheme, and 
the way the continuous-time signal and wavelets are recov- 
ered from their discrete-time counterparts. 
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111. EFFICIENT IMPLEMENTATIONS OF THE DWT 

In the following, we derive efficient implementations of the 
DWT, which can be used to compute WS coefficients using 
the Shensa algorithm. 

A .  Preliminaries 

In this section, we specify the framework in which the 
algorithms will be derived. We also briefly motivate the need 
for further reduction of complexity in a DWT. 

We assume real data and filters (of finite length), but the 
results extend easily to the complex-valued case. It can be 
shown that the FFT-based algorithms described next require 
about twice as many multiplications in the complex case than 
in the real case, a property shared by FFT algorithms [SI, 
[24]. However, a straightforward filter bank implementation 
of the DWT (Fig. l ) ,  or the “short-length’’ algorithms 
described in Section 111-E require about three times as many 
multiplications in the complex case, assuming that a complex 
multiplication is carried out with three real multiplications 
and additions [24]. 

In our derivations, we do not take advantage of possible 
constraints (such as orthogonality), even though these can be 
used to further reduce the complexity. The resulting algo- 
rithms therefore apply in general. (See Section 111-F for a 
brief discussion of the orthogonal case.) 

The derivation of fast algorithms is primarily based on the 
reduction of computational complexity. Here, “complexity” 
means the number of real multiplications and real additions 
required by the algorithm, per input point. In the DWT case, 
this is also the complexity per output point since the DWT is 
critically sampled (see Section 11-B). Of course, complexity 
is not the only relevant criterion. For example, regular 
computational structures (i.e., repeated application of identi- 
cal computational cells) are also important for implementa- 
tion issues. However, since most algorithms considered in 
this paper have regular structures, a criterion based on 
complexity is fairly instructive for comparing the various 
DWT algorithms. We have chosen the total number of opera- 
tions (multiplications + additions) as the criterion. With to- 
day’s technology, this criterion is generally more useful than 
the sole number of multiplications [23], at least for general 
purpose computers (another choice would have been to count 
the number of multiplication-accumulations). 

Due to the lack of space, we shall not derive algorithms 
explicitly for the inverse DWT. However, a IDWT algorithm 
is easily deduced from a DWT algorithm as follows: If the 
wavelets form an orthogonal basis, the exact inverse algo- 
rithm is obtained by taking the Hermitian transpose of the 
DWT flowgraph. Otherwise, only the structure of the inverse 
algorithm is found that way, the filter coefficients g[  n ] ,  h[ n ]  
have to be replaced by g [ n ] ,  h [ n ] ,  respectively. In both 
cases, any DWT algorithm, once transposed, can be used to 
implement an IDWT. It can be shown that this implies that 
the DWT and IDWT require exactly the same number of 
operations (multiplications and additions) per point. 

The filters involved in the computation of the DWT (cf. 
Fig. 1 )  usually have equal length L .  This is true in the 

orthogonal case, while in the biorthogonal case the filter 
lengths may differ by a few samples only. Although 
an implementation of “Morlet-type” wavelets used in [9], 
[17] uses a short low-pass filter g [ n ]  and a long high-pass 
filter h [ n ] ,  we restrict in this section to the case of equal 
filter lengths for simplicity. If lengths differ, one can pad the 
filter coefficients with zeros. Section 111-G discusses the case 
when filters are of very different lengths. 

It is important to note that the standard DWT algorithm, 
implemented directly as a filter bank, is already “fast.” This 
fact was mentioned by Ramstad and Saramaki in the context 
of octave-band filter banks [25]. What makes the DWT 
“fast” is the decomposition of the computation into elemen- 
tary cells and the subsampling operations (called decimations), 
which occur at each stage. More precisely, the operations 
required by one elementary cell at the jth octave (Fig. l(a)) 
are counted as follows. There are two filters of equal length 
L involved. The “wavelet filtering” by h [ n ]  directly pro- 
vides the wavelet coefficients at the considered octave, while 
filtering by g [ n ]  and decimating is used to enter the next 
cell. A direct implementation of the filters g [ n ]  and h[n]  
followed by decimation requires 2 L multiplications and 2( L 
- 1 )  additions for every set of two inputs. That is, the 
complexity per input point for each elementary cell is 

L mults/point/cell and L - 1 adds/point/cell. (31) 

Since the cell at the jth ocatve has input subsampled by 
2J- ’ ,  the total complexity required by a filter bank imple- 
mentation of the DWT on J octaves is ( 1  + 1/2 + 1/4 
+ ... + 1/2”-’) = 2(1 - 2-”) times the complexity (31).  
That is 

2 L ( l  - 2-”) mults/point and 

2 ( L  - 1 ) ( 1  - 2-”) adds/point. (32) 

The DWT is therefore roughly equivalent, in terms of com- 
plexity, to one filter of length 2 L .  A remarkable fact is that 
the complexity remains bounded as the number of octaves, 
J ,  increases [25]. 

We remark, in passing, that a naive computation of the 
DWT would implement (8) exactly as written, with precom- 
puted discrete wavelets hj[  n ] .  This does not take advantage 
of the dilation property of wavelets (9),  and therefore is not 
effective. Since the length of h j [ n ]  is ( L  - 1)(2’ - 1 )  f 1 ,  
one would have, at the jth octave, (L - 1)(2’ - 1 )  + 1 real 
multiplications and ( L  - 1)(2’ - 1 )  real additions for each 
set of 2 j  inputs. For a computation on J octaves ( j  = 
l ; . . ,  J), this gives 

J ( L  - 1 )  + 1 mults/point and J ( L  - 1 )  adds/point. 

(33) 

This complexity increases linearly with J ,  while that of the 
“filter bank” DWT algorithm is bounded as J increases. 
The use of the filter bank structure in the DWT computation 
thus reduces the complexity from JL to L.  This is a huge 
gain; the DWT already deserves the term “fast.” 



576 

The aim of the following sections is to further reduce the 
computational load of the DWT. We briefly motivate this 
with a brief analogy to fast filtering. FFT’s are used for 
implementing long filters (typically L 2 64) because they 
greatly reduce the complexity: Compared to a direct imple- 
mentation of the filter, the number of operations per input 
point is reduced from L to log L, hence the term “fast.” 
For short filters, however, the FFT is no longer efficient and 
other fast filtering techniques are used [23], [24], [31]; the 
resulting gain is fairly modest, but still interesting when 
heavy computation of short filters is required, provided that 
the accelerated algorithm does not require a much more 
involved computation compared to the initial one. The situa- 
tion of the DWT is identical: using FFT’s, we shall be able to 
reduce the complexity of the DWT from 2 L to 4 log L ,  when 
the filter length L is large. However, DWT’s have been 
mostly used with short filters so far (although nothing ensures 
that this will last forever). For them, (using different tech- 
niques) we shall obtain smaller gains, typically 30% save in 
computations, which can still be desirable. The algorithms 
derived in the following are therefore called “fast DWT 
algorithms,” even though it can be argued that this can be 
confused with the already fast straightforward implementa- 
tion of the DWT. 

B. Reorganization of the Computations 
From the operation counts above (32), it is clear that if all 

of the elementary cells require the same complexity, then a 
filter bank implementation of the DWT requires 2(1 - 2 9  
times the complexity of one cell. To further reduce the 
computational load of the DWT, it, therefore, suffices to 
apply fast convolution techniques to only one elementary 
cell. We propose two classes of fast algorithms: one based on 
the FFT [8], [24] and the other on short-length FIR filtering 
algorithms [23], [3 11. 

The basic DWT elementary cell, depicted in Fig. l(a), 
contains two filters. But these do not appear alone, since they 
are always followed by subsampling (or decimation), which 
discards every other output. It is well known that reducing 
the arithmetic complexity of an FIR filter implementation is 
obtained by bringing together the computation of several 
successive outputs [24]. Since the filter outputs are decimated 
in Fig. l(a), it is necessary to reorganize the computations in 
such a way that “true” filters appear. To do this, we apply a 
classical reorganization of filter banks building blocks [29], 
[32] based on “biphase decomposition,” which consists of 
separating into even and odd sequences. At this point, it is 
convenient to use the z-transform notation. The biphase 
decomposition expresses the z-transform of the input se- 
quence x[ n ] ,  
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x( z )  = c .[ .I Z - n  
n 

in the form 

x( 2 )  = xo( z 2 )  + z-’x1( z 2 )  

(34) 

where 

Xo( z )  = x[2n]  and X , ( z )  = x[2n  + 11 z-”. 
n n 

(35) 

Similarly, apply the biphase decomposition to the L-tap 
filters G( z )  and H( z )  involved in the computation. The cell 
output Y ( z )  that enters the next stage is obtained by first 
filtering by G ( z ) ,  then subsampling. Since we have 

G(  2) x ( 4  
= (Go( 2’) + z-IG,( z’))( Xo(  z’) + z - ’ X , (  2’)) 

= G O ( z 2 ) X O ( z 2 )  + Z - ~ G ~ ( ~ ~ ) X ~ ( Z ~ )  +odd terms, 
(36) 

Y ( z )  = G,(z)X,(z) + z - ’ G , ( z ) X , ( z ) .  (37) 

picking out the even part of G( z ) X (  z )  results in 

Now that this rearrangement has been made, the output 
Y ( z )  is obtained differently: First the even and odd-indexed 
input samples X o ( z )  and z - IX , ( z )  are extracted as they 
flow by (hence, the delay factor z-I for odd-indexed sam- 
ples). Then, L /2-tap filters Go( z )  and GI( z )  are applied to 
the even and odd sequences, respectively. Finally, the results 
are added together. The other output of the elementary cell 
(the one corresponding to the filter H ( z ) )  is obtained simi- 
larly using Ho( z )  and HI(  z ) .  

The resulting flow graph is depicted in Fig. 4 (the corre- 
sponding IDWT cell is simply obtained by flow graph trans- 
position). Compare with Fig. l(a): there are now four “true” 
filters of length L/2,  whose impulse responses are the 
decimated initial filters G( z )  and H (  z ) .  
C. A n  FFT-Based D WT Algorithm 

This method consists of computing the four L /2-tap filters 
of Fig. 4 using the FFT. More precisely, we use the “split- 
radix” FFT algorithm 181 which, among all practical FFT 
algorithms, has the best known complexity for lengths 

N = 2 ”  (38) 

(n = log, N is typed boldface to avoid confusion with the 
samples index n). For real data, the split-radix FFT (or 
inverse FFT) requires exactly 

2”- ’ (n  - 3) + 2 (real) mults 

2”-’(3n - 5) + 4 (real) adds. (39) 

We now briefly recall the standard method for computing 
filters using the FFT. The input of the DWT cell is blocked 
B samples by B samples (the decimated sequences input to 
the filters therefore flow as blocks of length B / 2 ) .  Each 
discrete filter is performed by computing the inverse FFT 
(IFFT) of the product of the FFT’s of the input and filter. 
Since the latter FFT can be precomputed once and for all, 
only one IFFT and one FFT are required per block for one 
filter. It is well known, however, that this does not give a 
true filter convolution, but a cyclic convolution [24]. There- 
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Fig. 4. Rearrangement of the DWT cell of Fig. l(a) that avoids subsam- 
pling and, hence, allows the application of fast filtering techniques. 

fore some time processing must be done in order to avoid 
wrap-around effects. There are two well-known methods for 
this, called the overlap-add and overlap-save methods [24]. 
One is the transposed form of the other and both require 
exactly the same complexity. For one filter of length L/2,  
with input block length B/2, wrap-around effects are avoided 
if the FFT-length N satisfies the inequality 

N >  L / 2  + B/2 - 1. (40) 

The block length is therefore determined by 

B = 2 N -  ( L - 2 ) .  (41) 

The DWT algorithm is thus modified as follows. As 
before, each elementary cell has the same structure, pictured 
in Fig. 5. The input is first split into even- and odd-indexed 
sequences. Then, a length-N FFT is performed on each 
decimated input, and four frequency-domain convolutions are 
performed by multiplying the (Hermitian symmetric) FFT of 
the input by the (Hermitian symmetric) FFT of the filter. 
This requires 4N/2  complex multiplications for the four 
filters. Finally two blocks are added (2N/2 additions) and 
two IFFT's are applied. Assuming that a complex multiplica- 
tion is done with three real multiplications and three real 
additions [24], this gives 

2 FFT, + 4.3. N/2  mults + 4.3. N/2  adds 

+ 2N/2  adds + 2 IFFT, 

per cell, for B inputs. That is 

n2"+' + 8 
mults/point /cell 

( L  - 2 )  2"+' - 

(3n - ,),"+I + 16 
adds/point/cell. (42) 

( L  - 2) 2"+' - 

Note that L has typically the same order of magnitude as N, 
hence, the number of operations in (49) is roughly propor- 
tional to n = log L .  More precisely, for a given length L 
there is an optimal value of B = 2 N  - ( L  - 2), i.e., an 
optimal value of N = 2" that minimizes (42). Table I and I1 
show the resulting minimized complexities for different 
lengths L in comparison with the direct method (31) 
(straightforward filter bank implementation). The comparison 
is evidently in favor of the FFT version of the DWT algo- 
rithm for medium to large filter lengths ( L  B 16). 

Fig. 5 .  FFT-based implementation of the DWT cell of Fig. 4. Overlap-add 
(or overlap-save) procedure is not explicitly shown. 

A more precise comparison with (3 1) can be done for large 
filter lengths by minimizing the criterion (mults + adds) of 
(42) 

(410g, N- 1 ) N +  12 
C ( N )  = N -  ( L / 2 -  1) ' (43 1 

with respect to N.  The minimal value of C ( N )  attained 
when N = N* is such that the first derivative of C ( N )  
vanishes. One has 

C ( N * )  = min,C(N) = 41og, N* + (4/ln2 - 1) (44) 

where N* satisfies the relation N* = ( L / 2  - l)(ln N* + 1 
- In 2/4) + 3 In 2. For large filter lengths L this gives 
In N* = In L + O(ln1n L), hence, 

min,C(N) = 41og, L + O(log1og L ) .  (45) 

This is to be compared with (31), for which the value of the 
criterion (mults + adds) equals 2 L - 1. The FFT-based 
DWT algorithm significantly improves the direct method for 
large lengths L.  The gain is about L /(2 log, L). However, 
as seen in Table I, the FFT implementation of the DWT is 
not effective for short filters. 

There is a subtlety to keep in mind when wrap-around 
effects at the cell output are eliminated in the time-domain. 
One could immediately take the output blocks (now of length 
B/2 instead of B) as inputs to the next cell, but this would 
halve the block length at each stage. This method is not 
effective eventually because the FFT is most efficient for an 
optimized value of the block length B (at fixed filter length 
L).  It is therefore advisable to work with the same, optimized 
degree of efficiency at each cell, by waiting for another block 
before entering the next cell, so that each cell has the same 
input block length B and FFT length N. This method 
involves strictly identical cells: they not only have the same 
computational structure, but they also process blocks of equal 
length. As usual, the resulting total complexity of the DWT 
is, as shown in Section 111-A, 2( 1 - 2 J ,  times the complex- 
ity of one cell. 

D. A Generalization: The Vetterli Algorithm 

The FFT-based DWT algorithm described above can be 
improved by gathering J ,  consecutive stages, using a method 
due to Vetterli (originally in the filter bank context [30], and 
then applied to the computation of the DWT [32]). The idea 
is to avoid subsequent IFFT's and FFT's by performing the 
subsampling operation in the frequency domain. This is done 
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TABLE I 
FFT-BASED DWT ALGORITHMS: ARITHMETIC COMPLEXITY PER POINT AND PER OCTAVE* 

Filter Straightforward FFT-Based Vetterli’s Alg. Vetterli’s Alg. Vetterli’s Alg. 
Length Filter Bank Algorithm (2 octaves merged) (3 Octaves merged) (4 Octaves merged) 

L (Section 111-A) (Section 111-B) (Section 111-C) (Section 111-C) (Section 111-C) 

2 2 + 1  3 + 6  

4 4 + 3  4 + 9.33 

8 8 + 7  5.23 + 14.15 

16 1 6 +  15 6.56 + 18.24 

32 32 + 31 7.92 + 22.37 

64 64 + 63 9.12 + 26.20 

128 128 + 127 10.27 + 29.67 

(2) 

(4) 

(16) 

(32) 

(64) 

(256) 

(512) 

3.17 + 5.83 
(2) 

4.56 + 10.97 
(16) 

5.68 + 14.67 
(64) 

6.61 + 17.41 
(128) 

7.50 + 20.05 
(256) 

8.25 + 22.55 
( 1024) 

9 + 24.79 
(2048) 

3.07 + 6.07 

5.17 + 12.43 
(4) 

(32) 
6.10 + 15.53 

(128) 
6.88 + 18.10 

7.56 + 20.14 
(1024) 

8.23 + 22.13 
(2048) 

8.89 + 24.10 
(4096) 

(512) 

3.17 + 6.17 
(4) 

5.58 + 14.00 
(128) 

6.61 + 16.90 
(256) 

7.25 + 19.06 
( 1024) 

7.90 + 21.01 
(2048) 

8.54 + 22.90 
(4096) 

9.16 + 24.76 
(8192) 

* Each entry gives the number of operations per input or output point in the form mults + adds, and the corresponding initial 
FFT length. Complexities should be multiplied by 2(1 - 2-J) for a computation of the DWT on J Octaves. 

octaves, an average of TABLE 11 
ARITHMETIC COMPLEXITY PER POINT AND PER CELL* FOR VARIOUS 

DWT ALGORITHMS 2 4 - l  2”(2n + 5 - 10.2-’O) + 2( J,+ 3) 
Filter Straightforward FFT-Based Short-Length ____ 

Length Filter Bank Algorithm Algorithm 2 4  - 1 2 ” + ’ -  (243- l ) ( L - 2 )  
L (Section 111-A) (Section III-B) (Section 111-C) 

4 4 + 3  4 + 9.33 3 + 4  
mults/point/cell 

(4) 4 + (2) 6.3 2J0-1 2 “ ( 6 n + 5  - 14.2-JO) + 4 ( J 0 + 3 )  6 6 + 5  4.67 + 12 

8 8 + 7  5.23 + 14.15 4.5 + 8.5 
(8) (3) 2 4 -  1 2 ” + l -  ( 2 4 -  l ) ( L - 2 )  

(16) (2 x 2) 
10 10 + 9 5.67 + 15.33 4.8 + 14.2 

(16) 

(16) 
12 1 2 +  11 6.18 + 16.73 

16 16 + 15 6.56 + 18.24 

18 18 + 17 6.83 + 19 

20 20 + 19 7.13 + 19.83 

(32) 

(32) 

(32) 

(64) 

(64) 

(64) 

24 24 + 23 7.32 + 20.68 

30 30 + 29 7.76 + 21.92 

32 32 + 31 7.92 + 22.37 

* Each entry gives the number of operations per input or output point in 
the form mults + adds, and either the FFT length or the type of fast 
running FIR algorithm used (see text). Complexities should be multiplied by 
2(1 - 2 - l )  for a computation of the DWT on J octaves. 

by inverting the last stage of a decimation-in-time radix-2 
FFT algorithm [30], [32]. The FFT length is then necessarily 
halved at each DWT stage, whereas the filter lengths remain 
constant, equal to L /2. 

Unfortunately, this class of algorithms have two major 
limitations. First, the structure of computations is less regular 
than for the simple FFT algorithm of the preceding section 
because FFT’s have different lengths. Second, the relative 
efficiency of an FFT scheme per computed point decreases at 
each stage. The difficulties brought by this method are easily 
understood even by evaluating its arithmetic complexity. One 
finds, assuming the DWT is computed on a multiple of J ,  

adds /point /cell (46) 

per elementary cell (this complexity was calculated such that 
the total complexity of the DWT algorithm is exactly 2(1 - 
2-J) times the average complexity per cell (46), so as to 
permit a precise comparison with (42)). Note that (46) re- 
duces to (42) for J ,  = 1. 

Table I lists the resulting complexities for J ,  = 2,3,  and 
4, minimized against N = 2”. Vetterli algorithms are more 
efficient than the initial FFT-based computation of the DWT 
(J,, = l),  but only for long filters (L 2 32) and small J,. 
Efficiency is lost in any case when Jo is greater than 3. 

E. D WT Algorithms for  Short Filters 
We have seen that for small filter lengths ( L  < 16), 

FFT-based algorithms do not constitute an improvement 
compared to the initial filter bank computation. Therefore, it 
is appropriate to design a specific class of fast algorithms for 
short filters. In this section, we apply short-length “fast 
running FIR” algorithms [23], [31] to the computation of the 
DWT. The class of “fast running FIR algorithms” is inter- 
esting because the multiply /accumulate structure of computa- 
tions is partially retained. These algorithms are in fact very 
easily implemented [23], [3 11. 

A detailed description of fast running FIR algorithms can 
be found in [23]. Basically, a filter of length L is imple- 
mented as follows. The involved sequences (input, output, 
and filters) are separated into subsequences, decimated with 
some integer ratio R. Assuming L is a multiple of R ,  
filtering is done in three steps. 
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1) The input is decimated and the resulting R sequences 
are suitably combined, requiring A ; additions per point, 
to provide M subsampled sequences. 

2) The resulting sequences serve as inputs to M decimated 
subfilters of length L / R . 

3) The outputs are recombined, with A ,  additions per 
point, to give the exact decimated filter outputs. 

Fig. 6 provides an example for R = 2, A ;  = 2, M = 3, 
and A ,  = 2. We have also applied other algorithms derived 
in [23], corresponding to the values R = 3, A ;  = 4, M = 6, 
A ,  = 6, and R = 5, A ;  = 14, M = 12, A ,  = 26. 

This computation can be repeated: the subfilters of length 
L / R  are still amenable to further decomposition. For exam- 
ple, to implement a 15-tap filter, one can either use a fast 
running FIR algorithm for R = 3 or R = 5, or decompose 
this filter by a “3 x 5 algorithm,” which first applies the 
procedure with R = 3, then again decompose the subfilters 
(of length 5) using the procedure associated with R = 5. 
Alternatively, a “5 x 3 algorithm” can be used. Each of 
these algorithms yield different complexities, which are dis- 
cussed in detail in [23]. We restrict ourselves here to at most 
two nested applications of fast running FIR algorithms (as in 
the previous example), so that the resulting computation 
remains simple, even though this is at the cost of a slight loss 
of efficiency. 

The short-length DWT algorithm is derived as follows. 
One applies fast running FIR algorithms to the four filters of 
length L / 2  in the elementary cell of the DWT (Fig. 4). 
Here, since two pairs of filters share the same input, all 
pre-additions ( A ; )  can be combined together on a single 
input. 

Table 11 lists the resulting complexities, using the fast 
running FIR algorithm that minimizes the criterion (multipli- 
cations + additions). When two different decompositions 
yield the same total number of operations, we have chosen 
the one that minimizes the number of multiplications (another 
choice would have been to minimize the number of multipli- 
cation-accumulations). Table I1 shows that short-length DWT 
algorithms are more efficient than the FFT-based DWT algo- 
rithms for lengths up to L = 18. 

Since, in practice, DWT’s are generally computed using 
short filters [ 11, [ 191, [20], the short-length algorithms proba- 
bly give the best practical alternative. Compared to the 
straightforward filter bank implementation, they do provide 
noticeable savings: As an example, for L = 18, the short- 
length algorithm requires a total of 25 operations per point 
instead of 35 for the direct method. Such a gain is interesting 
when heavy DWT computation is required. 

F. The Orthogonal Case 
In our derivations, we did not take advantage of orthogo- 

nality constraints [4], [lo], [19], [20], [22], [34] so as to be 
as general as possible. However, orthogonality is worthy of 
consideration because of its simplicity: the analysis and syn- 
thesis filters coincide (within time reversal and complex 
conjugation). Furthermore, it allows one to further reduce 
the complexity of the DWT: Using a lattice implementation 

- x(zqq-q-T31 ;2p 
Ho(z)+HI(zJ 

XNZ) 

W Z )  
1-1 

Y N Z )  

Fig. 6. Simple example of fast running FIR filtering algorithm with 
decimation ratio R = 2 [23]. Subscripts 0 and 1 indicate biphase decomposi- 
tion. 

of the DWT filter bank cell of Fig. l(a), Vaidyanathan and 
Hoang have shown in [28], [29] that the complexity can be 
reduced by a factor of 50% in the orthogonal case. 

Preliminary work on this subject using the relation 

h [ n ]  = ( - l > ” g [ L  - 1 - n ] ,  (47) 

which holds for orthogonal wavelets (see e.g., [4], [19]), 
shows that 25% reduction of computational complexity is 
attainable (with techniques similar to the ones previously 
stated), while preserving the classical FIR filtering structure. 
This indicates that this 25% reduction will be preserved in 
accelerated algorithms based on the above techniques. 
Whether or not 50% reduction can be attained while preserv- 
ing the inner products (unlike the lattice structure implemen- 
tation) is an open problem. A complete treatment remains a 
topic for future investigation. In any case, Tables I and I1 do 
not provide a fair and detailed comparison between various 
algorithms in the orthogonal case. 

G. Unequal Filter Lengths 
In the previous derivations, we have restricted ourselves to 

filters of equal lengths for simplicity. However, as pointed 
out to us by one of the reviewers, it may happen that one uses 
a low-pass interpolation filter g [  n] of small length ( L ,  Q 16) 
and a very long high-pass filter h[n] of length L ,  9 16. 
This is the case in [9], [17], where one typically uses a first 
order interpolation filter g [ n ]  ( L g  = 3) to approximate the 
“Morlet wavelet,” a modulated Gaussian. 

Obviously, for a direct implementation of the DWT filter 
bank, it is in this case absurd to assume equal filter lengths 
since the complexity (31) then becomes ( L g  + L,)/2 mults 
and ( L g  + Lh - 1)/2 adds. (Padding the short filter coeffi- 
cients with zeros as previously suggested would require L ,  
mults and L ,  adds instead.) 

However, the equal length assumption is still valid for the 
derivation of fast (FFT-based) DWT algorithms for two 
reasons. 

1) If one of the lengths is large ( L h  9 16), then clearly 
the most suitable algorithm for improving efficiency 
compared to a straightforward filter bank implementa- 
tion is an FFT-based DWT algorithm. One can use the 
one described in Section 111-C, although the fact that 
one filter is of small length is then not taken advantage 
of. Alternatively, this algorithm can be modified to 
compute the short filter directly as inner products and 
use the FFT only for the long one. But then, as is clear 
from Fig. 5 ,  four FFT’s are still required for the inputs 
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and outputs just as in the initial FFT-based algorithm, 
and saving is only obtained for the frequency domain 
multiplications (2 instead of 4). 

For a wavelet of length L,  = 64 and interpolation 
filters of length L,  of 3, 7, and 11, the modified 
“unequal lengths” FFT-based algorithm give gains 
over a standard DWT of 49.9%, 47.1% and 44.5%, 
respectively. However, for the same lengths the initial 
FFT-based algorithm of Section 111-C give respective 
gains over a standard DWT of 46.9%, 49.9% and 
52.6%. More generally, we found that the modified 
FFT-based algorithm is more efficient than the initial 
FFT-based one only for very short interpolation filters 
( L g  I 4), and in any case the complexities of both 
methods are about the same. 

Therefore, for very different lengths L ,  4 L,, some 
efficiency of FFT-based algorithms is lost compared to 
a direct implementation based on the pessimistic as- 
sumption L ,  = L ,  (because the direct implementation 
is then significantly more efficient), but the FFT-based 
algorithm of Section 111-C, which is based on the very 
same pessimistic assumption, cannot be greatly im- 
proved. Note that in such a case it is still more interest- 
ing to use an FFT-based algorithm that yields a substan- 
tial gain over a standard, straightforward filter bank 
implementation of the DWT. 
One can, and indeed should, reduce the difference 
between L ,  and L ,  as much as possible in the wavelet 
approximation procedure, since the complexity can then 
be significantly reduced using one of the accelerated 
algorithms described earlier. For the Morlet example, it 
is possible to use higher order splines as suggested in 
Section 11-D to obtain discrete filters of moderate lengths 
L ,  and L ,  with a comparable approximation error, 
thereby resulting in a much more efficient “equal 
length” implementation, that is, one of the accelerated 
algorithms given above, as applicable. 

the previous discussion, we did not take other properties 
of filters into account, such as the linear phase property 
which holds for the Morlet wavelet. Obviously we cannot 
describe all specific cases in detail (this would require much 
more space). Nevertheless, the linear phase case can be 
treated just as easily as the previous general case, and one 
still obtains reduction of complexity in any case of interest 
using appropriate methods. 

IV . CONTINUOUS WAVELET TRANSFORM ALGORITHMS 
A .  C WT Coeficients Sampled on Arbitrary Grids and the 
“h Trous” Algorithm 

In this section, we review how the Shensa algorithm [26] 
reviewed in Section 11-C, is applied to the computation of 
CWT coefficients sampled on arbitrary grids in the time-scale 
plane. As in the WS case, the DWT can be used as an 
intermediate step. The time-scale parameters are discretized 
as shown: 

a = ad 
b = k ,  (48) 

where 1 < a, 5 2. Notice that a is restricted to positives 
values. This implicitly assumes that the signal and wavelets 
are either both real-valued or both complex analytic (i.e., 
their Fourier transforms vanish for negative frequencies). 
One interest of (48) is the possibility to approximate a nearly 
continuous CWT representation in the time-scale plane for 
analysis purposes. For this reason, the algorithms described 
in the following will be called “CWT algorithms.” 

Let us first restrict to an octave-by-octave computation, 
i.e., a = 2J.  In the next section, we shall consider the 
computation if the CWT on a fine grid in the time-scale 
plane. We remark that the computation of the WS coefficients 
treated in Sections I1 and I11 is nothing but part of the 
computation required here: One has 

Cj, = CWT { X( t ) ;  2’, k 2 j ) .  (49) 

Now, the Shensa algorithm for the WS coefficients (cf., 
Section 11-C) can be readily extended to the required compu- 
tation of CWT { x(t); 2J, k }  [26]. We have a result similar 
to (14), namely, 

CWT{x(t) ;2’ ,  k}  = DWT{x’[n] ;2j ,  k } ,  (50) 

where x’[n] is a prefiltered discrete input defined by (15). 
The difference with (14) is, of course, that the DWT is 
computed for all integer values of b. In contrast, in the 
standard description of the DWT (Section 11-B), the wavelet 
coefficients are only output every 2 J  samples ( b  = k2j ) .  
Equation (50) indicates that CWT coefficients sampled on an 
arbitrary grid in the time-scale plane can be computed using a 
filter bank structure derived from the initial DWT. This fact 
was mentioned by Gopinath and Burrus in [12] and subse- 
quently discussed in detail by Shensa in [26]: The resulting 
CWT algorithm was recognized to be identical with the ‘‘A 
trous” algorithm of Holschneider et al. [9], [17]. 

In fact, the framework of Section 11-C is more general than 
that found in [ 171, in which a sampled version of the integral 
in (6) is the starting point. This corresponds, in our case, to 
the extra condition that perfect sampling is used for both the 
input (11) and the wavelets (20). This implies that the 
low-pass filter g [ n ]  (cf. Section 11-D) in [17] should fulfill 
the condition 

&+n] = h . 0 ,  (51) 

which comes from g [ n ]  = (1/&)4(n/2) in (19). This 
forbids the “binomial” choice (22) for spline orders greater 
than one. In [17], Holschneider et al. use instead a second 
order Lagrangian filter for which $ ( t )  cannot be written in 
closed form (such + ( t ) ’ s  were studied in detail by Deslauri- 
ers and Dubuc [7]). Therefore, the curve fitting problem (13) 
is more tedious to solve in the “perfect sampling” case. This 
is a possible disadvantage considering that the accuracy of the 
algorithm is governed by the solution to (13). Unlike [17], 
[26], the more flexible framework of equations (12), (13) has 
allowed us to use a classical curve fitting problem using 
splines in the wavelet approximation (see Section 11-D). 
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B. Finer Sampling in Scale 

In signal analysis, an octave-by-octave computation of the 
CWT (i.e., with a = 2’) is generally not enough. It is 
desirable to obtain more wavelet coefficients, with finer 
sampling in the scale parameter a ,  namely, a = 23/M, where 
M is the number of “voices per octave” [5], 1181, 1341. 

To do that we apply the same trick [17] as in section 11-E. 
An “ M  voices per octave” CWT Computation results from 
A4 successive applications of the octave-by-octave algorithm, 
each one corresponding to a different basic wavelet proto- 
type: 

2-m’M$(2-m/Mt), m = O ; - . , M -  1. (52) 

The approximation (17) must be satisfied for each of these 
slightly stretched wavelet prototypes (52), and the whole 
algorithm requires about M times the computational load of 
an octave-by-octave algorithm. 

C. Computation of the Inverse Continuous Wavelet 
Transform 

It is well known that the CWT brings a lot of redundancy 
into the representation of the signal (a one-dimensional signal 
is mapped to a two-dimensional plane). As a result, there are 
several possibilities to reconstruct the signal x( t )  from its 
CWT coefficients (2). 

One can use the classical (but computationally expensive) 
inversion formula [ 131, [ 141 

x ( t )  = c// CWT{x( t ) ;  a ,  

(53) 

where c is a constant depending only on $(t). 
More efficient is to use an inverse WST on the coefficients 

Cj,k = CWT{x(t);2’, k2’}, when $(t) is carefully cho- 
sen. Reference [5] contains a detail treatment of questions of 
accuracy if perfect reconstruction is not ensured by the 
choice of the wavelet $(t). The algorithms presented in 
Section 111 apply to this method. We have mentioned in 
Section HI-A that a DWT and an inverse DWT algorithm 
have identical complexities if the latter is obtained by flow- 
graph transposing the former. Thus, the complexity is easy to 
estimate in this case. 

Still another way is to use Morlet’s formula [13], [14], 
1171 

(54) 

which requires a single itegration. This computation is per- 
formed from available CWT coefficients, which should be 
known for a sufficient number values of a in order to give an 
accurate reconstruction. The issue of convergence remains 
open. 

V. EFFICIENT IMPLEMENTATIONS OF THE CONTINUOUS 
WAVELET TRANSFORM 

In the following, we derive efficient implementations of the 
CWT, or, more properly, of CWT coefficients sampled on 

regular grids in the time-scale plane (b ,  a), restricting to an 
octave-by-octave computation, a = 23, b = k (see Section 
IV-B for a generalization to a = ai). We assume that the 
discrete input has been prefiltered in a suitable manner as 
explained in Sections 11-C and IV-A, and concentrate on the 
computation of DWT { x[ n]; 2*, k }  . 

A .  Reorganization of the “h Trous” Computational 
Structure 

There are several ways of deriving a filter bank implemen- 
tation of the CWT. In [17], Holschneider et al. proposed an 
“A trous” structure pictured in Fig. 7(a). (The term “A 
trous”-with holes-was coined by Holschneider et al. in 
reference to the fact that only one every 2’-’ coefficients is 
nonzero in the filter impulse responses at the jth octave.) 
From (50) it is also possible to derive a CWT algorithm by 
combining several DWT algorithms with a = 2/, b = k 2 /  
+ k,, k ,  = 0, * , 2 J  - 1 in a suitable manner. In this case, 
the algorithms of Section 111 could be readily used, although 
we found that the resulting CWT algorithms would not be the 
most efficient ones. All of these variations (including the one 
used next) require exactly the same complexity when filters 
are implemented directly as inner products (and multiplica- 
tion by zero is avoided for the ‘‘A trous” structure). 

However, we now use another variation of filter bank 
implementation of the CWT, which was also derived inde- 
pendently by Shensa in [26], because it is more suited to 
further reduction of complexity using fast filtering tech- 
niques. Consider the filter bank structure of Fig. 7(c), where 
the elementary cell is depicted in Fig. 7(b). This filter bank 
structure is easily deduced from the one of Fig. 7(a) [26]. 

Since the accelerated algorithms of Section 111 apply to the 
computation of the DWT filter bank structure of Fig. 1, it is 
important to relate it to the new filter bank structure of Fig. 
7(c). Consider, more specifically, the computation performed 
at the first octave ( j  = 1) of Fig. 7 and compare it to Fig. 
l(a). In the latter structure, half the wavelet coefficients 
required for the CWT at this octave are computed: the 
missing ones are the outputs of H ( z )  that are discarded by 
the decimation process. It is sufficient to remove the subsam- 
pling on H ( z )  to obtain the required wavelet coefficients of 
the first octave, as shown in Fig. 7(a). 

Also, in Fig. l(a) the output of the filter G ( z )  is used to 
compute the wavelet coefficients for the next stage ( j  = 2) 
for even values of the time-shift parameter b. The missing 
sequence, which allows to obtain the coefficients with odd 
values of b is nothing but the discarded subsampled se- 
quence; it is recovered in Fig. 7(a). 

At the next octave j = 2, both inputs are processed sepa- 
rately using identical cells. One provides the same points as 
in the WST computation (round dots in Fig. 7(c)), while the 
other allows to start a new computation of the same type, 
shifted in time, and beginning at the next scale (squared dots 
in Fig. 7(c)). The whole process is iterated as shown in Fig. 
7(c). 

In the overall organization, the outputs of both filters have 
to be computed, those of G ( z )  are used to build two inter- 
leaved sequences, while those of N( z )  are simply the wavelet 
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Fig. 7.  ''A trous" structure as derived by Holschneider et al. (b) Basic 
computational cell used for computing CWT coefficients Octave and octave. 
(c) Connection of the cells used in this paper and corresponding location of 
the wavelet coefficients in the time-scale plane. 

coefficients. Note that the basic computational cells of the fast 
DWT algorithms were specifically designed in Section III for 
decimated outputs. Their structure is therefore not adapted to 
the new situation, and the operation counts have to be 
reworked. This is done next. 

B. Straightforward Filter Bank Implementation of the 
CWT 

Consider the filter bank implementation of Fig. 7(c), and 
assume, as in Section ID, that both filters g[ n] and h[ n] are 
FIR filters and have same length L .  (Section V-F discusses 
the case of unequal filter lengths). When the filters are 
directly implemented as inner products, the octave-by-octave 
CWT algorithm requires 

2 L mults/input point/cell 

2( L - 1 )  adds/input point/cell. ( 5 5 )  

Note that there are 2 j - '  elementary cells at the jth octave 
in Fig. 7. These cells are identical but "work" at a different 
rate: a cell at the jth octave is fed by an input which is 
subsampled by 2J- l  compared to the original input x ( t ) .  
Therefore, the total complexity required by an octave-by- 
octave CWT algorithm on J octaves, is exactly 
&2j-1/2j-1 = J times the complexity of one cell. Thus, 
the complexity of any filter bank implementation of a CWT 
grows linearly with the number of octaves. 

In case of a direct implementation (55),  the total complex- 

ity required by a CWT on J octaves is simply 
2 LJ mults/input point 

2( L - 1 )  J adds/input point. (56) 
As mentioned in [17], this is a significant improvement 
compared to the "naive method" that would consist in 
directly implementing the CWT and would not take advan- 
tage of the fact that wavelets are easily related by dilation 
(this would reqquire a complexity exponentially increasing 
with J ) .  Since the whole CWT algorithm requires J times 
the complexity of one cell, the latter is the total complexity of 
the CWT per input point and per octave. Hence the complex- 
ity of one cell is also the total complexity of the CWT per 
output point, i.e., per computed wavelet coefficient. 

Since the elementary cell contains filters, its arithmetic 
complexity can be reduced using the techniques described 
previously in section I11 for WS coefficients. Furthermore, in 
the CWT case filter lengths are comparatively twice as long 
as in the WST case. This will increase the efficiency of the 
accelerated algorithms described below. 

C. An FFT-Based CWT Algorithm 
As in Section III.C, the FFT can be used to accelerate the 

two filter computations in the elementary cell of the filter 
bank of Fig. 7@), (c). In the CWT case, wrap-around effects 
are avoided if the FFT-length N is such that 

N ? L + B - l  (57) 
where B is the input block length, and where L is the filter 
length. The block length is, therefore, chosen as B = N - 
( L  - 1 ) .  Each elementary cell is computed by first perform- 
ing an FFT of length N = 2" on the input, then performing 
two frequency-domain convolutions by multiplying (Hermi- 
tian symmetric) length-N FFT's of g [ n ]  and h [ n ] ,  and 
finally applying two inverse FFT's on the results. This 
requires 2FFTN + 2 N / 2  complex mults + IFFT, per cell 
(for B input points). Under the same conditions as in Section 
111-C, we obtain 

3.2"-'(n - 1 )  + 6 

2 " - L + 1  
mults/input point/cell 

9.2"-'(n - 1) + 12 

2 " - L + 1  
adds/input point/cell (58) 

for each elementary cell. Once a cell is computed, wrap- 
around effects are cancelled in the time domain and one waits 
for one block before entering the next stage, so that each cell 
has the same input block length B and the same FFT length 
N .  Table I11 lists the obtained complexities (58) ,  minimized 
for an optimal value of N, for different values of the filter 
length L .  Since all cells are computed with FFT's of the 
same length N ,  once N is optimal for one cell, it is optimal 
for the whole algorithm. 

Table I11 shows that compared to the direct implementation 
( 5 3 ,  the FFT computation is more efficient than the direct 
method for L 1: 9, in terms of total number of operations 
(multiplications + additions). By deriving this criterion with 
respect to N ,  one finds that the optimal FFT length satisfies 
the relation N = (0.69n + 0.31)(L - 1). For large L ,  the 
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TABLE III 
ARITHMETIC COMPLEXITY PER COMPUTED POINT* FOR VARIOUS CWT ALGORITHMS 

Filter Straightforward FFT-Based FFT-Based Short-Length 
length Filter Bank Algorithm (two octaves merged) Aglorithm 

L (Section V-A) (Section V-B) (Section V-C) (Section V-D) 

2 

3 

4 

5 

6 

8 

9 

10 

12 

15 

16 

18 

20 

24 

25 

27 

30 

32 

64 

128 

4 + 2  

6 + 4  

8 + 6  

10 + 8 

12 + 10 

16 + 14 

18 + 16 

20 + 18 

24 + 22 

30 + 28 

32 + 30 

36 + 34 

40 + 38 

48 + 46 

50 + 48 

54 + 52 

60 + 58 

64 + 62 

128 + 126 

256 + 254 

4 + 10 
(4) 

5 + 14 
(8) 

6 + 16.8 
(8) 

6.5 + 19 
(16) 

7.1 + 20.7 
(16) 

7.9 + 23.5 

8.2 + 24.5 

8.6 + 25.6 

9.2 + 27.4 
(64) 

9.7 + 29 
(64) 

9.9 + 29.6 
(64) 

10.3 + 30.9 
(64) 

10.6 + 31.8 
(128) 

11 + 33 
(128) 

11.1 + 33.3 
(128) 

11.3 + 34 
(128) 

11.7 + 35 
(128) 

11.9 + 35.7 
(128) 

13.7 + 41.1 

15.4 + 46.2 
( 1024) 

(32) 

(32) 

(32) 

(512) 

4.8 + 12 

5.8 + 15.2 

6.5 + 17.2 

6.9 + 18.7 
(64) 

7.3 + 19.8 
(64) 

7.8 + 21.6 
(128) 

8.1 + 22.3 
(128) 

8.3 + 22.9 
(128) 

8.6 + 24.2 
(256) 

9 + 25.2 
(256) 

9.1 + 25.5 
(256) 

9.4 + 26.3 
(256) 

9.6 + 27 
(512) 

9.8 + 27.8 

9.9 + 27.9 

10 + 28.3 

10.2 + 28.9 

10.4 + 29.4 

11.6 + 33.1 
(2048) 

12.7 + 36.4 
(4096) 

(16) 

(32) 

(32) 

(512) 

(512) 

(512) 

(512) 

(512) 

3 + 3  
(2) 

4 + 5.3 
(3) 

4.5 + 7.5 
(2 x 2) 

4.8 + 13.2 
(5) 

6 +  11 
(2 x 3) 
9 + 12 
(2 x 2) 
8 + 16 
(3 x 3) 

7.2 + 20.4 
(5 x 2) 
12 + 17 
(2 x 3) 

9.6 + 26 
(5 x 3) 
18 + 21 
(2 x 2) 
16 + 24 
(3 x 3) 

14.4 + 27.6 
(5 x 2) 

(2 x 3) 
11.5 + 44.9 

(5 x 5) 
24 + 32 
(3 x 3) 

19.2 + 35.6 
(5 x 3) 
36 + 39 
(2 x 2) 
72 + 75 
(2 x 2) 

144 + 147 
(2 x 2) 

24 + 29 

*Each entry gives the number of operations per computed wavelet coefficient (i.e., per input point per octave) in the form 
mults + adds, and either the FFT length or the type of fast running FIR algorithm used (see text). 

corresponding minimized total number of operations per 
computed point is 

6 log, L + O(1og log L )  . 

This is a significant improvement compared to ( 5 9 ,  for 
which the total number of operations per input point is about 
4 L .  The gain of the FFT computation is therefore asymptoti- 
cally 2L/310g2 L for large filter lengths L .  This gain is 
larger than in the WST case (Section 111-C). 

D. A Generalization Using the Vetterli Algorithm 
The method shortly presented in Section III-D, that Vet- 

terli [30],  [32] derived in the DWT case, can also be used for 
the octave-by-octave CWT computation. The discussion of 
Section 111-D could have been made here as well. 

We provide an example, when two octaves are gathered 
together. Three elementary cells of Fig. 7(c) are merged into 
one 1-input, 7-output cell that covers two octaves. Here the 
FFT length N = 2" must be greater than or equal to B + 

3(L  - 1) to avoid wrap-around effects (compare with (57)). 
This results in an average of 

2"-'(2n - 1) + 6 

2" - 3L + 3 
mults/input point 

6 .2"- ' (n  - 1) + 12 

2" - 3L + 3 
adds/input point (60) 

6 .2"- ' (n  - 1) + 12 

L - 3 L t J  
-.'+/input point (60) 

per octave (more precisely, twice this complexity per 
cell). Table 111 shows that the resulting complexities, 
when minimized against N, are significantly lower than 
(58) for  large lengths only, although they slightly reduce 
the complexity as soon as L 2 8 .  The price to pay is a 
more involved implementation, with much larger FFT 
lengths. 

E. C WT Algorithms for  Short Filters 
Fast running FIR algorithms with decimation ratios R = 

2 , 3 , 5 ,  described in Section 111-E, can easily be applied to 
the CWT case. Furthermore, in one elementary cell of Fig. 
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7(b), both filters share the same input and pre-additions can 
therefore be combined on the single input. 

Table III lists the resulting complexities, using the fast 
running FIR decomposition that minimizes the total number 
of operations (multiplications + additions). When two dif- 
ferent decompositions yield the same number of operations, 
we have chosen the one that minimizes the number of multi- 
plications. As in Section III-E, we have restricted ourselves 
to at most two nested fast running FIR algorithms. Otherwise 
the resulting implementation becomes more involved. 

Table III shows that short-length CWT algorithms are 
more efficient than the FFT-based algorithm of Section V-C 
for lengths up to 20. It even remains more efficient than the 
generalized algorithm of Section V-D (which gathers two 
octaves) for lengths up to 12.  If the CWT is computed with 
medium filter lengths so as to maintain the complexity at a 
reasonable level, short-length algorithms may be a good 
trade-off both in terms of structure and complexity. 

F, Unequal Filter Lengths 
The situation here is almost the same as the one discussed 

earlier (see Section III-G for more details). Assume that the 
length of h[n]  is much larger than the length of g [ n ]  
(L,, P L g ) .  If the FFT-based algorithm described in Section 
V-C is modified to compute the short filter directly as inner 
products and use the FFT only for the long one, then one 
obtains a more efficient FFT-based algorithm only for very 
short low-pass filters (although the gain made here is compar- 
atively larger than in the WST case). Both variations of 
FFT-based algorithms require about the same complexity 
(again we have left out linear phase considerations). The 
conclusions are the same as in section 111-G. 

It should be clear from the discussions made in this paper 
that using appropriate methods it is always possible to take 
advantage of specific constraints and to reduce (more or less 
significantly) the complexity involved in the computation of 
wavelet coefficients in any case of interest (i.e., for all filter 
lengths). In any case, the tables provided in this paper for the 
general case give a rough idea of possible savings achievable 
by the various methods. 

G. Other CWT Algorithms 
Several algorithms for computing CWT coefficients, which 

differ notably from those described above, have been pro- 
posed recently. Gopinath and Burrus [12] proposed a method 
that also uses DWT's. The signal is assumed to be com- 
pletely determined from its WS coefficients. Therefore, these 
alone can be used to compute all CWT coefficients by some 
reproducing kernel equation. The introduction of an auxiliary 
wavelet moreover allows to precompute the kernel and to 
obtain a method particularly suited to the computation of 
CWT coefficients with respect to several wavelets. In con- 
trast, the algorithms described above "oversample" the dis- 
cretization a = 2 J ,  b = k 2 J  by computing more coefficients 
directly from the signal. This should result in a faster imple- 
mentation compared to [ 121 which uses a computationally 
expensive kernel expansion. 

Another CWT algorithm, which uses the scaling property 

of wavelets $( t )  + a P ' I 2 $ ( t / a )  rather than the convolu- 
tional form of ( l ) ,  ( 2 ) - x ( t )  convolved with 
a-  / 2  II, ( t / a) - has been proposed by the Bertrands and Ovar- 
lez [ 2 ] .  Let us briefly outline the derivation of this algorithm. 
Write ( 2 )  in the frequency domain, assuming that the signal 
x ( t )  and wavelet $ ( t )  are complex analytic. This gives 

C W T { x ( t ) ; a , b }  = 1 X ( f ) e 2 ' " f b & $ * ( a f ) d f ,  
t m  

0 

(61) 

where X (  f )  = / x( t)e-2'"f' dt and $( f )  are the Fourier 
transforms of x ( t )  and $ ( t ) ,  respectively. Then perform the 
changes of variable (o = In f .  A correlation form in a = In a 
appears in the integral. 

CWT { x (  t )  ; a ,  b )  
a+P 

~ 

X (  eP) eP/2e2iae'b$ ( ea+@)  e d p .  (62) 

After suitable discretization, this correlation can be per- 
formed using an FFT algorithm. As stated in [ 2 ] ,  the Mellin 
Transform M,(P) of x ( t )  plays a central role, since it turns 
out to be exactly the inverse Fourier transform of fix( f )  
in the variable (o = In f :  

= s, 

K ( P )  = / X (  f )  f - 1 / 2 + 2 ; " @  df 
f > 0  

= 1 e"/*X( @) e2i*@@ d(o. (63) 

As a result, the FFT's involved in the computation of (62) 
are "discrete Mellin transforms," as defined in [ 2 ] .  

This algorithm requires the precomputation of the whole 
Fourier transform of x ( t ) ,  which makes a running imple- 
mentation (in case of infinite duration signals) cumbersome. 
To overcome this difficulty we propose a variation on the 
Bertrands-Ovarlez algorithm, based on the time-domain 
rather than on the frequency domain. Assume that the signal 
and wavelets are causal (i.e., supported by t 2 0) ,  and make 
the change of variable 7 = In t in (2) .  One obtains a convolu- 
tion in CY = In a 

CWT { x (  t )  ; a ,  b }  

= J' e 7 / 2 x ( e r  + b ) e ( 7 - a ) / 2 $ * ( e ' - a )  d r .  (64) 

The CWT coefficients are obtained, for a given b, by 
discretizing the convolution (a), resulting in a discrete fil- 
tering operation that can be implemented for running data. 

Both algorithms (62), (64) have common characteristics. 
Some of them can be considered as drawbacks: first, they 
involve a geometric sampling of either X (  f )  or x ( t ) .  
Second, the approximation error made by discretizing (62) or 
(64) is difficult to estimate. Finally, in contrast with the 
octave-by-octave CWT implementation previously described 
the regular structure of time shifts b has completely disap- 
peared, and one has to recompute the input for each value of 
b. As a result, the complexity of such algorithms (about two 
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FFT’s of length 2 JM per input point, where J is the number 
of octaves and M is the number of voices per octave) is 
found higher than the one obtained for the accelerated algo- 
rithm of Section V-C. 

However, a nice property of the Bertrands-Ovarlez 
algorithms (62),  (64) is that the CWT coefficients are com- 
puted for all desired values of In a at the same time (for 
given value of b) ,  which is much more straightforward than 
in the algorithms previously described. It makes the 
Bertrands-Ovarlez algorithms very useful when a ‘‘zoom, ” 
or a refinement of the wavelet analysis in a short extent 
around some time location b is desired. 

VI. CONCLUSION 
This paper has provided several methods for implementing 

efficiently various kinds of wavelet transforms, from the fully 
discrete version to the fully continuous one, and for any type 
of wavelet. Prefiltering the signal allows one to use the DWT 
as an intermediate computation for any type of wavelet 
transform. Guidelines were given for the design of the appro- 
priate prefilter. A detailed treatment of questions of accuracy 
remains a topic for future investigation. 

Fast DWT algorithms were derived for computing WS 
coefficients and were modified to compute wavelet coeffi- 
cients with oversampling in the time-scale plane (“CWT 
algorithms”). 

Two different classes of fast algorithms have been derived: 
the first one is based on the FFT, and is efficient for medium 
to large wavelet prototypes. The second one is based on 
short-length “fast running FIR algorithms” [23] and is effi- 
cient for small to medium size filters. Compared to the 
situation encountered for fixed coefficient filtering [23], [24], 
DWT fast algorithms are useful for shorter filters, while the 
reduction of the arithmetic complexity, although substantial, 
is lower. The modified “CWT” algorithms are efficient for 
even shorter wavelet prototypes than in the DWT case, with 
an improvement which is asymptotically greater. 

The availability of both FFT-based and fast-running-FIR- 
based algorithms allows one to reduce the complexity of the 
existing algorithms in any case of interest. 
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