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Supplementary Figure 1:  Evaluation on the simMC (simulated acid mine drainage) data 
set in four different settings. 
 

 
 

Known species: Genomes used in simulation were excluded from reference; New genus: 
Genomes used for simulation and genus level genomes for dominant populations were 
excluded from reference; New order: Genomes used for simulation and order level 
genomes for dominant populations were excluded from the reference and New class: 
Genomes used for simulation and class level genomes for dominant populations were 
excluded from reference. 
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Supplementary Figure 2: Scaffold-contig visualization of different binning methods for 
the WG-2 population in the Tammar wallaby metagenome sample.  
  

 
 

 
Every horizontal bar represents a scaffold and its constituent contigs. Every contig is 
color coded to represent its consistency with respect to the scaffold assignment. Only 
scaffolds >=20 kb in length are shown for clarity. 
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Supplementary Figure 3: Evaluation of different binning methods on short fragments of 
varying lengths. 
 

 
 

 
Short fragment data sets of varying fragment lengths were created using 100 whole 
genome assemblies (Supplementary Table 3) while complete genomes were used as 
reference/training sequences. Performance at genus rank quantifies over-binning.  
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Supplementary Figure 4: Overlap between predictions of different methods on the TW 
sample for the three uncultured populations. 
 

 
 
The overlaps are represented as area proportional Euler diagrams1. Only exact 
predictions were taken into account for each population. The areas correspond to the 
predictions of the methods on the union of contigs predicted as a particular clade by at 
least one method. As can be seen, PhyloPythiaS and PhyloPythia have large overlaps for 
all populations. 
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Supplementary Figure 5: Overlap between predictions of different methods on TW 
sample for dominant phyla. 
 

 
 

The overlaps are represented as area proportional Euler diagrams. The areas correspond 
to the predictions of the methods on the union of contigs predicted as a particular clade 
by at least one method. All the predictions were mapped to its corresponding phyla. As 
can be seen, PhyloPythiaS, PhyloPythia and MEGAN have large overlaps for all three 
phyla. 
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Supplementary Table 1: Assignment accuracy of different binning methods on the 
simulated Acid Mine Drainage data set. Experiments were performed using four different 
reference sets; A. Known species: Excluding the genomes used for simulation, B. New 
genus: 100 kb of the dominant strains available, which can be identified based on 
marker-gene analyses of the sample fragments or by fosmid sequencing, but no genome 
sequences of the same genera; C. New order: 100 kb of the dominant strains available 
but no genomes of the same order and D. New class: 100 kb of the dominant strains 
available but no genomes of the same classes. 
 

A. Known species 
Rank Method Specificity Sensitivity Accuracy 

Genus 

PhyloPythiaS 97.37 53.36 44.59 

MEGAN 79.5 65.22 81.21 

Phymm 65.551 44.097 52.812 

PhymmBL 79.5 65.22 81.21 

Family 

PhyloPythiaS 99.62 65.48 65.91 

MEGAN 92.57 67 84.52 

Phymm 96.717 61.234 65.307 

PhymmBL 97.55 77.52 88.83 

Order 

PhyloPythiaS 99.56 69.91 76.39 

MEGAN 84.16 68.17 87.11 

Phymm 78.091 66.93 78.746 

PhymmBL 92.22 80.82 94.33 

Class 

PhyloPythiaS 98.8 75.66 82.48 

MEGAN 99.99 92.29 89.16 

Phymm 95.866 87.647 87.012 

PhymmBL 97.88 97.63 96.09 

Phylum 

PhyloPythiaS 100 92.01 91.78 

MEGAN 91.8 99.97 92.3 

Phymm 99.913 95.014 94.868 

PhymmBL 99.92 98.61 98.51 

Domain 

PhyloPythiaS 99.62 99.99 99.63 

MEGAN 100 95.8 95.79 

Phymm 99.986 98.96 98.946 

PhymmBL 99.99 99.59 99.58 

 
B. New genus 

Rank Method Specificity Sensitivity Accuracy 

Genus 

PhyloPythiaS 92.234 31.669 41.919 

MEGAN 65.172 3.209 2.477 

Phymm 65.357 17.733 18.722 

PhymmBL 67.049 10.225 8.17 

Family PhyloPythiaS 98.537 45.807 67.114 
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MEGAN 77.883 34.96 34.186 

Phymm 93.579 36.608 27.645 

PhymmBL 86.752 43.692 40.167 

Order 

PhyloPythiaS 92.572 48.489 72.437 

MEGAN 73.003 43.893 55.289 

Phymm 69.735 48.046 55.07 

PhymmBL 74.495 56.876 69.194 

Class 

PhyloPythiaS 99.367 73.169 82.154 

MEGAN 96.564 61.151 63.597 

Phymm 93.476 74.413 74.887 

PhymmBL 94.319 80.817 81.415 

Phylum 

PhyloPythiaS 99.954 88.968 88.668 

MEGAN 99.983 78.984 78.582 

Phymm 99.91 91.626 91.501 

PhymmBL 99.913 94.863 94.772 

Domain 

PhyloPythiaS 99.986 99.685 99.672 

MEGAN 100 91.623 91.611 

Phymm 99.986 98.494 98.481 

PhymmBL 99.986 98.987 98.974 

 
C. New order 

Rank Method Specificity Sensitivity Accuracy 

Genus 

PhyloPythiaS 76.2 28.787 38.155 

MEGAN 61.161 3.654 2.942 

Phymm 63.283 21.365 24.62 

PhymmBL 63.845 13.566 12.44 

Family 

PhyloPythiaS 98.342 45.134 54.961 

MEGAN 70.381 11.51 4.461 

Phymm 92.832 39.47 31.326 

PhymmBL 75.222 32.713 15.738 

Order 

PhyloPythiaS 86.092 47.797 54.961 

MEGAN 69.091 12.843 4.407 

Phymm 70.221 39.69 31.422 

PhymmBL 69.601 34.713 15.944 

Class 

PhyloPythiaS 99.486 64.168 75.667 

MEGAN 76.498 27.257 33.037 

Phymm 90.652 66.357 61.53 

PhymmBL 88.383 64.532 56.152 

Phylum 

PhyloPythiaS 99.969 88.61 88.354 

MEGAN 99.979 65.693 65.376 

Phymm 99.904 86.159 86.068 

PhymmBL 99.907 88.569 88.518 
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Domain 

PhyloPythiaS 99.986 99.576 99.562 

MEGAN 100 88.626 88.614 

Phymm 99.986 96.072 96.059 

PhymmBL 99.986 96.606 96.592 

 
D. New class 

Rank Method Specificity Sensitivity Accuracy 

Genus 

PhyloPythiaS 89.988 30.105 42.398 

MEGAN 80.309 3.002 3.394 

Phymm 82.975 27.743 33.242 

PhymmBL 82.832 17.216 17.203 

Family 

PhyloPythiaS 99.445 36.593 67.702 

MEGAN 97.936 3.313 4.557 

Phymm 99.94 30.083 41.946 

PhymmBL 99.849 20.211 20.857 

Order 

PhyloPythiaS 99.445 36.589 67.634 

MEGAN 97.936 3.313 4.42 

Phymm 99.94 30.08 42.028 

PhymmBL 99.849 20.21 20.939 

Class 

PhyloPythiaS 99.978 54.028 68.551 

MEGAN 98.551 4.888 4.612 

Phymm 100 44.171 42.233 

PhymmBL 100 29.718 21.076 

Phylum 

PhyloPythiaS 99.966 81.077 80.936 

MEGAN 99.972 48.396 48.187 

Phymm 99.911 77.717 77.693 

PhymmBL 99.912 78.391 78.391 

Domain 

PhyloPythiaS 99.986 99.453 99.439 

MEGAN 100 84.848 84.836 

Phymm 99.986 94.676 94.663 

PhymmBL 99.986 94.552 94.539 
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Supplementary Table 2: Performance of different binning methods for the abundant 
populations in the TW sample. Assignment accuracy is evaluated based on the 
consistency of taxonomic assignment for contigs of the same scaffold (see 
Supplementary notes). Sample specific data was used for all methods. 
 

Method Population 
Kilo-bases 

assigned 

Scaffold-contig 

consistency 

(% bp) 

Scaffold-contig 

consistency 

(average 

taxonomic 

distance) 

PhyloPythiaS 

WG-1 2,669.60 97.71 0.38 
WG-2 2,512.93 97.24 0.34 
WG-3 892.65 94.11 0.43 
Total 13,552.86 78.54 0.44 

PhyloPythia 

WG-1 2,674.70 97.94 0.29 
WG-2 2,326.76 89.75 0.53 
WG-3 870.60 94.70 0.35 
Total 12,830.05 82.90 0.43 

PhymmBL 

WG-1 3,542.94 69.90 0.72 
WG-2 2,809.81 56.69 1.12 
WG-3 1,005.99 64.59 1.12 
Total 13,286.18 60.78 1.01 

MEGAN 

WG-1 1,100.20 90.28 0.44 
WG-2 646.19 81.99 0.46 
WG-3 142.69 95.27 0.27 
Total 8,604.92 86.91 0.41 
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Supplementary Table 3: NUCmer analysis of the WG-1 assignments for TW sample. 
PhyloPythia and PhyloPythiaS assigned 344 and 604 contigs respectively to WG-1. The 
recovered genome size is 2,952,624 bp. The contigs assigned by PhyloPythia and 
PhyloPythiaS were mapped on the WG-1 genome with NUCmer, which corresponded to 
1,995,748 bp and 2,104,034 bp respectively. See supplementary notes for details. 
 

 
PhyloPythia 

filtered 
PhyloPythia 
unfiltered 

PhyloPythiaS 
filtered 

PhyloPythiaS 
unfiltered 

# contigs 
aligned 

357 (98%) 359 (98%) 525 (87%) 543 (90%) 

Length 
match (bp) 

1,798,591 1,941,532 1,803,892 1,972,064 

Coverage (%) 90.09 97.28 85.77 93.7 

Average IDY 
(%) 

98.92 95.14 98.90 95.50 
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Supplementary Table 4: Modeled clades for the TW sample. Only the leaf clades are 
shown, all the clades at more general taxonomic ranks were included in the modeled 
taxonomy.  
 

NCBI scientific name NCBI taxonomic 
identifier 

Sample-specific data 
(kb) 

Acinetobacter 469 -- 

Actinobacteria (class) 1760 -- 

Bradyrhizobiaceae 41294 -- 
Campylobacter 194 -- 

Desulfovibrionaceae 194924 -- 

Enterobacteriaceae 543 -- 

Eubacteriaceae 186806 -- 

Fusobacteriaceae 203492 -- 

Methanomicrobiales 2191 -- 
Methanosarcina 2207 -- 

Pasteurellaceae 712 -- 

Prevotellaceae 171552 -- 

Psychrobacter 497 -- 

Ruminococcaceae 541000 -- 

Selenomonas 970 -- 
Staphylococcus 1279 -- 

Thermoplasma 2302 -- 

uncultured Erysipelotrichaceae 
bacterium (WG-3) 

331630 5.7 

uncultured Lachnospiraceae 
bacterium (WG-2) 

297314 143 

uncultured Succinivibrionaceae 
bacterium (WG-1) 

538960 257 
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Supplementary Table 5: Taxonomic assignments for abundant genera in the human gut 
metagenome samples. Assignment accuracy is evaluated based on the consistency of 
taxonomic assignment for contigs of the same scaffold (see Supplementary notes).  
 

Method 
Genus-level bin / 

Population 

Kilo-bases assigned 

Scaffold-

contig 

consistency 

(% bp) 

Scaffold-

contig 

consistency 

(average 

taxonomic 

distance) 

TS28 TS29 TS28 TS29 TS28 TS29 

PhyloPythiaS 

Ruminococcus 13,787.33 13,016.96 95.10 94.68 0.16 0.20 
Faecalibacterium 17,049.71 8,490.69 93.44 90.75 0.18 0.16 

Clostridium 8296.77 3376.53 89.41 95.74 0.24 0.22 
Eubacterium 8840.37 2515.17 98.05 76.63 0.10 0.30 

Dorea 2,443.36 1,323.47 98.75 96.05 0.11 0.30 
Bifidobacterium 4,948.32 4,760.12 98.51 99.97 0.08 0.05 

PhyloPythia 

Ruminococcus 16,879.06 14,918.45 94.78 90.18 0.15 0.29 
Faecalibacterium 19,962.39 9,372.68 94.80 85.72 0.28 0.25 

Clostridium 11,797.44 4,097.59 77.42 85.62 0.39 0.45 
Eubacterium 10,138.96 1,859.18 97.12 89.78 0.16 0.51 

Dorea 3,412.84 1,511.66 97.21 82.30 0.11 0.49 
Bifidobacterium 4,946.77 4,767.18 98.40 99.78 0.06 0.03 

PhymmBL 

Ruminococcus 6,613.42 5,694.06 96.11 94.87 0.10 0.09 
Faecalibacterium 15,302.09         6,423.28 94.09 93.96 0.12 0.07 

Clostridium 13,246.25 4,917.47 87.30 92.22 0.22 0.19 
Eubacterium 5,624.48 1,337.88 98.01 85.77 0.08 0.26 

Dorea 3,118.58 1,381.38 97.61 82.95 0.05 0.21 
Bifidobacterium 5,057.49 4,757.60 97.96 99.93 0.11 0.03 
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Supplementary Table 6:  Bin validation for the human gut metagenome samples using 
marker genes.  
See supplementary notes for details. 
 

Method Sample Domain Phylum Class Family Genus 

PhyloPythia 
TS28 99.21 89.57 87.20 69.49 55.51 

TS29 100.00 95.98 95.44 81.23 72.07 
-- Controls 99.80 98.16 97.74 80.01 71.69 

PhyloPythiaS 
TS28 99.40 91.33 88.98 75.96 61.07 

TS29 100.00 95.11 95.11 86.18 76.41 
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Supplementary Table 7: Validation for the human gut metagenome samples using CD-
HIT (fraction matched). See supplementary notes for details. 
 

Method Comparison Domain Phylum Class Family Genus 

PhyloPythia 

TS28vTS29 99.85 95.97 95.96 71.99 72.34 

Genomes 98.07 96.02 94.18 77.58 68.97 

TS29vGenomes 98.74 94.89 92.07 58.73 56.46 

TS28vGenomes 98.66 93.43 90.54 55.79 51.57 

PhyloPythiaS 

TS28vTS29 99.82 96.32 96.32 79.03 77.17 

Genomes 97.98 95.84 93.92 76.57 67.58 

TS29vGenomes 98.75 95.17 92.62 63.10 59.49 

TS28vGenomes 98.74 93.73 91.22 60.11 54.27 
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Supplementary Table 8: Modeled clades for PhyloPythiaS for the human gut 
metagenome samples (TS28 and TS29). Only the leaf clades are shown, all the clades at 
more general taxonomic ranks were included in the modeled taxonomy. Only part of the 
sample-specific data was used to learn PhyloPythia and PhyloPythiaS models (see 
Supplementary notes). 
 

NCBI scientific name NCBI taxonomic identifier Sample-specific data (kb) 

Alistipes 239,759 198 
Anaerococcus 165,779 1,300 
Anaerotruncus 244,127 74 

Atopobium 1,380 -- 

Bacteroides 816 23,600 
Bifidobacterium 1,678 3,800 

Blautia 572,511 13 
Butyrivibrio 830 6.2 

Clostridium 1,485 7,200 
Collinsella 102,106 512 

Coprococcus 33,042 29 
Dorea 189,330 1,500 

Escherichia 561 -- 

Eubacterium 1,730 600 
Faecalibacterium 216,851 2,300 

Finegoldia 150,022 -- 

Holdemania 61,170 7.7 
Lactococcus 1,357 -- 

Methanobrevibacter 2,172 1,300 
Methanothermobacter 145,260 -- 

Parabacteroides 375,288 1,600 

Porphyromonas 836 -- 
Providencia 586 -- 

Roseburia 841 31 
Ruminococcus 1,263 4,000 

Streptococcus 1,301 -- 
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Supplementary Table 9: Statistical comparison of the assignments of different methods 
on TW data set. P-values obtained with two-tailed Wilcoxon paired sum-ranks test for 
different methods on the scaffold-contig consistency and kilo-bases assigned for 230 
clades (union of all predicted clades). The bold values indicate pairs where the null 
hypothesis is rejected at 95% confidence. This table shows that PhymmBL is significantly 
different than other methods in both kilo-bases assigned and scaffold-contig consistency. 

 

Methods Scaffold-contig consistency Kilo-bases assigned 

PhyloPythiaS – PhyloPythia  0.0338 0.4242 

PhyloPythiaS – PhymmBL 5.5454e-09 1.7678e-07 

PhyloPythiaS – MEGAN  0.5720 0.8605 

PhyloPythia - PhymmBL 1.1306e-11 6.2198e-11 

PhyloPythia – MEGAN 0.0591 0.5781 

PhymmBL – MEGAN  2.0417e-12 8.0705e-06 
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Supplementary Table 10: Number of contigs classified by different methods at different 
taxonomic ranks for the TW sample. There are 5,995 contigs in total for this 
metagenome sample. All numbers indicate the raw output of every method. PhyloPythia 
does not classify fragments shorter than 1,000 bp so the total number of contigs is less 
(5,245). 
 

 

Taxonomic rank PhyloPythiaS PhyloPythia PhymmBL MEGAN 

Domain 1,206 1,579 -- 630 
Phylum 503 485 -- 191 

Class 214 261 92 85 

Order 1,748 801 1,086 401 
Family 997 1,012 250 288 
Genus 71 -- 2,899 1,446 

Species 1,255 1,062 1,525 277 
Not assigned 1 45 143 2,677 

Nature Methods, vol. 8, no. 3 McHardy, A.C. et al.



18 
Patil, K.R. et al., Taxonomic metagenome sequence assignment with structured 
output models 

 
Supplementary Table 11: Effect of sample specific data on the assignment of the TW 
sample for PhyloPythiaS and PhymmBL. The “#predictions” columns shows number of 
predictions obtained using the sample specific models and for both the sample specific 
and the non-sample specific models. The “#consistent predictions” column shows how 
many of these predictions are taxonomically consistent with the respective population. 
The Average distance column shows the average taxonomic distance between the 
predictions of the sample specific and non-sample specific models. For WG-2 PhymmBL 
without sample specific data made the specified number of consistent assignments to 
Lachnospiraceae due to relabeled Ruminococcus. 
 

Population Method 
#predictions 

(sample-
specific) 

#predictions 
(joint) 

#consistent 
predictions 

Average 
taxonomic 
distance 

WG-1 
PhymmBL 530 434 0 8.93 

PhyloPythiaS 477 477 361 5.13 

WG-2 
PhymmBL 708 690 205 5.37 

PhyloPythiaS 482 482 419 2.05 

WG-3 
PhymmBL 286 201 0 8.59 

PhyloPythiaS 296 296 266 3.29 
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Supplementary Table 12: Genomes used for simulated short fragment test data set.The 
“parent” columns show the lowest parent available in the reference taxonomy. The 
genomes were chosen such that their parent at genus level was not represented in the 
reference data. 
 

Organism 
(Taxonomic 
identifier) 

Organism 
(Scientific name) 

Parent 
(Taxonomic 
identifier) 

Parent 
(Scientific name) 

Parent 
(Taxonomic 

rank) 

313624 
Nodularia spumigena CCY 

9414 
1162 Nostocaceae family 

59196 Rickettsiella grylli 118968 Coxiellaceae family 

391597 Limnobacter sp. MED105 119060 Burkholderiaceae family 

214688 
Gemmata obscuriglobus 

UQM 2246 
126 Planctomycetaceae family 

314230 
Blastopirellula marina DSM 

3645 
126 Planctomycetaceae family 

344747 
Planctomyces maris DSM 

8797 
126 Planctomycetaceae family 

278957 Opitutaceae bacterium TAV2 134623 Opitutaceae family 

392484 Methylophaga thiooxidans 135616 Piscirickettsiaceae family 

207949 Bermanella marisrubri 135620 Oceanospirillaceae family 

207954 Neptuniibacter caesariensis 135620 Oceanospirillaceae family 

391606 
Carboxydibrachium 

pacificum DSM 12653 
186814 Thermoanaerobacteraceae family 

324057 Paenibacillus sp. JDR-2 186822 Paenibacillaceae family 

392917 
Paenibacillus larvae subsp. 

larvae BRL-230010 
186822 Paenibacillaceae family 

240016 
Verrucomicrobium spinosum 

DSM 4136 
203557 Verrucomicrobiaceae family 

391592 
Caminibacter mediatlanticus 

TB-2 
224467 Nautiliaceae family 

219305 
Micromonospora sp. ATCC 

39149 
28056 Micromonosporaceae family 

244592 Labrenzia alexandrii DFL-11 31989 Rhodobacteraceae family 

252305 
Oceanicola batsensis 

HTCC2597 
31989 Rhodobacteraceae family 

314232 
Loktanella vestfoldensis 

SKA53 
31989 Rhodobacteraceae family 

314256 
Oceanicola granulosus 

HTCC2516 
31989 Rhodobacteraceae family 

314264 Roseovarius sp. 217 31989 Rhodobacteraceae family 

314265 Roseovarius sp. HTCC2601 31989 Rhodobacteraceae family 

314267 Sulfitobacter sp. NAS-14.1 31989 Rhodobacteraceae family 

383629 
Phaeobacter gallaeciensis 

2.10 
31989 Rhodobacteraceae family 

384765 
Labrenzia aggregata IAM 

12614 
31989 Rhodobacteraceae family 

388399 Sagittula stellata E-37 31989 Rhodobacteraceae family 

391613 Roseovarius sp. TM1035 31989 Rhodobacteraceae family 

391616 Octadecabacter antarcticus 31989 Rhodobacteraceae family 
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238 

391619 
Phaeobacter gallaeciensis 

BS107 
31989 Rhodobacteraceae family 

391624 
Oceanibulbus indolifex HEL-

45 
31989 Rhodobacteraceae family 

391626 
Octadecabacter antarcticus 

307 
31989 Rhodobacteraceae family 

52598 Sulfitobacter sp. EE-36 31989 Rhodobacteraceae family 

89187 
Roseovarius nubinhibens 

ISM 
31989 Rhodobacteraceae family 

279714 Lutiella nitroferrum 2002 481 Neisseriaceae family 

216432 
Croceibacter atlanticus 

HTCC2559 
49546 Flavobacteriaceae family 

313590 
Dokdonia donghaensis 

MED134 
49546 Flavobacteriaceae family 

313594 Polaribacter irgensii 23-P 49546 Flavobacteriaceae family 

313595 
Psychroflexus torquis ATCC 

700755 
49546 Flavobacteriaceae family 

313596 
Robiginitalea biformata 

HTCC2501 
49546 Flavobacteriaceae family 

313598 Polaribacter sp. MED152 49546 Flavobacteriaceae family 

391587 Kordia algicida OT-1 49546 Flavobacteriaceae family 

411465 
Parvimonas micra ATCC 

33270 
543310 

Clostridiales Family XI. 
Incertae Sedis 

family 

392423 
Hydrogenivirga sp. 128-5-

R1-1 
64898 Aquificaceae family 

314254 
Oceanicaulis alexandrii 

HTCC2633 
69657 Hyphomonadaceae family 

314278 Nitrococcus mobilis Nb-231 72276 Ectothiorhodospiraceae family 

391600 Brevundimonas sp. BAL3 76892 Caulobacteraceae family 

399795 
Comamonas testosteroni KF-

1 
80864 Comamonadaceae family 

313606 
Microscilla marina ATCC 

23134 
89373 Flexibacteraceae family 

165597 
Crocosphaera watsonii WH 

8501 
1118 Chroococcales order 

180281 Cyanobium sp. PCC 7001 1118 Chroococcales order 

118168 
Microcoleus chthonoplastes 

PCC 7420 
1150 Oscillatoriales order 

313612 Lyngbya sp. PCC 8106 1150 Oscillatoriales order 

322866 
Leptolyngbya valderiana 

BDU 20041 
1150 Oscillatoriales order 

156578 
Alteromonadales bacterium 

TW-7 
135622 Alteromonadales order 

58051 Moritella sp. PE36 135622 Alteromonadales order 

391574 
Vibrionales bacterium SWAT-

3 
135623 Vibrionales order 

401526 
Thermosinus 

carboxydivorans Nor1 
186802 Clostridiales order 

411459 
Ruminococcus obeum ATCC 

29174 
186802 Clostridiales order 
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411460 
Ruminococcus torques ATCC 

27756 
186802 Clostridiales order 

411461 
Dorea formicigenerans ATCC 

27755 
186802 Clostridiales order 

411462 
Dorea longicatena DSM 

13814 
186802 Clostridiales order 

411463 
Eubacterium ventriosum 

ATCC 27560 
186802 Clostridiales order 

411469 Eubacterium hallii DSM 3353 186802 Clostridiales order 

411470 
Ruminococcus gnavus ATCC 

29149 
186802 Clostridiales order 

411471 
Subdoligranulum variabile 

DSM 15176 
186802 Clostridiales order 

411474 
Coprococcus eutactus ATCC 

27759 
186802 Clostridiales order 

411485 
Faecalibacterium prausnitzii 

M21/2 
186802 Clostridiales order 

333990 Carnobacterium sp. AT7 186826 Lactobacillales order 

313603 
Flavobacteriales bacterium 

HTCC2170 
200644 Flavobacteriales order 

391598 
Flavobacteria bacterium 

BAL38 
200644 Flavobacteriales order 

391603 
Flavobacteriales bacterium 

ALC-1 
200644 Flavobacteriales order 

388413 Algoriphagus sp. PR1 200666 Sphingobacteriales order 

391596 Pedobacter sp. BAL39 200666 Sphingobacteriales order 

313589 Janibacter sp. HTCC2649 2037 Actinomycetales order 

321955 Brevibacterium linens BL2 2037 Actinomycetales order 

411466 
Actinomyces odontolyticus 

ATCC 17982 
2037 Actinomycetales order 

314270 
Rhodobacterales bacterium 

HTCC2083 
204455 Rhodobacterales order 

314271 
Rhodobacterales bacterium 

HTCC2654 
204455 Rhodobacterales order 

388401 
Rhodobacterales bacterium 

HTCC2150 
204455 Rhodobacterales order 

383631 
Methylophilales bacterium 

HTCC2181 
206350 Methylophilales order 

333146 
Ferroplasma acidarmanus 

fer1 
2301 Thermoplasmatales order 

378806 
Stigmatella aurantiaca 

DW4/3-1 
29 Myxococcales order 

391625 Plesiocystis pacifica SIR-1 29 Myxococcales order 

314231 
Fulvimarina pelagi 

HTCC2506 
356 Rhizobiales order 

320771 bacterium Ellin514 48461 Verrucomicrobiales order 

382464 
Verrucomicrobiae bacterium 

DG1235 
48461 Verrucomicrobiales order 

281689 
Desulfuromonas acetoxidans 

DSM 684 
69541 Desulfuromonadales order 

156586 Flavobacteria bacterium 117743 Flavobacteria class 
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BBFL7 

247633 
marine gamma 

proteobacterium HTCC2143 
1236 Gammaproteobacteria class 

247634 
marine gamma 

proteobacterium HTCC2148 
1236 Gammaproteobacteria class 

247639 
marine gamma 

proteobacterium HTCC2080 
1236 Gammaproteobacteria class 

314283 Reinekea sp. MED297 1236 Gammaproteobacteria class 

314285 Congregibacter litoralis KT71 1236 Gammaproteobacteria class 

391615 
gamma proteobacterium 

HTCC5015 
1236 Gammaproteobacteria class 

394104 
Endoriftia persephone 

'Hot96_1+Hot96_2' 
1236 Gammaproteobacteria class 

312284 
marine actinobacterium 

PHSC20C1 
1760 Actinobacteria (class) class 

314260 
Parvularcula bermudensis 

HTCC2503 
28211 Alphaproteobacteria class 

331869 
alpha proteobacterium 

BAL199 
28211 Alphaproteobacteria class 

314607 beta proteobacterium KB13 28216 Betaproteobacteria class 

262489 
delta proteobacterium 

MLMS-1 
28221 Deltaproteobacteria class 
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Supplementary Table 13: Performance evaluation of the different binning methods on a 
simulated data set of short fragments of varying lengths. Note that the performance 
measures are not monotonic with respect to the taxonomic ranks; as the lowest-level 
clades representing the test fragments belong to different taxonomic ranks for different 
organisms of the test data (Supplementary Table 3 and supplementary notes online), 
thus performance may differ across taxonomic ranks. The evaluation at genus rank 
quantifies over-binning. “PhyloPythiaS-3fold” rows show an evaluation in a 3-fold 
validation setup, in which complete genome sequences and whole genome assemblies 
were pooled and randomly split into 3 partitions.  
 

A. 100 bp 
Rank Method Specificity Sensitivity Accuracy 

Genus 

PhyloPythiaS -- 91.60 91.60 

MEGAN -- 87.81 87.81 

Phymm -- 2.31 2.31 

PhymmBL -- 1.67 1.67 

PhyloPythiaS-3fold -- 74.54 74.54 

Family 

PhyloPythiaS 23.04 4.93 46.58 

MEGAN 61.71 17.06 54.27 

Phymm 15.19 5.74 9.50 

PhymmBL 33.30 18.57 14.58 

PhyloPythiaS-3fold 22.76 11.77 47.62 

Order 

PhyloPythiaS 18.20 6.02 14.51 

MEGAN 61.66 15.82 22.66 

Phymm 16.63 11.39 10.77 

PhymmBL 27.88 22.98 19.40 

PhyloPythiaS-3fold 20.92 9.66 22.02 

Class 

PhyloPythiaS 34.31 10.77 14.66 

MEGAN 70.86 15.00 17.86 

Phymm 22.69 16.95 24.91 

PhymmBL 32.97 25.10 33.94 

PhyloPythiaS-3fold 23.28 14.27 20.39 

Phylum 

PhyloPythiaS 37.76 12.27 25.97 

MEGAN 75.17 10.65 18.54 

Phymm 26.95 21.77 41.69 

PhymmBL 36.72 29.93 50.72 

PhyloPythiaS-3fold 25.05 15.40 28.18 

Domain 

PhyloPythiaS 51.16 59.25 90.86 

MEGAN 99.47 34.01 67.33 

Phymm 51.13 55.37 91.01 

PhymmBL 52.07 57.64 93.54 

PhyloPythiaS-3fold 70.03 51.72 92.72 
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B. 300 bp 

Rank Method Specificity Sensitivity Accuracy 

Genus 

PhyloPythiaS -- 91.50 91.50 

MEGAN -- 79.62 79.62 

Phymm -- 2.74 2.74 

PhymmBL -- 2.19 2.19 

PhyloPythiaS-3fold -- 72.33 72.33 

Family 

PhyloPythiaS 32.12 6.31 47.93 

MEGAN 65.72 23.19 54.41 

Phymm 24.11 11.19 12.79 

PhymmBL 41.09 24.80 19.81 

PhyloPythiaS-3fold 38.02 19.30 49.68 

Order 

PhyloPythiaS 29.65 9.66 18.23 

MEGAN 71.65 23.98 29.05 

Phymm 24.76 20.06 17.71 

PhymmBL 38.27 33.18 28.25 

PhyloPythiaS-3fold 33.33 16.00 27.26 

Class 

PhyloPythiaS 44.76 15.39 22.09 

MEGAN 80.84 23.11 26.81 

Phymm 33.18 24.74 35.32 

PhymmBL 46.30 36.65 45.68 

PhyloPythiaS-3fold 33.50 20.69 28.89 

Phylum 

PhyloPythiaS 45.12 18.38 33.80 

MEGAN 88.09 21.29 28.48 

Phymm 36.38 30.29 50.82 

PhymmBL 52.89 41.78 59.33 

PhyloPythiaS-3fold 34.80 20.06 37.48 

Domain 

PhyloPythiaS 52.50 66.22 92.89 

MEGAN 99.86 40.34 63.21 

Phymm 53.58 62.29 92.96 

PhymmBL 57.20 72.46 94.46 

PhyloPythiaS-3fold 73.82 54.61 94.53 

 
C. 500 bp 

Rank Method Specificity Sensitivity Accuracy 

Genus 

PhyloPythiaS -- 90.53 90.53 

MEGAN -- 74.61 74.61 

Phymm -- 2.86 2.86 

PhymmBL -- 2.27 2.27 

PhyloPythiaS-3fold -- 69.90 69.90 

Family 
PhyloPythiaS 41.89 8.45 49.73 

MEGAN 67.88 26.60 54.66 
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Phymm 33.48 14.85 15.56 

PhymmBL 50.46 29.04 22.75 

PhyloPythiaS-3fold 43.89 24.16 51.02 

Order 

PhyloPythiaS 35.25 13.13 21.35 

MEGAN 67.34 28.58 32.28 

Phymm 31.33 25.44 21.93 

PhymmBL 42.59 38.44 32.56 

PhyloPythiaS-3fold 38.76 20.28 31.21 

Class 

PhyloPythiaS 52.60 19.15 28.18 

MEGAN 81.59 28.25 31.74 

Phymm 38.96 28.77 40.35 

PhymmBL 53.33 41.67 50.70 

PhyloPythiaS-3fold 37.85 24.72 33.97 

Phylum 

PhyloPythiaS 51.87 23.06 39.15 

MEGAN 88.94 27.62 34.57 

Phymm 45.52 34.66 54.77 

PhymmBL 60.84 46.52 63.28 

PhyloPythiaS-3fold 38.78 22.74 42.49 

Domain 

PhyloPythiaS 52.75 67.33 93.14 

MEGAN 99.85 50.73 71.04 

Phymm 55.23 66.02 93.48 

PhymmBL 59.65 77.14 94.92 

PhyloPythiaS-3fold 76.30 56.04 95.29 

 
D. 800 bp 

Rank Method Specificity Sensitivity Accuracy 

Genus 

PhyloPythiaS -- 90.21 90.21 

MEGAN -- 67.93 67.93 

Phymm -- 3.49 3.49 

PhymmBL -- 2.64 2.64 

PhyloPythiaS-3fold -- 66.65 66.65 

Family 

PhyloPythiaS 48.36 10.76 52.13 

MEGAN 65.61 28.25 53.92 

Phymm 40.26 20.54 19.42 

PhymmBL 54.06 33.05 25.97 

PhyloPythiaS-3fold 48.18 30.10 52.21 

Order 

PhyloPythiaS 45.18 16.98 26.07 

MEGAN 64.05 32.01 36.07 

Phymm 33.30 30.79 27.52 

PhymmBL 45.17 43.20 37.88 

PhyloPythiaS-3fold 42.88 25.24 35.40 

Class PhyloPythiaS 59.58 22.13 33.99 
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MEGAN 78.37 31.96 37.71 

Phymm 44.69 32.67 45.32 

PhymmBL 55.34 45.53 55.54 

PhyloPythiaS-3fold 42.56 28.88 39.32 

Phylum 

PhyloPythiaS 58.70 29.27 44.46 

MEGAN 88.53 33.05 43.20 

Phymm 52.97 39.03 57.68 

PhymmBL 66.04 50.47 66.04 

PhyloPythiaS-3fold 42.41 25.82 47.71 

Domain 

PhyloPythiaS 55.45 81.52 94.24 

MEGAN 99.91 54.84 73.81 

Phymm 58.00 72.34 93.44 

PhymmBL 62.10 81.09 94.96 

PhyloPythiaS-3fold 78.53 57.23 95.88 

 
E. 1000 bp 

Rank Method Specificity Sensitivity Accuracy 

Genus 

PhyloPythiaS -- 89.44 89.44 

MEGAN -- 66.32 66.32 

Phymm -- 3.21 3.21 

PhymmBL -- 2.58 2.58 

PhyloPythiaS-3fold -- 65.40 65.40 

Family 

PhyloPythiaS 49.04 11.67 53.00 

MEGAN 65.48 29.02 53.79 

Phymm 45.68 21.81 20.35 

PhymmBL 57.44 34.58 27.04 

PhyloPythiaS-3fold 50.63 33.08 53.10 

Order 

PhyloPythiaS 46.58 19.29 27.71 

MEGAN 65.02 32.64 36.95 

Phymm 38.01 32.25 29.11 

PhymmBL 47.24 44.65 39.58 

PhyloPythiaS-3fold 45.23 27.51 37.62 

Class 

PhyloPythiaS 64.88 24.66 36.67 

MEGAN 78.57 33.22 39.31 

Phymm 46.31 33.94 46.86 

PhymmBL 57.99 46.90 57.01 

PhyloPythiaS-3fold 43.35 31.01 41.94 

Phylum 

PhyloPythiaS 63.71 31.75 47.03 

MEGAN 89.64 34.66 45.18 

Phymm 54.95 39.97 58.97 

PhymmBL 67.20 51.17 67.18 

PhyloPythiaS-3fold 44.54 27.40 50.23 
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Domain 

PhyloPythiaS 56.08 81.58 94.89 

MEGAN 99.95 55.10 73.82 

Phymm 57.40 70.10 93.71 

PhymmBL 61.11 78.62 94.91 

PhyloPythiaS-3fold 79.55 57.76 96.21 
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Supplementary Table 14: Execution time comparison for different methods for 
characterization of the three real metagenome samples. The sample sizes are 
approximately 16 Mb, 113 Mb and 72 Mb for TW, TS28 and TS29 respectively. 
 

 
 
 

 
 
 

Method 
Time (DD:HH:MM:SS) 

TW TS28 TS29 

PhyloPythiaS 00:00:08:36 00:01:13:43 00:00:46:28 

PhyloPythia 00:03:12:43 01:08:04:25 00:21:18:27 
PhymmBL 00:15:09:51 07:13:54:01 04:15:53:44 

MEGAN 00:12:10:14 -- -- 
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Supplementary Note 
 

Genomes and Draft assemblies 

As reference data for the different experiments we use the sequences of complete 

genomes and whole genome shotgun projects from NCBI GenBank 

(ftp://ftp.ncbi.nih.gov/genbank/), state of May 2009. This corresponds to 851 complete 

genomes and 917 whole genome shotgun assemblies. The use of this data is described 

more in detail for the individual experiments. 

 

Performance measures 

For evaluation on the simulated data sets we compute the sensitivity and specificity2 of 

assignments, averaged over all n clades at a respective taxonomic rank3. Thus, the 

average sensitivity, or macro-accuracy, and specificity are defined as follows: 

ii

i
n

i FP+TP

TP

n
=yspecificit 

1

1

 

)(
1

1

11

1

1 



 





FNTP

TP

FN+TP

TP

n
=ysensitivit

n

i ii

i  

 

The index -1 denotes items that do not belong to any of the n modeled clades for a given 

rank. Furthermore, we compute the classification accuracy, which corresponds to the 

overall number of correctly classified items at a given taxonomic rank. Note that while 

the macro-accuracy measures the classification accuracy averaged over all classes 
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represented in a test data set, the accuracy measures classification performance for a 

given data set in a way that every input item contributes equally. This distinction 

becomes important if clades are represented unequally in a given data set, such as is 

often the case for metagenomic data. In this case, the overall classification accuracy 

becomes a more relevant performance measure than the macro-accuracy of 

assignments. 

FN+TP

TP
=accuracy  

Ideally, a method should score well in terms of all measures.  

 

As for real metagenome samples the correct taxonomic assignment of the fragments is 

not known, measuring the binning performance on real metagenome samples cannot be 

done with traditional measures such as the  accuracy, sensitivity and specificity cannot 

be calculated. We use here an intuitive and informative measure for assessing the 

binning performance of a method3.  

 

Assume that for a metagenome data set the reads are assembled into contigs and that a 

set of contigs are known to jointly originate from a given genome, based on mate pair 

information, which is denoted by their grouping into a scaffold.  A binning method is 

used for taxonomic assignment of the contigs. The scaffold-contig consistency measures 

the consistency of the taxonomic assignments for a scaffold in terms of its constituent 

contig assignments. For this purpose, each scaffold is first labeled with the assignment of 
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one of its constituent contigs with the lowest taxonomic rank. In case there are multiple 

lowest rank assignments, then the assignment with longest collective contig length is 

used. The consistency of scaffold assignments is then measured with respect to this 

taxonomic label. For each contig of a scaffold, the taxonomic assignment is considered to 

be consistent if it is either the same or a more general taxonomic assignment with 

respect to the true taxonomic origin of the scaffold; otherwise it is considered an 

inconsistent assignment. The percentage of consistently assigned contig base-pairs is the 

scaffold-contig consistency. The scaffold-contig consistency is then averaged over all the 

scaffolds with the same assignment, to measure the assignment consistency of a clade. 

Furthermore, we also calculate average taxonomic distance of contig assignments in 

terms of the path distance to the scaffold label as a more fine grained consistency 

measure. High scaffold-contig consistency is a desirable property for a binning method. 

For a given data set we use the same reference taxonomy for all the methods for 

calculating scaffold-contig consistency. 

 

METHODS 

Large margin structured output learning 

Following standard nomenclature, we denote the input and output spaces by X and Y, 

respectively. A supervised method learns a function YXf : , which assigns an output 

y to a given input x. In other words, a supervised learning algorithm learns a function f 

given a set of input-output pairs,   N,=iYXy,x=S ii  1,2,: drawn from an 

unknown joint distribution  YX,p . This function can then be used to assign output to 
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new input items. A function is said to have a good generalization capacity if it performs 

well on unseen data. Vapnik4 showed that a maximum margin classification technique, 

called support vector machine (SVM)5, has a very good generalization ability. SVMs have 

become state-of-the-art methods for classification tasks and have shown excellent 

empirical performance. Recently, methods have been proposed6-8 which extend the 

large margin framework to structured output problems. These methods exploit the 

known inter-dependencies between the elements in the output space to learn large 

margin functions. 

 

We model the taxonomic classification problem as a structured output prediction 

problem where the inputs are the genomic sequence fragments and the outputs are the 

paths in a known taxonomy. The association between the input and output is encoded 

with a joint feature space. We introduce these concepts first before describing the 

learning and inference processes.  

 

Input space 

Various studies3,9-11 have shown that the composition of a genomic sequence in terms of 

its constituent sub-strings carries a phylogenetic signal which can be used for 

phylogenetic classification. As before, we use sequence composition-derived features to 

represent the input space X. Counts of oligonucleotides of length 4, 5 and 6 represent a 

sequence fragments in this input space, which are normalized by the sequence fragment 

length. Each sequence is thus represented by a vector of length 5376, we denote this 
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transformation with φ . A suffix tree-based algorithm is used to compute sequence 

composition in linear time with respect to sequence length. Each input feature 

(oligonucleotide counts) is normalized to mean zero and standard deviation one. See 

supplementary methods for details. 

 

Output space 

Our output structure is a hierarchy of the evolutionary clades. This hierarchical 

representation encodes the evolutionary relationships between the clades. In particular, 

we use the relationships defined by the NCBI taxonomy 

(http://www.ncbi.nlm.nih.gov/Taxonomy/) as the reference, unless specified otherwise. 

In this structured representation, each output y corresponds to a valid path in the 

hierarchy. Each path can be encoded as a binary vector of length n, where n is the 

number of nodes. In this vector, the elements corresponding to the nodes in the path 

are set to one. We denote this binary encoding by. A hidden terminal child node is 

added to an internal node if some training examples are assigned to it.  

 

Joint feature space 

Joint kernels are used to explicitly specify known input-output and output-output 

correlations resulting in an extended feature space. We encode the relationship between 

an input vector x and an output path y via a joint feature mapΨ . The joint feature map 

is defined as the Kronecker (tensor) product between the input sequence x and the 

binary vector representation of output path y.  

Nature Methods, vol. 8, no. 3 McHardy, A.C. et al.

http://www.ncbi.nlm.nih.gov/Taxonomy/


34 
Patil, K.R. et al., Taxonomic metagenome sequence assignment with structured 
output models 

 

     yxφ=yx,Ψ   

 

The Kronecker product kernel can be decomposed into element-wise product of input 

and output kernels: 

 

        
T

XY X YK Ψ x, y ,Ψ x', y' = K x,x' K y, y' . 

 

Loss function 

The discrepancy between two outputs is measured using a loss function )ˆ,( yy . For 

structured output problems the traditional zero-one loss, used in flat classification, is not 

appropriate, because the distance between true and predicted output in the taxonomic 

tree has to be taken into account. In this case, problem-specific loss functions can be 

used, which satisfies two conditions: 1) the loss is 0 if two outputs are the same and 2) 

the loss function is monotonic with respect to the discrepancy to the true output. In the 

case of PhyloPythiaS the output structure is taxonomy, and an output is a path in the 

hierarchy. We measure the discrepancy between a pair of paths using the shortest path 

distance between the terminal nodes of the corresponding paths. This is accomplished 

by finding the lowest common ancestor of the terminal nodes. Various other loss 

functions can be implemented12,13 but our experiments (data not shown) showed that 

they have little or no effect on the predictive performance. 
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Learning and Inference 

The large-margin structured-output formulation learns a continuously-valued scoring 

function such that for a particular input the correct output ranks higher than any other 

output. In this case, the input space X corresponds to the genome sequence fragment 

derived features, while the output space Y corresponds to the taxonomic hierarchy. The 

learned function takes the form, 

 

   wy;x,Fargmax=wx;f Yy  . 

 

Here the scoring function F is a linear function; 

 

   yx,Ψw=wy;x,F T . 

 

where  maps the input output pair  yx,  to a joint feature space. We use the 

maximum margin structural support vector machine framework7 to find the parameter 

vector w.  Specifically, we use a linear penalty term (1-slack) with the slack-rescaling 

formulation of the structural SVM6 for learning the optimal w given a training set of size 

N. The primal formulation is given below; 
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This formulation has only one slack variable per example that is shared by all constraints 

of the example. Joachims et al.6 show that dual form of this problem has a sparse 

solution (in number of non-zero dual variables) independent of the size of the training 

set. Also a tractable cutting plane algorithm is proposed which iteratively adds the most 

strongly violated constraint to the working set. The reader is referred to Joachims et al.6 

for the dual formulation and more details on the algorithm. 

 

The training procedure gives the optimal linear discriminant w for a given training set 

and the parameter C. At inference time, for classification of a new example, the score 

for the new input x is computed for all possible outputs in the joint feature space and 

the new example is assigned to the highest scoring output path. 

 

 yx,Ψwargmax T

Yy  

 

Ensemble of classifiers 

Individual classifiers can be inaccurate, especially if the data is noisy or heterogeneous. 

For this reason we use an ensemble of classifiers instead of a single classifier. The idea 

behind an ensemble strategy is that if one classifier makes a mistake it can be corrected 
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by other classifiers, which in effect improves specificity. We designed a simple ensemble 

strategy to combine multiple classifier outputs, where each output is a path in the 

hierarchy. We define an ensemble output as the majority vote lowest node of different 

output paths. In other words, we take the longest path in which majority of the 

classifiers are in agreement. Note that this ensemble supports the prediction of partial 

paths. 

 

Sequence composition space 

Sequence composition allows each sequence fragment to be represented as a fixed 

length vector and similarity between a pair of sequences can be computed using this 

vectorized representation. Let  kαα,αf ...21  be frequency of an oligonucleotide of length 

k then for all possible oligonucleotides of length k with 4-letter DNA alphabet {A, C, G, 

T}. A sequence thus can be represented as a vector  kf,f,f
421  of length k4 . In our 

experiments we use a concatenation of oligonucleotides of lengths 4, 5 and 6. Thus, 

each sequence fragment is represented as a vector of length 5376.  

 

Suffix trees were used for efficient enumeration of the oligonucleotides in a string. A 

suffix tree can be constructed in linear time and space. Once a suffix tree is available, 

sub-strings can be enumerated in time linearly proportional to the sub-string length. We 

used the gsuffix library (http://gsuffix.sourceforge.net), which provides an 

implementation of generalized suffix tree algorithm in C language.  
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Pre-processing and models 

As the sequence fragments can be of different lengths, we need to account for the 

lengths, so that they can be compared. Various normalization factors can be used, like 

string length, number of k-mers or markov-chains14. We use sequence length as 

normalization factor for PhyloPythiaS. 

 

Once all the feature vectors for the sequence fragments in the training set are 

computed, the data set is represented as a matrix in the SVM-light sparse matrix format. 

The columns of this matrix represent the oligonucleotide features and the rows 

represent individual training sequence fragments. All the columns of this matrix (the 

oligonucleotide features) are normalized to have zero mean and standard deviation of 

one. The mean and standard deviation of every feature (or any other pre-processing 

information) is stored in the model files for later use in the prediction.  

 

For efficiency purpose instead of storing the support vectors, which is a common 

practice, we directly store the optimal weight vector in the model file. As we strictly use 

a linear kernel this does not result in any penalties. 

 

We use sequence fragments of length 1000, 3000, 5000, 10000, 15000 and 50000 to 

create six structural SVM models. At prediction time three models closest to the length 

of the test sequence are used in an ensemble. We used approximately 10,000 examples 

to train each model. All models were trained with a parameter setting of C=1000, 
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determined as setting with best-accuracy in 3-fold cross-validation on data used in3. 

When sample-specific data was available we use a sliding window of 10% of the 

fragment length to create the sample-specific training examples.  The sample-specific 

examples were used in addition to the 10,000 examples generated using publically 

available sequences. 

 

At prediction time three models closest to the length of the test sequence are used is an 

ensemble, as discussed above. 

 

Use of dynamic programming 

Each output in our structured output prediction problem is a path in taxonomy. Both 

learning and inference processes depend on a compatibility score, which measures the 

strength of association between an input-output pair. Let’s assume two paths P1 and P2 

in the hierarchy are represented by nodes 321 ,, nnn  and 21 ,nn , respectively. Please 

note that this not the binary representation of the paths, but just enumeration of 

constituent nodes. Furthermore assume the dependency relationship 321 nnn  , 

saying that n1 is parent of n2 and n2 is parent of n3. The compatibility score of these 

paths for a given input vector x are given by; 

 

),(),(),(),( 3211 nxFnxFnxFPxF   

),(),(),( 212 nxFnxFPxF   

Nature Methods, vol. 8, no. 3 McHardy, A.C. et al.



40 
Patil, K.R. et al., Taxonomic metagenome sequence assignment with structured 
output models 

 

Thus calculation of the compatibility score of the whole path, needs compatibility score 

of its constituent nodes. Using this knowledge, the hierarchy can be traversed in top-

down fashion enumerating compatibility of all possible paths (outputs), which is 

necessary for both learning and inference. As a concrete example, the compatibility 

score for path P1 can be rewritten as follows; 

 

),(),(),( 321 nxFPxFPxF   

                                

Same data for all methods 

A fair comparison between different methods tailored for same task requires that they 

are provided with the same information. In the binning task we use different sources of 

reference sequences; NCBI complete genomes, NCBI draft assembles and sample specific 

data (when available). In the following section we describe the steps taken in order to 

allow the different taxonomic classification methods to make use of the same 

information. 

 

Phymm and PhymmBL 

The PhymmBL package was downloaded from the Nature Methods website 

(http://www.nature.com/nmeth/journal/v6/n9/extref/nmeth.1358-S2.zip). This 

software by default downloads the NCBI RefSeq data and builds IMM on the 

corresponding sequences. Phymm does not allow training on arbitrary sequences (unless 
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some specific conditions on the fasta headers and folder names are met). We changed 

the perl scripts to allow use of arbitrary training data, so that NCBI draft assemblies and 

sample specific data could be used. 

 

MEGAN 

MEGAN (version 3.9) was downloaded from the website (http://www-ab.informatik.uni-

tuebingen.de/software/megan). MEGAN can detect standard NCBI names in the BLAST 

output, so including sample specific data was straight forward. We created various 

BLAST databases; NCBI complete genomes, NCBI draft assemblies and sample specific 

data (when available) using the “formatdb” program (available with blast at 

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/release/LATEST/). For sample specific data, 

care was taken to include the organism names in the fasta headers before formatting 

them as a BLAST database, so that MEGAN could detect their taxonomic position. 

Default MEGAN parameters for LCA were used. Database searches were performed using 

blastn to appropriate databases using blast alias files. Complexity filter was turned off 

with option –F “m D” when performing blast searches. 

 

PhyloPythiaS and PhyloPythia 

Both PhyloPythia and PhyloPythiaS can directly incorporate arbitrary training data, given 

appropriate class labels. So using appropriate data for different experiments was 

straightforward.  
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TEST AND REFERENCE DATA SETS 

All the experiments were performed in hold-out fashion. That is, if a genome sequence 

or a part of it was present in a test data set then the corresponding reference sequence 

was removed from the reference sequence set. A 3-fold validation experiment was 

performed on the simulated short fragment data sets (p. 43). Additional details, if any, 

are mentioned in the respective context. 

 

Simulated acid mine drainage data set (simMC) 

We analyzed the simulated acid mine drainage data set (simMC)15 to evaluate the 

performance of the different binning methods. We used the data set of contigs 

assembled with the Arachne assembler, which consist of 7307 contigs of which ~99% 

come from six strains of three species (two strains each); Rhodopseudomonas palustris, 

Bradyrhizobium sp. BTAi1 and Xylella fastidiosa. The average contig length is 2332 bp. 

We used the NCBI complete genomes as reference/training of models for the taxonomic 

assignment of this data set. Controlled sets of genomes were excluded as described in 

the evaluation section below. 

 

Simulated short fragment data sets (simSF) 

The benchmark data sets were constructed with two constraints:  First, the fragments to 

be characterized should not belong to any of the organisms represented among the 

reference sequences, as metagenome sample populations are rarely among the 

available sequenced isolate genomes. Secondly, they should be chosen such that the 
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closest reference genomes are found at different taxonomic ranks, to model different 

degrees of evolutionary relatedness of metagenome sample populations to available 

reference sequences. To simulate this set-up, sequences from the NCBI genomes 

database were used as reference data for model construction. One hundred isolate 

sequences from the NCBI whole genome shotgun database with no mapping to any of 

the genera of the reference data were used for testing. Of the latter, 48 belong to a 

family, 39 to an order and 13 to a class of the reference taxonomy (Supplementary table 

3 online). Approximately 10,000 non-overlapping fragments of 100, 300, 500, 800 and 

1000 bp in length were randomly sampled from the selected isolate sequences to create 

fragment test sets of varying lengths. 

 

The simulated short fragment test set is sampled equally from a large number of 

organisms with varying degrees of relationships to the reference data. Fragment lengths 

vary from 100bp to 1000bp and the test sequence fragments belong to 'unknown 

genomes', i.e. they were not used for training or reference. This is one of the most 

complex tasks in metagenome sample classification; for a real sample corresponding to 

the task of assigning individual unassembled reads of rare organisms without reference 

sequences available to correct higher-level clades. The test fragments do not map to any 

genus in the reference taxonomy (or available reference sequences). The lowest clades 

that the fragments map to in the reference taxonomy are at varying taxonomic ranks 

above the rank of genus (Supplementary Table 3). Thus, no assignment to a genus-level 

clade is the optimal result for fragments of this data set; meaning that genus-level 
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assignment specificity can be computed, while sensitivity of assignments, indicates the 

portion of correctly ‘not assigned’ test fragments. 

 

Besides the hold-out experiment, we furthermore performed 3-fold cross validation for 

PhyloPythiaS on the pooled data of complete genome sequences and whole genome 

assemblies. The data were split into three random sets according to their genus 

affiliations. Genome sequences belonging to one of these sets were used to generate 

short fragment test data, while the sequences of other two sets were used for training. 

This procedure was repeated for each of the three sets and assignment accuracy 

determined. The averaged sensitivity, specificity and accuracy values obtained are 

reported in Supplementary Table 2.  

 

We used the genome sequences from NCBI complete genomes as reference data for 

model construction. For PhyloPythiaS, we built different length models (1000, 3000, 

5000, 10000, 15000 and 50000 base-pairs) with approximately 10,000 input examples 

and the output hierarchy restricted to at least three genomes per leaf node. This 

resulted in a hierarchy of 192 nodes, out of which 101 were leaf nodes. 178 nodes had 

sequences assigned to them in training, as the lowest level representative in the 

hierarchy for a given organism. 

 

Tammar wallaby gut microbiome (TW) 

Microbial communities from the gut of the Australian Tammar wallaby (Macropus 
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eugenii) were sequenced by Sanger sequencing16 (GenBank accession number 

ADGC00000000). This sample consists of approximately 13.572 Mb of assembled DNA 

sequence, with contig lengths varying in length from 438 bp to 27,865 bp (average 

length 2,276.38 bp) (Supplementary Fig. 1). 16S rRNA analysis determined that 

organisms from the phyla Firmicutes and Bacteroidetes and the gamma-subdivision of 

Proteobacteria are abundant. This sample contains three abundant microbial 

populations, namely Wallaby gut 1 (WG-1 - a population of an uncultured 

Succinivibrionaceae bacterium), WG-2 (of a novel deep branching lineage within the 

Lachnospiraceae) and WG-3 (a novel bacterium of the Erysipelotrichaceae).  

 

For taxonomic sample characterization, sample-specific models were constructed by 

combining publicly available sequences from NBCI (complete genomes and draft 

assemblies) with sample-specific data identified based on taxonomic marker genes and 

sequencing of a scaffold metagenome library. 

 

Human gut metagenome samples (HG-TS28 and HG-TS29) 

Two metagenome sequence samples from the gut of two human monozygotic, female 

twins were obtained by 454 deep sequencing of the total fecal community DNA with 454 

Titanium single- and paired-end protocols17 (referred to as TS28 and TS29). We analyzed 

approximately 113 Mb and 72 Mb of assembled contig sequences for TS28 and TS29, 

respectively. Sample-specific training data was obtained with BLASTN homology 

searches versus a reference database of 118 sequenced gut genomes. Training data was 
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identified based on the following criteria; e-value<10-5, bitscore>50, percent 

identity>90, percent sequence aligned>90, and total contig length >2 kb. Furthermore, 

all significant matches were required to originate from the same reference genome.  

PhyloPythiaS and PhyloPythia models were constructed for 29 (14+15) genus- and 

family-level clades abundant in the sample and relevant higher-level taxonomic clades 

(Supplementary Table 10) using data from 5,548 and 3,391 sample-specific contigs and 

1,775 microbial complete and draft microbial genomes.  For PhyloPythiaS, sample-

specific data was selected with active sampling for training, while for PhyloPythia, a 

subset was taken. For the training of PhymmBL, only assembled and draft genome 

sequences were used. Due to excessive computational requirements of homology 

searches on this data set, we did not perform binning with MEGAN.  

 

Evaluation on simulated short fragment data 

Supplementary Fig. 2 and Table 2 summarize the performance of the different binning 

methods on the simulated short fragment data sets. None of the tested methods show 

acceptable performance on these data sets. As expected, all methods show improving 

performance with increasing fragment length and a trade-off between sensitivity and 

specificity. Overall, MEGAN shows the superior specificity compared to the other 

methods. MEGAN is conservative due to its LCA algorithm, in the sense that it makes 

very specific assignments at the cost of sensitivity. Of the sequence composition-based 

methods, PhyloPythiaS and Phymm, PhyloPythiaS shows better specificity with 

compromised sensitivity. 
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Both Phymm and PhymmBL show comparably low sensitivity at the genus level. This is 

caused by the composition of the test data, for which none of the test fragments belong 

to any of the genus-level clades that are part of the models. Both methods ‘over-bin’ by 

assigning a substantial fraction of sequences to genus-level clades that should be left 

unassigned.  It is interesting to note the drastic performance improvement of PhymmBL 

compared to Phymm for all fragment lengths and at all taxonomic ranks. At family level, 

which is the lowest taxonomic rank with valid assignments to clades included in the 

model, the improvement in specificity is approximately 12-18%, with a bigger effect on 

shorter fragments, and around 13% improvements in sensitivity. This, together with high 

specificity observed for MEGAN indicates that sequence homology information is 

beneficial for short fragment assignment, in the absence of sample-specific training data 

and when closely related genomes are available. For sequence composition, we 

attribute part of the degraded performance to the comparatively weak and noisy 

compositional signal of short fragments. 

 

A “dip” is observed in the specificity at the order level for PhyloPythiaS and other 

methods (Supplementary Table 2). This is due to the construction of the data set. More 

specifically, the test fragments have varying degree of evolutionary relationship with the 

reference sequences (Supplementary Table 3). This is the reason for non-monotonous 

behavior  of the performance measures on this data set.  
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The high sensitivity observed for PhyloPythiaS at genus level is due to the fact that no 

assignments were made at this level. As none of the test fragments can be mapped to 

any reference genus, this is the correct behavior.  

 

Evaluation for dominant populations from novel species, genera or 
order-level clades  

As most of the microorganism diversity is still unknown18 it is very unlikely that complete 

genome sequences of the dominant populations are available as a reference for the 

taxonomic assignment of a metagenome sample. In some cases it is possible to obtain 

limited amounts of sequence data for the dominant populations by phylogenetic analysis 

of conserved marker-genes for the sample or sequencing of additional fosmid libraries 

(sample-specific data). Thus, it is crucial to assess the performance of the binning 

methods when limited amounts or no reference data from closely related organisms are 

available.   

 

On the simulated ‘simMC’ data set, we evaluated performance of the different 

taxonomic classification methods by retaining 100 kb randomly selected contiguous 

fragments from the three dominant strains each as reference data and removing all 

genomes of the (1) same genus, (2) same order and (3) same class for the dominant 

strains. These different experiments are referred to as ‘New genus’, ‘New order’ and 

‘New class’ respectively. This allows us to examine the performance in more realistic 

settings. Supplementary Fig. 1 and Table 1 summarize the results. A drastic drop in the 

Nature Methods, vol. 8, no. 3 McHardy, A.C. et al.



49 
Patil, K.R. et al., Taxonomic metagenome sequence assignment with structured 
output models 

sensitivity and accuracy of the alignment-based methods (MEGAN and PhymmBL) can be 

seen in the absence of the closely related genomes. This is due to the lack of 

homologous regions, as only 100 kb of sequence are available for the dominant 

populations. On the other hand, composition-based methods (PhyloPythiaS and Phymm) 

show better sensitivity and accuracy, of which PhyloPythiaS shows superior 

performance. This demonstrates strength of composition-based methods and the ability 

of PhyloPythiaS to learn accurate models from limited amounts of reference data.  

For the assembled metagenome from the Tammar wallaby gut we evaluated the 

performance of PhyloPythiaS and PhymmBL in the presence and absence of the sample 

specific data. The results (Supplementary Tables 5 and 8) indicate PhymmBL’s over-

binning tendency of assigning most sequences to genus-level clades. These assignments 

can be misleading if genera of the dominant sample populations are not included in the 

reference model. For PhymmBL, out of 530 contigs that were assigned to WG-1, when 

sample-specific data was included, only 33 contigs were assigned to the consistent 

parental clade Gammaproteobacteria without sample-specific data, accompanied by a 

large number of inconsistent assignments in comparison to assignments of the sample-

specific model. In contrast, for the same population, PhyloPythiaS assigned 243 out of 

477 contigs to the consistent general clade Bacteria, in the absence of sample-specific 

data, thus avoiding false positive assignments. Similar observations were made for other 

populations (data not shown). This suggests that PhyloPythiaS is better at assigning 

fragments of the ‘known unknowns’ in metagenome data sets and is robust with respect 

to the reference data. 
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Evaluation for sample populations with closely related genomes 
available 

When closely related complete genomes sequences are available for the populations in 

the metagenome sample, alignment-based methods are at an advantage as the sample 

fragments can be aligned to the respective reference genomes with high confidence. 

For the simMC data set, in the ‘known species’ experiment, complete genome 

sequecnes from NCBI were used as reference data for model training with exception of 

those genomes used to create the simMC data set. No training data of the genomes of 

the respective populations included in simMC were used. Though the exact genomes 

were removed, the reference data includes genomes of either same species (for 

Rhodopseudomonas palustris and Xylella fastidiosa) or same genus (for Bradyrhizobium 

sp. BTAi1). The results are shown in Supplementary Fig. 1 and Table 1.A. At lower 

taxonomic ranks (genus and family), the alignment-based methods show higher 

sensitivity and accuracy compared to the composition-based methods. At higher 

taxonomic ranks sensitivity and accuracy of all methods become more similar. 

PhyloPythiaS maintains high specificity at all taxonomic ranks, while other methods 

show lower specificity at lower taxonomic ranks. 

 

For the human gut metagenomes (HG-TS28 and HG-TS28) PhyloPythiaS and PhyloPythia 

consistently show a similar performance across all taxonomic ranks (Supplementary 

Tables 11-13). PhymmBL also shows a high scaffold-contig consistency, but, in 
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comparison, lesser amounts of sequence are characterized. As no sample-specific data 

was included for the training of PhymmBL for assignment of these samples, the high 

consistency observed in the absence of sample-specific training data is likely due to the 

large number of gut genome sequences from related taxa (122) in reference data which 

contribute to model quality.  

 

NUCMER ANALYSIS OF PHYLOPYTHIAS AND PHYLOPYTHIA 
PREDICTIONS FOR WG-1 POPULATION OF THE TAMMAR WALLABY 
GUT MICROBIOME 

NUCmer19 was used to align the contigs predicted as WG-1 by PhyloPythiaS and 

PhyloPythia, respectively, to the 43 scaffolds obtained for the WG-1 genome. The 

alignment coordinate output (Supplementary material online) shows the contigs aligned 

to the genome of WG-1 for both filtered and unfiltered alignments. In filtering the 

NUCmer output has additionally been run through the delta-filter (settings -q and -r), 

which leave only the contig-genome alignments that form the longest consistent set for 

the query and reference. This reduces the coverage but gives a better mapping.  

 

MARKER GENE BASED BIN VALIDATION OF THE HUMAN GUT FAECAL 
METAGENOMES 

All genes from the microbiome bins were assigned to STRING orthologous20 groups.  A 

neighbor-joining tree was built using clustalw21 version 2.0.12 for each set of marker 

genes after aligning the translated gene sequences from 122 gut genomes and the 

binned scaffolds17. Individual sequences were assigned to taxa based on the consensus 
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taxonomy of all sequences found at the first node. Additionally, the frequency of 

consistent taxonomy between database marker genes and nearest neighbor sequences 

was tallied, and used as a control for the frequency of mis-assignment due to alignment 

errors, improper clustering, and/or disagreement with the marker genes and NCBI 

taxonomy.  We furthermore used cd-hit22 to cluster the protein sequences of the gut 

samples and 122 gut genomes at 60% identity.  The taxonomic consistency of genes 

within these clusters and the respective bin assignments was then analyzed. Both 

PhyloPythia and PhyloPythiaS show a high consistency of taxonomic bin assignments 

within protein clusters (supplementary Table 13). 

 

Availability 

The PhyloPythiaS implementation is freely available for academic use at  

http://binning.bioinf.mpi-inf.mpg.de/download/ 
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