Skip to main content
Log in

P2Y4 nucleotide receptor: a novel actor in post-natal cardiac development

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Communication between endothelial cells and cardiomyocytes is critical for cardiac development and regeneration. However the mechanisms involved in these endothelial-cardiomyocyte interactions remain poorly understood. Nucleotides are released within the heart, especially under ischemia or pressure overload. The function of P2Y nucleotide receptors in cardiac development has never been investigated. Here we show that adult P2Y4-null mice display microcardia. P2Y4 nucleotide receptor is expressed in cardiac endothelial cells but not in cardiomyocytes. Loss of P2Y4 in cardiac endothelial cells strongly inhibits their growth, migration and PDGF-B secretion in response to UTP. Proliferation of microvessels and cardiomyocytes is reduced in P2Y4-null hearts early after birth, resulting in reduced heart growth. Our study uncovers mouse P2Y4 receptor as an essential regulator of cardiac endothelial cell function, and illustrates the involvement of endothelial-cardiomyocyte interactions in post-natal heart development. We also detected P2Y4 expression in human cardiac microvessels. P2Y4 receptor could constitute a therapeutic target to regulate cardiac remodelling and post-ischemic revascularisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hsieh PC, Davis ME, Lisowski LK, Lee RT (2006) Endothelial-cardiomyocyte interactions in cardiac development and repair. Annu Rev Physiol 68:51–66

    Article  PubMed  CAS  Google Scholar 

  2. Dutta AK, Sabirov RZ, Uramoto H, Okada YR (2004) Role of ATP-conductive anion channel in ATP release from neonatal rat cardiomyocytes in ischaemic or hypoxic conditions. J Physiol 559:799–812

    PubMed  CAS  Google Scholar 

  3. Nishida M, Sato Y, Uemura A, Narita Y, Tozaki-Saitoh H, Nakaya M, Ide T, Suzuki K, Inoue K, Nagao T, Kurose H (2008) P2Y6 receptor-Galpha12/13 signalling in cardiomyocytes triggers pressure overload-induced cardiac fibrosis. EMBO J 27(23):3104–3115

    Article  PubMed  CAS  Google Scholar 

  4. Cheung KK, Ryten M, Burnstock G (2003) Abundant and dynamic expression of G protein coupled P2Y receptors in mammalian development. Dev Dyn 228:254–266

    Article  PubMed  CAS  Google Scholar 

  5. Communi D, Pirotton S, Parmentier M, Boeynaems JM (1995) Cloning and functional expression of a human uridine nucleotide receptor. J Biol Chem 270(52):30849–30852

    Article  PubMed  CAS  Google Scholar 

  6. Bogdanov YD, Wildman SS, Clements MP, King BF, Burnstock G (1998) Molecular cloning and characterization of rat P2Y4 nucleotide receptor. Br J Pharmacol 124(3):428–430

    Article  PubMed  CAS  Google Scholar 

  7. Webb TE, Henderson D, Roberts JA, Barnard EA (1998) Molecular cloning and characterization of the rat P2Y4 receptor. J Neurochem 71(4):1348–1357

    Article  PubMed  CAS  Google Scholar 

  8. Lazarowski ER, Rochelle LG, O’Neal WK, Ribeiro CM, Grubb BR, Zhang V, Harden TK, Boucher RC (2001) Cloning and functional characterization of two murine uridine nucleotide receptors reveal a potential target for correcting ion transport deficiency in cystic fibrosis gallbladder. J Pharmacol Exp Ther 297(1):43–49

    PubMed  CAS  Google Scholar 

  9. Lustig KD, Shiau AK, Brake AJ, Julius D (1993) Expression cloning of an ATP receptor from mouse neuroblastoma cells. Proc Natl Acad Sci USA 90(11):5113–5117

    Article  PubMed  CAS  Google Scholar 

  10. Robaye B, Ghanem E, Wilkin F, Fokan D, Van Driessche W, Schurmans S, Boeynaems JM, Beauwens R (2003) Loss of nucleotide regulation of epithelial chloride transport in the jejunum of P2Y4-null mice. Mol Pharmacol 63(4):777–783

    Article  PubMed  CAS  Google Scholar 

  11. Ghanem E, Robaye B, Leal T, Leipziger J, Van Driessche W, Beauwens R, Boeynaems JM (2005) The role of epithelial P2Y2 and P2Y4 receptors in the regulation of intestinal chloride secretion. Br J Pharmacol 146(3):364–369

    Article  PubMed  CAS  Google Scholar 

  12. Matos JE, Sorensen MV, Geyti CS, Robaye B, Boeynaems JM, Leipziger J (2007) Distal colonic Na(+) absorption inhibited by luminal P2Y(2) receptors. Pflugers Arch Eur J Physiol 454:977–987

    Article  CAS  Google Scholar 

  13. Yitzhaki S, Shneyvays V, Jacobson KA, Shainberg A (2005) Involvement of uracil nucleotides in protection of cardiomyocytes from hypoxic stress. Biochem Pharmacol 69:1215–1223

    Article  PubMed  CAS  Google Scholar 

  14. Yitzhaki S, Shainberg A, Cheporko Y, Vidne BA, Sagie A, Jacobson KA, Hochhauser E (2006) Uridine-5′-triphosphate (UTP) reduces infarct size and improves rat heart function after myocardial infarct. Biochem Pharmacol 72:949–955

    Article  PubMed  CAS  Google Scholar 

  15. Vanderhaeghen P, Lu Q, Prakash N, Frisén J, Walsh CA, Frostig RD, Flanagan JG (2000) A mapping label required for normal scale of body representation in the cortex. Nat Neurosci 3:358–365

    Article  PubMed  CAS  Google Scholar 

  16. Marelli-Berg FM, Peek E, Lidington EA, Stauss HJ, Lechler RI (2000) Isolation of endothelial cells from murine tissue. J Immunol Methods 244:205–215

    Article  PubMed  CAS  Google Scholar 

  17. Alvarez BV, Johnson DE, Sowah D, Soliman D, Light PE, Xia Y, Karmazyn M, Casey JR (2007) Carbonic anhydrase inhibition prevents and reverts cardiomyocyte hypertrophy. J Physiol 579(1):127–145

    Article  PubMed  CAS  Google Scholar 

  18. Falk W, Goodwin RH, Leonard EJ (1980) A 48-well micro chemotaxis assembly for rapid and accurate measurement of leucocyte migration. J Immunol Methods 33:239–247

    PubMed  CAS  Google Scholar 

  19. Colville-Nash PR, Alam CA, Appleton I, Brown JR, Seed MP, Willoughby DA (1995) The pharmacological modulation of angiogenesis in chronic granulomatous inflammation. J Pharmacol Exp Ther 274(3):1463–1472

    PubMed  CAS  Google Scholar 

  20. O’Connell TD, Ishizaka S, Nakamura A, Swigart PM, Rodrigo MC, Simpson GL, Cotecchia S, Rokosh DG, Grossman W, Foster E, Simpson PC (2003) The alpha(1A/C)- and alpha(1B)-adrenergic receptors are required for physiological cardiac hypertrophy in the double-knockout mouse. J Clin Invest 111:1783–1791

    PubMed  Google Scholar 

  21. Ikeda Y, Aihara K, Sato T, Akaike M, Yoshizumi M, Suzaki Y, Izawa Y, Fujimura M, Hashizume S, Kato M, Yagi S, Tamaki T, Kawano H, Matsumoto T, Azuma H, Kato S, Matsumoto T (2005) Androgen receptor gene knockout male mice exhibit impaired cardiac growth and exacerbation of angiotensin II-induced cardiac fibrosis. J Biol Chem 280(33):29661–29666

    Article  PubMed  CAS  Google Scholar 

  22. Nebigil CG, Choi DS, Dierich A, Hickel P, Le Meur M, Messaddeq N, Launay JM, Maroteaux L (2000) Serotonin 2B receptor is required for heart development. Proc Natl Acad Sci USA 97:9508–9513

    Article  PubMed  CAS  Google Scholar 

  23. Nahrendorf M, Spindler M, Hu K, Bauer L, Ritter O, Nordbeck P, Quaschning T, Hiller KH, Wallis J, Ertl G, Bauer WR, Neubauer S (2005) Creatine kinase knockout mice show left ventricular hypertrophy and dilatation, but unaltered remodeling post-myocardial infarction. Cardiovasc Res 65:419–427

    Article  PubMed  CAS  Google Scholar 

  24. Ellmers LJ, Knowles JW, Kim HS, Smithies O, Maeda N, Cameron VA (2002) Ventricular expression of natriuretic peptides in Nrp1−/− mice with cardiac hypertrophy and fibrosis. Am J Physiol Heart Circ Physiol 283:707–714

    Google Scholar 

  25. Bellomo D, Headrick JP, Silins GU, Paterson CA, Thomas PS, Gartside M, Mould A, Cahill MM, Tonks ID, Grimmond SM, Townson S, Wells C, Little M, Cummings MC, Hayward NK, Kay GF (2000) Mice lacking the vascular endothelial growth factor-B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia. Circ Res 86:e29–e35

    Article  PubMed  CAS  Google Scholar 

  26. Van den Akker NM, Winkel LC, Nisancioglu MH, Maas S, Wisse LJ, Armulik A, Poelmann RE, Lie-Venema H, Betsholtz C, Gittenberger-de Groot AC (2008) PDGF-B signaling is important for murine cardiac development: its role in developing atrioventricular valves, coronaries, and cardiac innervation. Dev Dyn 237(2):494–503

    Article  PubMed  Google Scholar 

  27. Nyström HC, Lindblom P, Wickman A, Andersson I, Norlin J, Fäldt J, Lindahl P, Skøtt O, Bjarnegård M, Fitzgerald SM, Caidahl K, Gan LM, Betsholz C, Bergström G (2006) Platelet-derived growth factor B retention is essential for development of normal structure and function of conduit vessels and capillaries. Cardiovasc Res 71(3):557–565

    Article  PubMed  Google Scholar 

  28. Bjarnegård M, Enge M, Norlin J, Gustafsdottir S, Fredriksson S, Abramsson A, Takemoto M, Gustafsson E, Fässler R, Betsholtz C (2004) Endothelium-specific ablation of PDGFB leads to pericyte loss and glomerular, cardiac and placental abnormalities. Development 131(8):1847–1857

    Article  PubMed  Google Scholar 

  29. Hudlicka O, Brown MD (1996) Postnatal growth of the heart and its blood vessels. J Vasc Res 33:266–287

    Article  PubMed  CAS  Google Scholar 

  30. Poolman RA, Li JM, Durand B, Brooks G (1999) Altered expression of cell cycle proteins and prolonged duration of cardiac myocyte hyperplasia in p27KIP1 knockout mice. Circ Res 85:117–127

    Article  PubMed  CAS  Google Scholar 

  31. Jackson T, Allard MF, Sreenan CM, Doss LK, Bishop SP, Swain JL (1990) The c-myc proto-oncogene regulates cardiac development in transgenic mice. Mol Cell Biol 10:3709–3716

    PubMed  CAS  Google Scholar 

  32. Brutsaert DL (2003) Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev 83:59–115

    PubMed  CAS  Google Scholar 

  33. Tirziu D, Chorianopoulos E, Moodie KL, Palac RT, Zhuang ZW, Tjwa M, Roncal C, Eriksson U, Fu Q, Elfenbein A, Hall AE, Carmeliet P, Moons L, Simons M (2007) Myocardial hypertrophy in the absence of external stimuli is induced by angiogenesis in mice. J Clin Invest 117:3188–3197

    Article  PubMed  CAS  Google Scholar 

  34. Shiojima I, Sato K, Izumiya Y, Schiekofer S, Ito M, Liao R, Colucci WS, Walsh K (2005) Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest 115(8):2059–2064

    Article  Google Scholar 

  35. Satterwhite CM, Farrelly AM, Bradley ME (1999) Chemotactic, mitogenic, and angiogenic actions of UTP on vascular endothelial cells. Am J Physiol 276:1091–1097

    Google Scholar 

  36. Kaczmarek E, Erb L, Koziak K, Jarzyna R, Wink MR, Guckelberger O, Blusztajn JK, Trinkaus-Randall V, Weisman GA, Robson SC (2005) Modulation of endothelial cell migration by extracellular nucleotides. Involvement of focal adhesion kinase and phosphatidylinositol 3-kinase-mediated pathways. Thromb Haemost 93(4):735–742

    PubMed  CAS  Google Scholar 

  37. Gerasimovskaya EV, Woodward HN, Tucker DA, Stenmark KR (2008) Extracellular ATP is a pro-angiogenic factor for pulmonary artery vasa vasorum endothelial cells. Angiogenesis 11:169–182

    Article  PubMed  CAS  Google Scholar 

  38. Lyubchenko T, Woodward H, Veo KD, Burns N, Nijmeh H, Liubchenko GA, Stenmark KR, Gerasimovskaya EV (2011) P2Y1 and P2Y13 receptors mediate Ca2+ signaling and proliferative responses in pulmonary artery vasa vasorum endothelial cells. Am J Physiol Cell Physiol 300:C266–C275

    Article  PubMed  CAS  Google Scholar 

  39. Guns PJ, Korda A, Crauwels HM, Van Assche T, Robaye B, Boeynaems JM, Bult H (2005) Pharmacological characterization of nucleotide P2Y receptors on endothelial cells of the mouse aorta. Br J Pharmacol 146(2):288–295

    Article  PubMed  CAS  Google Scholar 

  40. Goepfert C, Sundberg C, Sevigny J, Enjyoji K, Hoshi T, Csizmadia E, Robson E (2001) Disordered cellular migration and angiogenesis in cd39-null mice. Circulation 104(25):3109–3115

    Article  PubMed  CAS  Google Scholar 

  41. Wihlborg AK, Balogh J, Wang L, Borna C, Dou Y, Joshi BV, Lazarowski E, Jacobson KA, Arner A, Erlinge D (2006) Positive inotropic effects by uridine triphosphate (UTP) and uridine diphosphate (UDP) via P2Y2 and P2Y6 receptors on cardiomyocytes and release of UTP in man during myocardial infarction. Circ Res 98:970–976

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Larissa di Pietrantonio, Olivier Vosters, Dominique Fokan, Hrag Esfahani and Steven Droogmans for help and technical assistance. The authors are grateful to Dr Andreas Markl for invaluable assistance in telemetry and helpful discussion. This work was supported by an Action de Recherche Concertée of the Communauté Française de Belgique, an Interuniversity Attraction Pole grant from the Politique Scientifique Fédérale (IAP-P6/30), Prime Minister’s Office, Federal Service for Science, Technology and Culture, by grants of the Fonds de la Recherche Scientifique Médicale (F.R.S.M.), the Fonds d’Encouragement à la Recherche (F.E.R.), the Fonds Emile DEFAY, the Fonds de la Recherche Scientifique Médicale of Belgium, the Walloon Region (Programme d’Excellence CIBLES), and the LifeSciHealth programme of the European Community (grant LSHB-2003-503337). D. Communi and C. Dessy are Senior Research Associates of the Fonds National de la Recherche Scientifique (F.N.R.S.). M. Horckmans is supported by the Fonds National de la Recherche Scientifique/FRIA, Belgium. Philippe Unger has received a grant from the “Fonds pour la Chirurgie Cardiaque”, Elvira Leon-Gomez is supported by a grant of the F.S.R. (Fonds Spécial de Recherche) of the U.C.L. (Université catholique de Louvain). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Communi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horckmans, M., Robaye, B., Léon-Gόmez, E. et al. P2Y4 nucleotide receptor: a novel actor in post-natal cardiac development. Angiogenesis 15, 349–360 (2012). https://doi.org/10.1007/s10456-012-9265-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-012-9265-1

Keywords

Navigation