Skip to main content
Kimberly Stark
  • Blooming Prairie, Minnesota, United States

Kimberly Stark

The utility of a new technique for exposure of cultured whole rat embryos to potential dysmorphogens was demonstrated with nitrosofluorene (NF), a cytotoxic and mutagenic metabolite of 2-acetylaminofluorene (AAF). At an initial... more
The utility of a new technique for exposure of cultured whole rat embryos to potential dysmorphogens was demonstrated with nitrosofluorene (NF), a cytotoxic and mutagenic metabolite of 2-acetylaminofluorene (AAF). At an initial concentration in the culture medium of 41 microM, NF produced a 100% incidence of defects in axial rotation with no significant effect on prosencephalic development, consistent with previous reports. This route of exposure was also associated with a significant decrease in yolk sac vasculature and protein content. However, when 2 to 20 ng of NF was microinjected directly into the amniotic space, the predominant malformation observed was prosencephalic hypoplasia. Injection of 10 ng NF resulted in approximately equivalent decreases in viability as 41 microM NF dissolved in the culture medium, but produced only a 41% incidence of rotation defects and a 27% incidence of open neural tubes in the rhombencephalic region. The protein content of injected conceptuses was significantly reduced in the embryo, but not in the visceral yolk sac. When 10 ng of NF was injected inside the yolk sac but outside the amnion, the incidence of abnormal rotation was increased to 75%, and the severity of prosencephalic hypoplasia as well as the incidence of neural tube abnormalities was attenuated. The protein content of both the embryo and yolk sac was significantly decreased relative to that of the controls. The data are consistent with the suggestion that NF elicits defects in axial rotation primarily via its effects on the visceral yolk sac and demonstrate the capacity of this technique to provide insights into mechanistic aspects of chemical dysmorphogenesis.
These investigations were undertaken to determine the extent to which tissues of cultured rat conceptuses contain cytochrome P450 isoforms in sufficient quantities to significantly influence the capacity of certain chemicals to elicit... more
These investigations were undertaken to determine the extent to which tissues of cultured rat conceptuses contain cytochrome P450 isoforms in sufficient quantities to significantly influence the capacity of certain chemicals to elicit dysmorphogenic effects in vitro. Investigations with highly sensitive probe substrates/inhibitors and with immunologic methods enabled the detection of at least four separate P450 isoforms in tissues of the visceral yolk sac, ectoplacental cone, and embryo proper. One of the isoforms was identified as P450IA1 and was found to be inducible by polycyclic aromatic hydrocarbons in all three tissues. Other isoforms exhibited properties differing from characterized adult rat hepatic isoforms. Each of the isoforms was detectable in conceptuses on gestational days 10, 11, 12, and 14 and was present in the highest concentrations in the visceral yolk sac. Conceptal P450IA1 catalyzed the conversion of dysmorphogenically inactive 2-acetylaminofluorene to 7-hydroxy-2-acetylaminofluorene, a proximate dysmorphogen. Investigations with microinjections suggested that visceral yolk sac hydroxylation was largely responsible for the bioactivation reaction in vitro. The same isoform exhibited no capacity to influence the dysmorphogenic activity of cyclophosphamide. The results demonstrated that tissues of cultured rat conceptuses may contain P450 isoforms in sufficient amounts to markedly influence the dysmorphogenic activity of substrates of the corresponding isoforms.
Value in Health, Volume 10, Issue 3, Pages A57, May 2007, Authors:K Payne; JJ Caro; W Daley; ZM Khan; KJ Ishak; K Stark; JM Flack; EJ Velázquez; SD Nesbitt; R Califf.
A 9.5-kilobase plasmid of Yersinia pestis, the causative agent of plague, is required for high virulence when mice are inoculated with the bacterium by subcutaneous injection. Inactivation of the plasmid gene pla, which encodes a surface... more
A 9.5-kilobase plasmid of Yersinia pestis, the causative agent of plague, is required for high virulence when mice are inoculated with the bacterium by subcutaneous injection. Inactivation of the plasmid gene pla, which encodes a surface protease, increased the median lethal dose of the bacteria for mice by a millionfold. Moreover, cloned pla was sufficient to restore segregants lacking the entire pla-bearing plasmid to full virulence. Both pla+ strains injected subcutaneously and pla- mutants injected intravenously reached high titers in liver and spleen of infected mice, whereas pla- mutants injected subcutaneously failed to do so even though they establish a sustained local infection at the injection site. More inflammatory cells accumulated in lesions caused by the pla- mutants than in lesions produced by the pla+ parent. The Pla protease was shown to be a plasminogen activator with unusual kinetic properties. It can also cleave complement C3 at a specific site.
In the context of the Austrian Genome Program, a tissue bank is being established (Genome Austria Tissue Bank, GATiB) which is based on a collection of diseased and corresponding normal tissues representing a great variety of diseases at... more
In the context of the Austrian Genome Program, a tissue bank is being established (Genome Austria Tissue Bank, GATiB) which is based on a collection of diseased and corresponding normal tissues representing a great variety of diseases at their natural frequency of occurrence from a non-selected Central European population of more than 700,000 patients. Major emphasis is put on annotation of archival tissue with comprehensive clinical data, including follow-up data. A specific IT infrastructure supports sample annotation, tracking of sample usage as well as sample and data storage. Innovative data protection tools were developed which prevent sample donor re-identification, particularly if detailed medical and genetic data are combined. For quality control of old archival tissues, new techniques were established to check RNA quality and antigen stability. Since 2003, GATiB has changed from a population-based tissue bank to a disease-focused biobank comprising major cancers such as colon, breast, liver, as well as metabolic liver diseases and organs affected by the metabolic syndrome. Prospectively collected tissues are associated with blood samples and detailed data on the sample donor's disease, lifestyle and environmental exposure, following standard operating procedures. Major emphasis is also placed on ethical, legal and social issues (ELSI) related to biobanks. A specific research project and an international advisory board ensure the proper embedding of GATiB in society and facilitate international networking.
The major advance during the past year was the identification of ligands for two of the previously known position-specific integrins in Drosophila. At the same time, two new Drosophila integrin subunits (one alpha and one beta) were... more
The major advance during the past year was the identification of ligands for two of the previously known position-specific integrins in Drosophila. At the same time, two new Drosophila integrin subunits (one alpha and one beta) were discovered, and significant progress was made on developmental genetic analyses of integrin functions, shedding light on the roles of integrins in Drosophila development.
Abnormalities in functional connectivity between brain areas have been postulated as an important pathophysiological mechanism underlying schizophrenia. In particular, macroscopic measurements of brain activity in patients suggest that... more
Abnormalities in functional connectivity between brain areas have been postulated as an important pathophysiological mechanism underlying schizophrenia. In particular, macroscopic measurements of brain activity in patients suggest that functional connectivity between the frontal and temporal lobes may be altered. However, it remains unclear whether such dysconnectivity relates to the aetiology of the illness, and how it is manifested in the activity of neural circuits. Because schizophrenia has a strong genetic component, animal models of genetic risk factors are likely to aid our understanding of the pathogenesis and pathophysiology of the disease. Here we study Df(16)A+/- mice, which model a microdeletion on human chromosome 22 (22q11.2) that constitutes one of the largest known genetic risk factors for schizophrenia. To examine functional connectivity in these mice, we measured the synchronization of neural activity between the hippocampus and the prefrontal cortex during the performance of a task requiring working memory, which is one of the cognitive functions disrupted in the disease. In wild-type mice, hippocampal-prefrontal synchrony increased during working memory performance, consistent with previous reports in rats. Df(16)A+/- mice, which are impaired in the acquisition of the task, showed drastically reduced synchrony, measured both by phase-locking of prefrontal cells to hippocampal theta oscillations and by coherence of prefrontal and hippocampal local field potentials. Furthermore, the magnitude of hippocampal-prefrontal coherence at the onset of training could be used to predict the time it took the Df(16)A+/- mice to learn the task and increased more slowly during task acquisition. These data suggest how the deficits in functional connectivity observed in patients with schizophrenia may be realized at the single-neuron level. Our findings further suggest that impaired long-range synchrony of neural activity is one consequence of the 22q11.2 deletion and may be a fundamental component of the pathophysiology underlying schizophrenia.
... 9. B. Giros, M. Jaber, SR Jones, RM Wightman, and MG Caron., Nature 379, 1996, 606-612 10. M. Xu, XT. ... 37. RT Windh, R. De La Garza II, EJ Mah, ML Thomas, and KA Cunningham, Society for Neuroscience abstracts 20, 1994, 1545. 38. HP... more
... 9. B. Giros, M. Jaber, SR Jones, RM Wightman, and MG Caron., Nature 379, 1996, 606-612 10. M. Xu, XT. ... 37. RT Windh, R. De La Garza II, EJ Mah, ML Thomas, and KA Cunningham, Society for Neuroscience abstracts 20, 1994, 1545. 38. HP Erickson, J. Cell Biol. ...
Animal models have been useful in elucidating the genetic basis of the cognitive and behavioural phenotypes associated with the 22q11.2 microdeletions. Loss-of-function models have implicated a number of genes as playing a role in... more
Animal models have been useful in elucidating the genetic basis of the cognitive and behavioural phenotypes associated with the 22q11.2 microdeletions. Loss-of-function models have implicated a number of genes as playing a role in prepulse inhibition (PPI) of the startle response. Here, we report the generation and initial analysis of bacterial artificial chromosome (BAC) transgenic (Tg) mice, overexpressing genes from within the 22q11.2 locus. We used engineered BAC constructs to generate Tg lines and quantitative RT-PCR to assess levels of gene expression in each line. We assessed PPI and open-field activity in mice from two low copy number lines. In Tg-1, a line overexpressing Prodh and Vpreb2, PPI was significantly increased at prepulse levels of 78 dB and 82 dB while no differences were found in activity measures. By contrast, no significant differences were found in PPI testing of the Tg-2 line overexpressing Zdhhc8, Ranbp1, Htf9c, T10, Arvcf and Comt. Taken together with previous loss-of-function reports, these findings suggest that Prodh has a key role in modulating the degree of sensorimotor gating in mice and possibly in humans and provide additional support for an important role of this pathway in modulating behavioural deficits associated with genomic gains or losses at 22q11.2.
Here we demonstrate the feasibility of a doubly regulatable transgenic mouse design that allows for gene manipulation by both Cre-recombinase and the tetracycline inducible system. Using a knock-in strategy to insert both elements of the... more
Here we demonstrate the feasibility of a doubly regulatable transgenic mouse design that allows for gene manipulation by both Cre-recombinase and the tetracycline inducible system. Using a knock-in strategy to insert both elements of the tetracycline inducible system and a neomycin (neo) cassette flanked by loxP sequences (floxed) into the wild-type locus, we generated mice that express the 5-HT(1B) receptor in a conditional manner. In the presence of a floxed neo-cassette, receptor expression was silenced. Removal of this cassette by Cre-mediated recombination led to 5-HT(1B) receptor expression, which was highly regulatable when doxycycline, a derivative of tetracycline, was administered to the mice. This system allowed for a determination of an in vivo time course of receptor half-life and recovery. Physiological studies also demonstrated that rescued 5-HT(1B) receptors were functional, and that this functionality was reversible upon treatment with doxycycline. Crossing mice wher...
Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter involved in a number of physiological functions including sleep, appetite, pain perception, and sexual activity. Several pathological states such as migraine, depression, and... more
Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter involved in a number of physiological functions including sleep, appetite, pain perception, and sexual activity. Several pathological states such as migraine, depression, and anxiety have been linked to the serotonergic system, and serotonergic drugs have been used to treat these disorders. To date, there are 14 known serotonin receptor subtypes through which serotonin exerts its multiple actions. The classic pharmacological approach to study how these individual receptor subtypes contribute to various behaviours has been to use selective drugs that either block or activate certain receptor subtypes, and then study the effects of these compounds on physiology and behaviour. A complementary genetic approach is the technique of gene targeting. Using this technology, we and others have begun to examine the contribution of several serotonin receptor subtypes to complex behaviours through the generation of knockout mice that lack the genes encoding these receptors. In this review, we will describe what we have learned about the serotonergic system and the function of the 5-HT(1B) receptor by the analysis of 5-HT(1B) receptor knockout mice. Furthermore, we will discuss the implications of these findings and our plans for future studies.
Animal models have been useful in elucidating the genetic basis of the cognitive and behavioural phenotypes associated with the 22q11.2 microdeletions. Loss-of-function models have implicated a number of genes as playing a role in... more
Animal models have been useful in elucidating the genetic basis of the cognitive and behavioural phenotypes associated with the 22q11.2 microdeletions. Loss-of-function models have implicated a number of genes as playing a role in prepulse inhibition (PPI) of the startle response. Here, we report the generation and initial analysis of bacterial artificial chromosome (BAC) transgenic (Tg) mice, overexpressing genes from within the 22q11.2 locus. We used engineered BAC constructs to generate Tg lines and quantitative RT-PCR to assess levels of gene expression in each line. We assessed PPI and open-field activity in mice from two low copy number lines. In Tg-1, a line overexpressing Prodh and Vpreb2, PPI was significantly increased at prepulse levels of 78 dB and 82 dB while no differences were found in activity measures. By contrast, no significant differences were found in PPI testing of the Tg-2 line overexpressing Zdhhc8, Ranbp1, Htf9c, T10, Arvcf and Comt. Taken together with previous loss-of-function reports, these findings suggest that Prodh has a key role in modulating the degree of sensorimotor gating in mice and possibly in humans and provide additional support for an important role of this pathway in modulating behavioural deficits associated with genomic gains or losses at 22q11.2.
Over the last fifteen years it has become established that 22q11.2 deletion syndrome (22q11DS) is a true genetic risk factor for schizophrenia. Carriers of deletions in chromosome 22q11.2 develop schizophrenia at rate of 25-30% and such... more
Over the last fifteen years it has become established that 22q11.2 deletion syndrome (22q11DS) is a true genetic risk factor for schizophrenia. Carriers of deletions in chromosome 22q11.2 develop schizophrenia at rate of 25-30% and such deletions account for as many as 1-2% of cases of sporadic schizophrenia in the general population. Access to a relatively homogeneous population of individuals that suffer from schizophrenia as the result of a shared etiological factor and the potential to generate etiologically valid mouse models provides an immense opportunity to better understand the pathobiology of this disease. In this review we survey the clinical literature associated with the 22q11.2 microdeletions with a focus on neuroanatomical changes. Then, we highlight results from work modeling this structural mutation in animals. The key biological pathways disrupted by the mutation are discussed and how these changes impact the structure and function of neural circuits is described.
Individuals with 22q11.2 microdeletions show behavioral and cognitive deficits and are at high risk of developing schizophrenia. We analyzed an engineered mouse strain carrying a chromosomal deficiency spanning a segment syntenic to the... more
Individuals with 22q11.2 microdeletions show behavioral and cognitive deficits and are at high risk of developing schizophrenia. We analyzed an engineered mouse strain carrying a chromosomal deficiency spanning a segment syntenic to the human 22q11.2 locus. We uncovered a previously unknown alteration in the biogenesis of microRNAs (miRNAs) and identified a subset of brain miRNAs affected by the microdeletion. We provide evidence that the abnormal miRNA biogenesis emerges because of haploinsufficiency of the Dgcr8 gene, which encodes an RNA-binding moiety of the 'microprocessor' complex and contributes to the behavioral and neuronal deficits associated with the 22q11.2 microdeletion.
22q11.2 microdeletions result in specific cognitive deficits and schizophrenia. Analysis of Df(16)A(+/-) mice, which model this microdeletion, revealed abnormalities in the formation of neuronal dendrites and spines, as well as altered... more
22q11.2 microdeletions result in specific cognitive deficits and schizophrenia. Analysis of Df(16)A(+/-) mice, which model this microdeletion, revealed abnormalities in the formation of neuronal dendrites and spines, as well as altered brain microRNAs. Here, we show a drastic reduction of miR-185, which resides within the 22q11.2 locus, to levels more than expected by a hemizygous deletion, and we demonstrate that this reduction alters dendritic and spine development. miR-185 represses, through an evolutionarily conserved target site, a previously unknown inhibitor of these processes that resides in the Golgi apparatus and shows higher prenatal brain expression. Sustained derepression of this inhibitor after birth represents the most robust transcriptional disturbance in the brains of Df(16)A(+/-) mice and results in structural alterations in the hippocampus. Reduction of miR-185 also has milder age- and region-specific effects on the expression of some Golgi-related genes. Our findings illuminate the contribution of microRNAs in psychiatric disorders and cognitive dysfunction.