Skip to main content

Advertisement

Log in

The long-term relation between physical activity and executive function in the Rotterdam Study

  • NEURO-EPIDEMIOLOGY
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Background

Research on the association between physical inactivity and cognitive decline and dementia is dominated by studies with short-term follow-up, that might be biased by reverse causality.

Objective

Investigate the long-term association between physical activity, cognition, and the rate of age-associated cognitive decline.

Methods

We investigated the association between late-life physical activity and executive functioning and rate of decline of executive abilities during follow-up of up to 16 years, in 3553 participants of the prospective Rotterdam Study cohort. Measurement took place in 1997–1999, 2002–2004, 2009–2011, and 2014–2015.

Results

At baseline (age ± 72 years), higher levels of physical activity were associated with higher levels of executive functioning (adjusted mean difference = 0.03, 95% CI: 0.00 ; 0.06, p = 0.03). This difference remained intact up to 16 years of follow-up. The level of physical activity at baseline was unrelated to the rate of decline of executive abilities over time, in the whole group (adjusted mean difference in changetime*physical activity = 0.00, 95% CI: -0.00 ; 0.01, p = 0.31). However, stratification by APOE genotype showed that the accelerated decline of executive abilities observed in those with the ApoE-ε4 allele might be attenuated by higher levels of physical activity in late adulthood (ApoE-ε4 carriers: Btime*physical activity = 0.01, 95% CI: 0.00 ; 0.01, p = 0.03).

Conclusion

Higher levels of physical activity in late adulthood are related to higher levels of executive functioning, up to 16 years of follow-up. Accelerated decline of executive abilities observed in those with the ApoE-ε4 allele might be mitigated by higher levels of physical activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Vina J, Sanchis-Gomar F, Martinez-Bello V, Gomez-Cabrera M. Exercise acts as a drug; the pharmacological benefits of exercise. Br J Pharmacol. 2012;167:1–12.

    Article  CAS  Google Scholar 

  2. Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, Ballard C, Banerjee S, Burns A, Cohen-Mansfield J, Cooper C, Fox N, Gitlin LN, Howard R, Kales HC, Larson EB, Ritchie K, Rockwood K, Sampson EL, Samus Q, Schneider LS, Selbæk G, Teri L, Mukadam N. Dementia prevention, intervention, and care. Lancet. 2017;390:2673–734.

    Article  Google Scholar 

  3. Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, Brayne C, Burns A, Cohen-Mansfield J, Cooper C, Costafreda SG, Dias A, Fox N, Gitlin LN, Howard R, Kales HC, Kivimäki M, Larson EB, Ogunniyi A, Orgeta V, Ritchie K, Rockwood K, Sampson EL, Samus Q, Schneider LS, Selbæk G, Teri L, Mukadam N. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396:413–46.

    Article  Google Scholar 

  4. Sofi F, Valecchi D, Bacci D, Abbate R, Gensini GF, Casini A, Macchi C. Physical activity and risk of cognitive decline: a meta-analysis of prospective studies. J Intern Med. 2011;269:107–17.

    Article  CAS  Google Scholar 

  5. Hamer M, Chida Y. Physical activity and risk of neurodegenerative disease: a systematic review of prospective evidence. Psychol Med. 2009;39:3.

    Article  CAS  Google Scholar 

  6. Blondell SJ, Hammersley-Mather R, Veerman JL. Does physical activity prevent cognitive decline and dementia?: A systematic review and meta-analysis of longitudinal studies. BMC Public Health. 2014;14:510.

    Article  Google Scholar 

  7. Xu W, Wang HF, Wan Y, Tan CC, Yu JT, Tan L. Leisure time physical activity and dementia risk: A dose-response meta-analysis of prospective studies. BMJ Open. 2017;7:1–10.

    Article  Google Scholar 

  8. Jack CR. Update on hypothetical model of Alzheimer’s disease biomarkers. First Str SW Rochester MN. 2013;55905:207–16.

    Google Scholar 

  9. Sabia S, Dugravot A, Dartigues J-F, Abell J, Elbaz A, Kivimäki M, Singh-Manoux A. Physical activity, cognitive decline, and risk of dementia: 28 year follow-up of Whitehall II cohort study. BMJ. 2017;2709:j2709.

    Article  Google Scholar 

  10. Morgan GS, Gallacher J, Bayer A, Fish M, Ebrahim S, Ben-Shlomo Y. Physical Activity in Middle-Age and Dementia in Later Life: Findings from a Prospective Cohort of Men in Caerphilly, South Wales and a Meta-Analysis. J Alzheimer’s Dis. 2012;31:569–80.

    Article  Google Scholar 

  11. Floud S, Simpson RF, Balkwill A, Brown A, Goodill A, Gallacher J, Sudlow C, Harris P, Hofman A, Parish S, Reeves GK, Green J, Peto R, Beral V. Body mass index, diet, physical inactivity, and the incidence of dementia in 1 million UK women. Neurology. 2020;94:e123–32.

    Article  Google Scholar 

  12. Müller S, Preische O, Sohrabi HR, Gräber S, Jucker M, Ringman JM, Martins RN, McDade E, Schofield PR, Ghetti B, Rossor M, Fox NN, Graff-Radford NR, Levin J, Danek A, Vöglein J, Salloway S, Xiong C, Benzinger T, Buckles V, Masters CL, Sperling R, Bateman RJ, Morris JC, Laske C. Relationship between physical activity, cognition, and Alzheimer pathology in autosomal dominant Alzheimer’s disease. Alzheimer’s Dement. 2018;14:1427–37.

    Article  Google Scholar 

  13. Feter N, Mielke GI, Leite JS, Brown WJ, Coombes JS, Rombaldi AJ. Physical activity in later life and risk of dementia: Findings from a population-based cohort study. Exp Gerontol. 2021;143:111145.

    Article  Google Scholar 

  14. Kokkinos P, Sheriff H, Kheirbek R. (2011) Physical inactivity and mortality risk. Cardiol Res Pract 1.

  15. Colcombe S, Kramer a F. Fitness effects on the cognitive function of older adults. Psychol Sci. 2003;14:125.

    Article  Google Scholar 

  16. Barha CK, Davis JC, Falck RS, Nagamatsu LS, Liu-Ambrose T. Sex differences in exercise efficacy to improve cognition: A systematic review and meta-analysis of randomized controlled trials in older humans. Front Neuroendocrinol. 2017;46:71–85.

    Article  Google Scholar 

  17. Northey JM, Cherbuin N, Pumpa KL, Smee DJ, Rattray B. Exercise interventions for cognitive function in adults older than 50: A systematic review with meta-Analysis. Br J Sports Med. 2018;52:154–60.

    Article  Google Scholar 

  18. Wu Y, Wang Y, Burgess EO, Wu J. The effects of Tai Chi exercise on cognitive function in older adults: A meta-analysis. J Sport Heal Sci. 2013;2:193–203.

    Article  Google Scholar 

  19. Wayne PM, Walsh JN, Taylor-Piliae RE, Wells RE, Papp KV, Donovan NJ, Yeh GY. Effect of Tai Chi on Cognitive Performance in Older Adults: Systematic Review and Meta-Analysis. J Am Geriatr Soc. 2014;62:25–39.

    Article  Google Scholar 

  20. de Asteasu MLS, Martínez-Velilla N, Zambom-Ferraresi F, Casas-Herrero Á, Izquierdo M. Role of physical exercise on cognitive function in healthy older adults: A systematic review of randomized clinical trials. Ageing Res Rev. 2017;37:117–34.

    Article  Google Scholar 

  21. Kelly ME, Loughrey D, Lawlor BA, Robertson IH, Walsh C, Brennan S. The impact of exercise on the cognitive functioning of healthy older adults: A systematic review and meta-analysis. Ageing Res Rev. 2014;16:12–31.

    Article  Google Scholar 

  22. Snowden M, Steinman L, Mochan K, Grodstein F, Prohaska TR, Thurman DJ, Brown DR, Laditka JN, Soares J, Zweiback DJ, Little D, Anderson LA. Effect of exercise on cognitive performance in community-dwelling older adults: Review of intervention trials and recommendations for public health practice and research. J Am Geriatr Soc. 2011;59:704–16.

    Article  Google Scholar 

  23. van Uffelen JGZ, Chin A, Paw MJM, Hopman-Rock M, van Mechelen W. The effects of exercise on cognition in older adults with and without cognitive decline: a systematic review. Clin J Sport Med. 2008;18:486–500.

    Article  Google Scholar 

  24. Lovatel GA, Elsner VR, Bertoldi K, Vanzella C, Moysés FDS, Vizuete A, Spindler C, Cechinel LR, Netto CA, Muotri AR, Siqueira IR. Treadmill exercise induces age-related changes in aversive memory, neuroinflammatory and epigenetic processes in the rat hippocampus. Neurobiol Learn Mem. 2013;101:94–102.

    Article  CAS  Google Scholar 

  25. Young J, Angevaren M, Rusted J, Tabet N. (2015) Aerobic exercise to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst Rev2015.

  26. Brasure M, Desai P, Davila H, Nelson VA, Calvert C, Jutkowitz E, Butler M, Fink HA, Ratner E, Hemmy LS, McCarten JR, Barclay TR, Kane RL. Physical activity interventions in preventing cognitive decline and alzheimer-type dementia a systematic review. Ann Intern Med. 2018;168:30–8.

    Article  Google Scholar 

  27. Rovio S, Kåreholt I, Helkala E-L, Viitanen M, Winblad B, Tuomilehto J, Soininen H, Nissinen A, Kivipelto M. Leisure-time physical activity at midlife and the risk of dementia and Alzheimer’s disease. Lancet Neurol. 2005;4:705–11.

    Article  Google Scholar 

  28. Etnier JL, Caselli RJ, Reiman EM, Alexander GE, Sibley B, Tessier D, Mclemore EC. Cognitive performance in older women relative to ApoE-ε4 genotype and aerobic fitness. Med Sci Sports Exerc. 2007;39:199–207.

    Article  CAS  Google Scholar 

  29. Niti M, Yap K-B, Kua E-H, Tan C-H, Ng T-P. Physical, social and productive leisure activities, cognitive decline and interaction with APOE-epsilon 4 genotype in Chinese older adults. Int Psychogeriatr. 2008;20:237–51.

    Article  Google Scholar 

  30. Shih IF, Paul K, Haan M, Yu Y, Ritz B. Physical activity modifies the influence of apolipoprotein E ε4 allele and type 2 diabetes on dementia and cognitive impairment among older Mexican Americans. Alzheimer’s Dement. 2018;14:1–9.

    Article  Google Scholar 

  31. Schuit AJ, Feskens EJM, Launer LJ, Kromhout D. Physical activity and cognitive decline, the role of the apolipoprotein e4 allele. Med Sci Sports Exerc. 2001;33:772–7.

    Article  CAS  Google Scholar 

  32. Woodard L, Sugarman JA, Nielson MA, Carson Smith K, Seidenberg J, Durgerian M, Butts S, Hantke A, Lancaster N, Matthews MA M. Lifestyle and Genetic Contributions to Cognitive Decline and Hippocampal Structure and Function in Healthy Aging. Curr Alzheimer Res. 2012;9:436–46.

    Article  CAS  Google Scholar 

  33. Fenesi B, Fang H, Kovacevic A, Oremus M, Raina P, Heisz JJ. Physical exercise moderates the relationship of apolipoprotein E (APOE) genotype and dementia risk: a population-based study. J Alzheimer’s Dis. 2017;56:297–303.

    Article  CAS  Google Scholar 

  34. Podewils LJ, Guallar E, Kuller LH, Fried LP, Lopez OL, Carlson M, Lyketsos CG. Physical activity, APOE genotype, and dementia risk: Findings from the Cardiovascular Health Cognition Study. Am J Epidemiol. 2005;161:639–51.

    Article  Google Scholar 

  35. Hsu CL, Best JR, Davis JC, Nagamatsu LS, Wang S, Boyd LA, Hsiung GR, Voss MW, Eng JJ, Liu-Ambrose T. Aerobic exercise promotes executive functions and impacts functional neural activity among older adults with vascular cognitive impairment. Br J Sports Med. 2018;52:184–91.

    Article  Google Scholar 

  36. Liu-Ambrose T, Nagamatsu LS, Graf P, Beattie BL, Ashe MC, Handy TC. Resistance training and executive functions: A 12-month randomized controlled trial. Arch Intern Med. 2010;170:170–8.

    Article  Google Scholar 

  37. Dorbath L, Hasselhorn M, Titz C. Aging and executive functioning: A training study on focus-switching. Front Psychol. 2011;2:257.

    Article  Google Scholar 

  38. Ikram MA, Brusselle G, Ghanbari M, Goedegebure A, Ikram MK, Kavousi M, Kieboom BCT, Klaver CCW, de Knegt RJ, Luik AI, Nijsten TEC, Peeters RP, van Rooij FJA, Stricker BH, Uitterlinden AG, Vernooij MW, Voortman T. Objectives, design and main findings until 2020 from the Rotterdam Study. Eur J Epidemiol. 2020;35:483–517.

    Article  Google Scholar 

  39. Caspersen CJ, Bloemberg BPM, Saris WHM, Merritt RK, Kromhout D. The prevalence of selected physical activities and their relation with coronary heart disease risk factors in elderly men: The zutphen study, 1985. Am J Epidemiol. 1991;133:1078–92.

    Article  CAS  Google Scholar 

  40. Ott A, Breteler MMB, van Harskamp F, Stijnen T, Hofman A. Incidence and Risk of Dementia. Am J Epidemiol. 1998;147:574–80.

    Article  CAS  Google Scholar 

  41. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98.

    Article  CAS  Google Scholar 

  42. Copeland JRM, Kelleher MJ, Kellett JM, Gourlay AJ, Gurland BJ, Fleiss JL, Sharpe L. A semi-structured clinical interview for the assessment of diagnosis and mental state in the elderly: the Geriatric Mental State Schedule: I. Development and reliability. Psychol Med. 1976;6:439.

    Article  CAS  Google Scholar 

  43. Roth M, Tym E, Mountjoy CQ, Huppert FA, Hendrie H, Verma S, Goddard R. CAMDEX. A standardised instrument for the diagnosis of mental disorder in the elderly with special reference to the early detection of dementia. Br J Psychiatry. 1986;149:698–709.

    Article  CAS  Google Scholar 

  44. American Psychiatric Association., American Psychiatric Association. Work Group to Revise DSM-III. (1987) Diagnostic and statistical manual of mental disorders: DSM-III-R., American Psychiatric Association.

  45. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7:263–9.

    Article  Google Scholar 

  46. Ikram MA, Brusselle GGO, Murad SD, van Duijn CM, Franco OH, Goedegebure A, Klaver CCW, Nijsten TEC, Peeters RP, Stricker BH, Tiemeier H, Uitterlinden AG, Vernooij MW, Hofman A. The Rotterdam Study: 2018 update on objectives, design and main results. Eur J Epidemiol. 2017;32:807–50.

    Article  Google Scholar 

  47. Westerterp KR, Saris W, Bloemberg B, Kempen K, Caspersen CJ, Kromhout D. Validation of the Zutphen Physical Activity Questionaire for the Elderly With Doubly Labeled Water. Med Sci Sport Exerc. 1992;24:68.

    Article  Google Scholar 

  48. Bijnen FCH, Feskens EJM, Caspersen CJ, Giampaoli S, Nissinen AM, Menotti A, Mosterd WL, Kromhout D. Physical activity and cardiovascular risk factors among elderly men in Finland, Italy, and the Netherlands. Am J Epidemiol. 1996;143:553–61.

    Article  CAS  Google Scholar 

  49. Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR, Tudor-Locke C, Greer JL, Vezina J, Whitt-Glover MC, Leon AS. 2011 compendium of physical activities: A second update of codes and MET values. Med Sci Sports Exerc. 2011;43:1575–81.

    Article  Google Scholar 

  50. Koolhaas CM, Dhana K, Golubic R, Schoufour JD, Hofman A, Van Rooij FJA, Franco OH. Physical Activity Types and Coronary Heart Disease Risk in Middle-Aged and Elderly Persons: The Rotterdam Study. Am J Epidemiol. 2016;183:729–38.

    Article  Google Scholar 

  51. Jolles H van Boxtel & P (1995) Maastricht Aging Study: Determinants of cognitive aging. Maastricht, The Netherlands: Neuropsych Publishers.

  52. Lezak MD. (1995) Neuropsychological Assessment. 3rd ed. New York: Oxford University Press. 1995..

  53. Welsh KA, Butters N, Mohs RC, Beekly D, Edland S, Fillenbaum G, Heyman A. The consortium to establish a registry for alzheimer’s disease (CERAD). Part V. A normative study of the neuropsychological battery. Neurology. 1994;44:609–14.

    Article  CAS  Google Scholar 

  54. Rosen WG. Verbal Fluency in Aging and Dementia. J Clin Neuropsychol. 1980;2:135–46.

    Article  Google Scholar 

  55. Gunning-Dixon FM, Raz N. Neuroanatomical correlates of selected executive functions in middle-aged and older adults: a prospective MRI study. Neuropsychologia. 2003;41:1929–41.

    Article  Google Scholar 

  56. UNESCO. International Standard Classification of Education (ISCED) - UNESCO Digital Library.

  57. Beekman ATF, Deeg DJH, Van Limbeek J, Braam AW, De Vries MZ, Van Tilburg W. Criterion validity of the Center for Epidemiologic Studies Depression scale (CES-D): Results from a community-based sample of older subjects in the Netherlands. Psychol Med. 1997;27:231–5.

    Article  CAS  Google Scholar 

  58. Radloff LS. The CES-D Scale: A Self-Report Depression Scale for Research in the General Population. Appl Psychol Meas. 1977;1:385–401.

    Article  Google Scholar 

  59. Prakash RS, Voss MW, Erickson KI, Kramer AF. Physical Activity and Cognitive Vitality. Annu Rev Psychol. 2015;66:769–97.

    Article  Google Scholar 

  60. Kodama S, Tanaka S, Saito K, Shu M, Sone Y, Onitake F, Suzuki E, Shimano H, Yamamoto S, Kondo K, Ohashi Y, Yamada N, Sone H. Effect of aerobic exercise training on serum levels of high-density lipoprotein cholesterol: A meta-analysis. Arch Intern Med. 2007;167:999–1008.

    Article  CAS  Google Scholar 

  61. Niti M, Yap KB, Kua EH, Tan CH, Ng TP. Physical, social and productive leisure activities, cognitive decline and interaction with APOE-ε4 genotype in Chinese older adults. Int Psychogeriatr. 2008;20:237–51.

    Article  Google Scholar 

  62. Etnier JL, Caselli RJ, Reiman EM, Alexander GE, Sibley BA, Tessier D, Mclemore EC. Cognitive performance in older women relative to ApoE-ε4 genotype and aerobic fitness. Med Sci Sports Exerc. 2007;39:199–207.

    Article  CAS  Google Scholar 

  63. Dougherty RJ, Jonaitis EM, Gaitán JM, Lose SR, Mergen BM, Johnson SC, Okonkwo OC, Cook DB, Ryan Dougherty CJ. (2021) Cardiorespiratory fitness mitigates brain atrophy and cognitive decline in adults at risk for Alzheimer’s disease.

  64. Chad KE, Reeder BA, Harrison EL, Ashworth NL, Sheppard SM, Schultz SL, Bruner BG, Fisher KL, Lawson JA. Profile of physical activity levels in community-dwelling older adults. Med Sci Sports Exerc. 2005;37:1774–84.

    Article  Google Scholar 

  65. Grzywacz JG, Marks NF. Social inequalities and exercise during adulthood: toward an ecological perspective. J Health Soc Behav. 2001;42:202–20.

    Article  CAS  Google Scholar 

  66. Kaplan MS, Newsom JT, McFarland BH, Lu L. Demographic and psychosocial correlates of physical activity in late life. Am J Prev Med. 2001;21:306–12.

    Article  CAS  Google Scholar 

  67. King AC, Castro C, Wilcox S, Eyler AA, Sallis JF, Brownson RC. Personal and environmental factors associated with physical inactivity among different racial-ethnic groups of U.S. middle-aged and older-aged women. Heal Psychol. 2000;19:354–64.

    Article  CAS  Google Scholar 

  68. Kubzansky LD, Berkman LF, Glass TA, Seeman TE. Is educational attainment associated with shared determinants of health in the elderly? Findings from the macarthur studies of successful aging. Psychosom Med. 1998;60:578–85.

    Article  CAS  Google Scholar 

  69. Kari JT, Viinikainen J, Böckerman P, Tammelin TH, Pitkänen N, Lehtimäki T, Pahkala K, Hirvensalo M, Raitakari OT, Pehkonen J. Education leads to a more physically active lifestyle: Evidence based on Mendelian randomization. Scand J Med Sci Sport. 2020;30:1194–204.

    Article  Google Scholar 

  70. Almeida-Meza P, Almeida-Meza P, Steptoe A, Cadar D. MARKERS OF COGNITIVE RESERVE AND DEMENTIA INCIDENCE IN THE ENGLISH LONGITUDINAL STUDY OF AGEING. Innov Aging. 2019;3:620–0.

    Article  Google Scholar 

  71. Beydoun MA, Beydoun HA, Gamaldo AA, Teel A, Zonderman AB, Wang Y. Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis. BMC Public Health. 2014;14:643.

    Article  Google Scholar 

  72. Farfel JM, Nitrini R, Suemoto CK, Grinberg LT, Ferretti REL, Leite REP, Tampellini E, Lima L, Farias DS, Neves RC, Rodriguez RD, Menezes PR, Fregni F, Bennett DA, Pasqualucci CA, Filho WJ, Group O behalf of the BABS. Very low levels of education and cognitive reserve. Neurology. 2013;81:650–7.

    Article  Google Scholar 

  73. Nguyen TT, Tchetgen EJT, Kawachi I, Gilman SE, Walter S, Liu SY, Manly JJ, Glymour MM. Instrumental variable approaches to identifying the causal effect of educational attainment on dementia risk. Ann Epidemiol. 2016;26:71–6.e3.

    Article  Google Scholar 

  74. Folley S, Zhou A, Hyppönen E. Information bias in measures of self-reported physical activity. Int J Obes. 2018;42:2062–3.

    Article  Google Scholar 

  75. John A, Patel U, Rusted J, Richards M, Gaysina D. Affective problems and decline in cognitive state in older adults: a systematic review and meta-analysis. Psychol Med. 2019;49:353–65.

    Article  CAS  Google Scholar 

  76. Kverno KS, Velez R. Comorbid Dementia and Depression: The Case for Integrated Care. J Nurse Pract. 2018;14:196–201.

    Article  Google Scholar 

  77. Bennett S, Thomas AJ. Depression and dementia: cause, consequence or coincidence? Maturitas. 2014;79:184–90.

    Article  Google Scholar 

  78. Baumeister SE, Karch A, Bahls M, Teumer A, Leitzmann MF, Baurecht H. Physical activity and risk of Alzheimer disease: A 2-sample mendelian randomization study. Neurology. 2020;95:e1897–905.

    Article  Google Scholar 

  79. Andrews S, Marcora E, Goate A. (2019) Causal associations between potentially modifiable risk factors and the Alzheimer’s phenome: A Mendelian randomization study. bioRxiv 689752.

  80. Korologou-Linden R, Howe LD, Millard LAC, Ben-Shlomo Y, Williams DM, Smith GD, Anderson EL, Stergiakouli E, Davies NM. (2020) The causes and consequences of Alzheimer’s disease: phenome-wide evidence from Mendelian randomization. medRxiv 2019.12.18.19013847.

  81. Cheval B, Darrous L, Choi KW, Klimentidis YC, Raichlen DA, Alexander GE, Cullati S, Kutalik Z, Boisgontier MP. (2020) Physical activity and general cognitive functioning: A Mendelian Randomization study. bioRxiv 2020.10.16.342675.

  82. Gorber SC, Tremblay MS. Self-Report and Direct Measures of Health: Bias and Implications. Cham: In Springer; 2016. pp. 369–76.

    Google Scholar 

  83. Larouche R, Chaput J-P, Tremblay MS. New Information on Population Activity Patterns Revealed by Objective Monitoring. Cham: In Springer; 2016. pp. 159–79.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the study participants, the staff from the Rotterdam Study and the participating general practitioners and pharmacists. The Rotterdam Study is funded by Erasmus Medical Centre and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare, and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. The work described here is funded by European Union’s Horizon 2020 Research and Innovation program as part of the CoSTREAM project (Common mechanisms and pathways in Stroke and Alzheimer’s disease, http://www.costream.eu, grant 667375) and by the Netherlands Organization for the Health Research and Development (ZonMw) as part of the projects Memorabel (Dementia research and innovation program - grant 733050303) and PERADES (Defining Genetic, Polygenic and Environmental Risk for Alzheimer’s Disease using multiple powerful cohorts, focused Epigenetics and Stem cell metabolomics – grant 733051021). The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data analysis were performed by S.A. Galle, B. Bonnechere and J. Liu. The first draft of the manuscript was written by S.A. Galle and supervised by M.L. Drent and C.M. van Duijn. All authors commented on previous versions of the manuscript and read and approved the final manuscript.

Corresponding author

Correspondence to Sara A. Galle.

Ethics declarations

Compliance with ethical standards

The Rotterdam Study has been approved by the Medical Ethics Committee of Erasmus MC (registration number MEC 02.1015) and by the Dutch Ministry of Health, Welfare and Sport (Population Screening Act WBO, license number 1071272-159521-PG). All participants provided written informed consent to participate in the study and to have their medical information obtained from treating physicians.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galle, S.A., Liu, J., Bonnechère, B. et al. The long-term relation between physical activity and executive function in the Rotterdam Study. Eur J Epidemiol 38, 71–81 (2023). https://doi.org/10.1007/s10654-022-00902-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-022-00902-4

Keywords

Navigation