
AN EVIDENCE ONTOLOGY FOR USE IN
PATHWAY/GENOME DATABASES

Appears in Pacific Symposium on Biocomputing 2004
Pages 190-201, World Scientific Publishers, Singapore

P.D. KARP, S. PALEY, C.J. KRIEGER
SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025 USA

{pkarp,paley,krieger}@ai.sri.com

P. ZHANG
Carnegie Institution of Washington, Department of Plant Biology

260 Panama Street, Stanford, California 94305
peifenz@acoma.stanford.edu

Abstract. An important emerging need in Model Organism Databases (MODs)
and other bioinformatics databases (DBs) is that of capturing the scientific evi-
dence that supports the information within a DB. This need has become particu-
larly acute as more DB content consists of computationally predicted information,
such as predicted gene functions, operons, metabolic pathways, and protein prop-
erties. This paper presents an ontology for encoding the type of support and
the degree of support for DB assertions, and for encoding the literature source in
which that support is reported. The ontology includes a hierarchy of 35 evidence
codes for modeling different types of wet-lab and computational evidence for the
existence of operons and metabolic pathways, and for gene functions. We also
describe an implementation of the ontology within the Pathway Tools software
environment, which is used to query and update Pathway/Genome DBs such as
EcoCyc, MetaCyc, and HumanCyc.

1 Introduction

An important emerging need in Model Organism Databases (MODs) and other
bioinformatics databases (DBs) is that of capturing the scientific evidence that
supports the information within a DB. This need has become particularly acute
as more DB content consists of computationally predicted information, such as
predicted gene functions, operons, metabolic pathways, and protein properties.
DB users want to know the type of evidence that supports assertions within a
DB, and they want to know the strength of that evidence. Strength and type
are in general independent parameters, although they are often related; for
example, computationally generated predictions are generally held to be less
reliable than are wet-lab experiments, but there are certainly unreliable types
of wet-lab methods.

This paper reports on an ontology for encoding the type of support and
the degree of support for DB assertions, and for encoding the literature source



in which that support is reported. We also describe an implementation of the
ontology within the Pathway Tools software environment,1 which is used to
query and update Pathway/Genome DBs (PGDBs) such as EcoCyc, 2 Meta-
Cyc, 3 and HumanCyc (see URL http://HumanCyc.org/).

2 Motivations for an Evidence Ontology

The evidence ontology is designed to encode information about why we believe
certain assertions in a PGDB, the sources of those assertions, and the degree
of confidence scientists hold in those assertions.

An assertion could be the existence of a biological object described in a
PGDB. For example, we would like to be able to encode the evidence support-
ing the existence of a gene, an operon, or a pathway that is described within a
PGDB. Has the operon been predicted using a computational operon finder?
Or is it supported by wet-lab experiments? If the latter, what types of exper-
imental methods were used? It should be possible to capture multiple types
of evidence: if the existence of a metabolic pathway is supported by both a
computational algorithm and by two different types of wet-lab experiments,
our evidence ontology should be able to capture that information, and also to
capture the literature citations that are the source of that information.

We also want to be able to capture two types of confidence information in
the evidence ontology. If the probability of correctness of an individual piece of
evidence is known, we want to capture that. For example, if we have measured
the overall accuracy of an operon predictor and found that accuracy to be
80%, then computational operon predictions made by that program should be
recorded to have an individual confidence of 0.8. Similarly, if we know that
a wet-lab method has a probability of correctness of 0.7, we should be able
to capture that information in conjunction with our evidence codes. But in
addition to capturing the confidence in individual pieces of evidence, we want
to capture the overall confidence in an assertion that results from synthesizing
across multiple pieces of evidence. Consider a case where the existence of a
metabolic pathway is supported by a computational prediction and by two
wet-lab experiments. We would like a curator to be able to record his or her
overall confidence level in that pathway that results from integrating those
three pieces of evidence.

Object existence is one class of PGDB assertion. But object properties and
relationships form another important class of assertions. We should be able to
encode evidence not just about object existence, but also regarding slot values
stored in a PGDB, such as the type of evidence supporting the molecular
weight of a protein, or the assertion that pyruvate inhibits an enzyme, or the
assertion that a protein catalyzes a given reaction.



2.1 Related Work

Gene Ontology provides an evidence ontology that satisfies some of the preced-
ing criteria, and that formed the starting point for our work.4 The GO evidence
codes are described at URL http://geneontology.org/doc/GO.evidence.html. Wher-
ever possible we have adopted the GO evidence codes, or small variations of
them, to facilitate translation between the systems. But in many cases we sig-
nificantly extended or reworked the GO system because it was not designed to
satisfy, and cannot satisfy, the requirements listed earlier in this section. For
example: (a) The GO system does not encode specific classes of experimental
methods, that is, the GO code “IDA” (Inferred from Direct Assay) has no sub-
classes to define subtypes of experimental assays (such as assays that provide
evidence for the activity of an enzyme or for the presence of a promoter). (b)
Strictly speaking, the GO evidence system is intended to be used to annotate
the support for attachment of a GO term to a gene. It is not specifically de-
signed for use to record evidence for the existence of a biological object, or for
other types of assertions such as slot values. (c) The GO evidence system does
not provide a way to associate confidence values with assertions.

We are unaware of directly related work in the Artificial Intelligence com-
munity. AI work on truth maintenance systems (TMSs) is not relevant because
TMSs are concerned with capturing relationships between propositions inferred
by an automated reasoner, and the propositions on which those inferences de-
pend 5. That is a different problem than trying to capture general classes of
evidence that support some proposition.

3 Overview of Pathway Tools

The Pathway Tools software is a reusable package for creating, querying, visu-
alizing, and analyzing MODs. Its components include the following.

PathoLogic — This is a module for computationally creating a new
PGDB for an organism from its annotated genome. PathoLogic includes a
metabolic pathway predictor 6 and an operon predictor. Given a properly for-
matted Genbank entry for an annotated genome, PathoLogic can create a new
PGDB within a day. Additional manual processing that is typically required
before a PGDB is ready for release takes 2–3 weeks for a bacterial genome.7

Pathway/Genome Editors — This module includes a graphical inter-
active editing tool for every datatype managed by Pathway Tools, including
genes, proteins, biochemical reactions and pathways, small molecule metabo-
lites, and operons.

Pathway/Genome Navigator — This module allows users to query a
PGDB and to visualize the results of a query. Visualization tools supported
include visualization of chromosomes (genome browser), genes, proteins (with



specialized displays for enzymes, for transporters, and for transcription factors
— the latter displays all operons controlled by the transcription factor), path-
ways, and transcription units (operons). A metabolic overview diagram is a
drawing of all known metabolic pathways of an organism. Expression data for
a given organism can be painted onto the metabolic overview to place expres-
sion data in a pathway context and to allow the user to discern the coordinated
expression of entire pathways, or of important steps within a pathway.

SRI has used Pathway Tools to develop 15 PGDBs, which are available
through the BioCyc Web site at URL http://BioCyc.org/. In addition, Path-
way Tools has been licensed by 31 groups in academia and industry. PGDBs
available from those groups are also listed at URL http://BioCyc.org/.

Recent enhancements to Pathway Tools include (1) ontology, visualization,
and editing support for introns, exons, and alternative splicing; (2) tools for
exporting PGDB information to flat files, and for importing information from
flat files into PGDBs; (3) implementation of Perl and Java APIs for querying
and updating PGDBs, called PerlCyc and JavaCyc, respectively (see URL
http://bioinformatics.ai.sri.com/ptools/ptools-

resources.html).

4 Pathway Tools Implementation of the Evidence Ontology

This section describes how the Pathway Tools evidence ontology is presented
to the user in Pathway Tools displays to give the reader an understanding of
how the ontology is used. We extended Pathway Tools so that the pathway
and operon predictors within PathoLogic decorate the pathway and operon
PGDB objects that they create with evidence-code information to indicate
computationally predicted objects as such. We extended the Editors to include
functionality that allows users to interactively enter and modify evidence codes.
We extended the Navigator to display evidence information.

For example, the Navigator window shown in Figure 1 displays informa-
tion about the transcription unita called cbl. The flask icon at the top right
of the diagram indicates that evidence from wet-lab experiments supports the
existence of the transcription unit. The lower flask and computer icons adja-
cent to the “Promoter: cbl” line indicate that both wet-lab experiments and
computational predictions support the existence of this promoter. Finally, the
flask at the bottom right of the window indicates that experimental evidence
supports the information about the activity of the transcription factor.

Although our evidence system provides for more precise distinctions than
simply “wet-lab” versus “computational,” we felt it best to keep our graphical

aTranscription units are essentially the same as operons, although transcription units can
contain single genes, whereas by definition operons must contain multiple genes.



Figure 1: Pathway Tools display of the EcoCyc transcription unit cbl.

interface simple by displaying only a few different icons, since expecting users to
learn icons for each of our 35 evidence codes would be unreasonable. Therefore,
object display windows such as the transcription-unit display in Figure 1 show
icons that only differentiate evidence codes at the highest level of our hierarchy,
such as distinguishing experimental evidence from computational evidence.
The user can click on these icons to view another screen that shows the detailed
evidence codes that support the existence of an object (see Figure 2), and from
what literature sources that evidence was reported.

5 The Evidence Ontology

Each piece of evidence about object existence in PGDBs is recorded as a struc-
tured evidence tuple, as a value within the Citations slot of PGDB objects such



Figure 2: Detailed evidence report for existence of the cbl promoter.

as pathways and transcription units. An evidence tuple allows us to associate
several types of information within one piece of evidence. Each evidence tuple
is of the form:

Evidence-code : Citation : Curator : Timestamp : Probability

where

• Evidence-code is a unique ID for the type of evidence, as provided in
Table 1.

• Citation is an optional citation identifier such as a PubMed ID that
indicates the source of the evidence. For computational evidence, the
citation refers to an article describing either the general properties of the
algorithm used, or its application in this case.

• Curator is the username of the curator who created this evidence tuple.

• Timestamp is an optional integer representing the time and date on which
this evidence tuple was created.

• Probability is an optional real number that indicates the probabil-
ity that the assertion supported by this evidence is correct, such as a
probability provided by an algorithm. We expect that the probability
portion of the evidence tuple will be used much more frequently for com-
putational evidence than for wet-lab evidence because the accuracies of



computational techniques tend to be better known in general than for
experimental methods.

The notion of what it means for a biological object to exist varies somewhat
by object type, and is difficult to define precisely. For example, what does it
mean for a gene to exist? Does the existence of a gene depend only on whether
some gene product is produced from a region of DNA, or on whether the
exact boundaries of the gene are defined precisely? In the case of a gene,
the probability of existence should not reflect whether the exact nucleotide
start and stop positions of the gene are correct, but should depend only on
whether a gene product is produced by an approximate region of a chromosome,
due to the accuracy limits of current gene finders. In contrast, the notion of
probability of existence of a transcription unit should indeed depend on where
the gene boundary of the transcription unit lies, since every bacterial gene lies
within some transcription unit, and the fundamental problem of predicting
transcription units is defining their gene boundaries.

Finally, we defined a slot Confidence that allows a PGDB to record an over-
all integrated probability for the existence of an object. Whereas probabilities
within evidence tuples encode the probability associated with an individual
piece of evidence, the Confidence slot is intended to hold the net probability
that results from integrating across the potentially multiple pieces of evidence
available. This integration process will in most cases be a manual process
performed by a curator, that will therefore be subjective and will vary among
individuals, and we are in the process of developing guidelines for that integra-
tion process. Note our implementation performs no manipulation of probability
values other than permitting their entry and display.

5.1 The Hierarchy of Evidence Codes

The Evidence-code components of evidence tuples denote different types of
evidence. Those evidence types are arranged in a generalization–specialization
hierarchy as shown in Table 1. The root of that hierarchy, the node Evidence,
has four direct children that define the four main evidence types:

• EV–Comp: Inferred from Computation. The evidence for an assertion
comes from a computational analysis. The assertion itself might have
been made by a person or by a computer, that is, EV–Comp does not
specify whether manual interpretation of the computation occurred.

• EV–Exp: Inferred from Experiment. The evidence for an assertion comes
from a wet-lab experiment of some type.



EV–Comp Inferred from computational analysis.
EV–Comp–HInf Inferred by a human based on

computational evidence.
EV–Comp–HInf–Positional–Identification Human inference of promoter position.
EV–Comp–HInf–Similar–To–Consensus Human inf. based on similarity to

consensus sequences.
EV–Comp–HInf–Fn–From–Seq Human inf. of function from sequence.

EV–Comp–AInf Inferred computationally without human
oversight — automated inference.

EV–Comp–AInf–Positional–Identification Automated inf. of promoter position.
EV–Comp–AInf–Similar–To–Consensus Automated inf. based on similarity to

consensus sequences.
EV–Comp–AInf–Fn–From–Seq Automated inf. of function from sequence.
EV–Comp–AInf–Single–Directon Automated inf. that a single-gene directon

is a transcription unit.
EV–Exp Inferred from experiment.
EV–Exp–IPI Inferred from physical interaction.
EV–Exp–IMP Inferred from mutant phenotype.
EV–Exp–IMP–Site–Mutation Site mutation.
EV–Exp–IMP–Polar–Mutation Polar mutation.
EV–Exp–IMP–Reaction–Blocked Reaction blocked in mutant.
EV–Exp–IMP–Reaction–Enhanced Reaction enhanced in mutant.

EV–Exp–IGI Inferred from genetic interaction.
EV–Exp–IGI–Func–Complementation Inferred by functional complementation.

EV–Exp–IEP Inferred from expression pattern.
EV–Exp–IEP–Gene–Expression–Analysis Gene expression analysis.

EV–Exp–IDA Inferred from direct assay.
EV–Exp–IDA–Binding–Of–Cellular–Extracts Binding of cellular extracts.
EV–Exp–IDA–Binding–Of–Purified–Proteins Binding of purified proteins.
EV–Exp–IDA–RNA–Polymerase–Footprinting RNA polymerase footprinting.
EV–Exp–IDA–Transcription–Init–Mapping Transcription initiation mapping.
EV–Exp–IDA–Boundaries–Defined Boundaries of transcription experimentally

identified.
EV–Exp–IDA–Transcript–Len–Determination Length of transcript experimentally

determined.
EV–Exp–IDA–Unpurified–Protein Assay of unpurified protein.
EV–Exp–IDA–Purified–Protein–Multspecies Assay of protein purified from mixed culture.
EV–Exp–IDA–Purified–Protein Assay of purified protein.

EV–IC Inferred by curator.
EV–AS Author statement.
EV–AS–TAS Traceable author statement.
EV–AS–NAS Non-traceable author statement.

Table 1: The taxonomy of evidence types. Each row of this table defines one evidence type,
giving its code and description. Indentation indicates ordering in the taxonomy, for example,

EV–AS–TAS (fourth row) is a child of EV–AS.



• EV–IC: Inferred by Curator. An assertion was inferred by a curator from
relevant information such as other assertions in a database.

• EV–AS: Author Statement. The evidence for an assertion comes from
an author statement in a publication, where that publication does not
provide direct experimental support for the assertion. (Ordinarily, this
code will not be used directly — generally one of its child codes, EV–
AS–TAS or EV–AS–NAS, will be used instead.)

We expect the most commonly used codes will be EV–Comp and EV–Exp,
and their sub-codes.

An HTML version of the entire evidence ontology, including detailed com-
ments describing each evidence code, is available at URL
http://bioinformatics.ai.sri.com/ptools/evidence-ontology.html.

There are several reasons why we feel this evidence system is best struc-
tured as a hierarchical ontology rather than as a flat list of controlled terms.
First, we expect that the hierarchy will facilitate understanding of the evi-
dence system by new curators because terms are grouped into logically related
clusters. This aspect will be particularly important as the size and complexity
of the evidence ontology grows to model additional detailed evidence types.
Second, we expect the hierarchy will facilitate the curation process itself by
allowing faster retrieval of relevant terms from editor menus than if retrieval
was from a flat list. Third, non-leaf nodes in the evidence ontology will them-
selves be used in curation in cases where leaf evidence nodes do not match
the evidence that is actually available, or where a publication is not specific
about the type of evidence that supports some assertion, thus requiring a more
general evidence code.

The lower levels of the hierarchy have thus far been designed primarily for
encoding the evidence for protein function, and evidence related to mechanisms
of regulation of transcription initiation. There are many types of experiments
and computational techniques, but our curators have made efforts to divide
and group them into the categories they judge to be most meaningful. These
evidence codes are not comprehensive with respect to other types of biological
information. In the future, if we decide to apply evidence codes to different
types of objects, we expect to extend the existing set of evidence codes to cover
the types of experiments and analyses applicable to the new object types.

In our implementation of the evidence codes, each code is defined as a
class within the Ocelot object DBMS whose object ID is the evidence code.
Slots defined for each evidence code include its name (such as “Inferred by
Computational Analysis”), a comment describing the code, and a slot Pertains–
To that lists the classes of PGDB objects to which the code can be applied.
The Pathway Tools editors query this slot to determine what evidence codes



are applicable to a given type of objects, such as a metabolic pathway, when
generating choose-lists of evidence codes for the curator.

The EV–AS (Author Statement) category has two subtypes: author state-
ments that are traceable to a publication that contained direct evidence for an
assertion, and statements that are not traceable in that manner.

The EV–Comp (Inferred by Computational Analysis) category is also di-
vided into two subtypes: computational inferences that were made in a purely
automated fashion, and inferences in which a human was involved, under the
assumption that the condition of whether or not a person was involved in arbi-
trating among computational evidence is a factor that a scientist interpreting
the evidence would consider important.

An examination of the subtypes of EV–Comp reveals that some of these
evidence types apply only to certain PGDB object types. For example, the
code EV–Comp–AInf–Single–Directon applies only to computational inference
of operons (it indicates that an operon was inferred by the existence of a gene
G for which the adjacent genes on both sides of G are both transcribed in the
opposite direction from G, implying that those genes cannot be in the same
operon as G). This property of being relevant only to specific object types
applies to other evidence types in our system.

5.2 Attaching Evidence Codes to Individual Slot Values

As well as using evidence tuples to record evidence about object existence,
we can attach evidence tuples to individual values within a PGDB to record
evidence for finer-grained assertions. For example, we could record the evidence
that supports the strength of a promoter stored in a PGDB, or that supports
the assertion that a given metabolite inhibits the activity of an enzyme.

5.3 Object and Relational Implementations of Evidence Tuples

We implement the association of evidence tuples with individual slot values
using an Ocelot mechanism called annotations. An annotation is a five-tuple
of the form

Frame : Slot : Value : Label : Datum

that allows a labeled datum to be associated with a value within a slot of
a frame. In this case, the label is the string “Evidence” and the datum is the
evidence tuple itself. In Ocelot, annotation tuples are physically stored within
the frame that they are associated with.

We envision that our evidence system could be implemented in a rela-
tional DBMS by creating a table whose columns are Table-ID, Key, Column,
Value, Evidence-Code, Citation, Curator, Timestamp, and Probability.
Table-ID, Key, and Column are analogous to Frame and Slot in the Ocelot



representation — they identify an “object” within a relational DBMS. Column
and Value identify a specific relational column and value within that column
to which the evidence tuple applies. When the evidence tuple applies to the
entire object, Column and Value would be null. In both the Ocelot and the
relational implementations, it is straightforward to compute across evidence
information, such as to query all pathways with experimental evidence.

6 Use of the Evidence Ontology within EcoCyc and MetaCyc

The EcoCyc DB currently records evidence codes for the existence of 341 of
its 810 transcription units, for 531 of its 878 promoters, and for 952 of its
1071 DNA binding sites. The preceding evidence codes were assigned over the
past few years using an earlier, more primitive evidence system. We translated
codes from that system into the system described here, which was feasible
because the new system was explicitly designed to be a superset of the old
system. Assignment of evidence codes for pathways and protein functions by
curators of the EcoCyc and MetaCyc DBs is just beginning.

As an example, the anaerobic toluene degradation pathway, described in
MetaCyc as it appears in Thauera aromatica, has been established by bio-
chemical assay of the enzymes, pathway intermediates, and products. Thus,
we would assign to it the evidence code EV–Exp–IDA (Inferred by Direct As-
say), along with one or more citations to the literature. If a user were to use
PathoLogic to create a PGDB for some other organism, X, and PathoLogic
inferred that the anaerobic toluene degradation pathway were present in X, it
would be assigned an evidence code of EV-AInf (automated inference) in the
new PGDB (this assignment is done automatically by PathoLogic).

A protein that is multifunctional may have the same or different evi-
dence codes assigned to each function. In addition to containing objects
for each protein and for each reaction, the Pathway Tools schema defines
an object, called an enzymatic-reaction, that describes the pairing of an en-
zyme to a reaction. We assign the evidence code for each function of a
protein to the corresponding enzymatic-reaction object rather than to the
protein object so there is no ambiguity about which functional assignment
each evidence code pertains to. For example, the product of the E. coli ndh
gene has NADH dehydrogenase and NADH cupric reductase activities. The
NADH dehydrogenase activity was established by direct assay of the puri-
fied protein. The NADH cupric reductase activity was established by ob-
serving that the reaction is blocked or enhanced in mutants with the gene
missing or over-expressed, respectively. Thus, we assign the evidence code
EV–Exp–IDA–Purified–Protein (along with relevant literature citations) to
the enzymatic-reaction that links the ndh gene product to the NADH de-



hydrogenase reaction, and the codes EV-IMP–Reaction–Enhanced and EV–
Exp–IMP–Reaction–Blocked to the enzymatic-reaction that links the protein
to the NADH cupric reductase reaction. (Note that this is not intended to be
a complete description of the ndh system — additional codes may apply to one
or both activities.) We are not restricted to using the lowest-level codes in the
evidence ontology. If the enzyme was characterized by some experiment that
did not precisely match one of our lowest-level codes, or the literature did not
provide enough information to distinguish between them, we might assign a
code of EV–Exp–IMP even EV–Exp in place of one of the more specific codes.

7 Software Availability

Pathway Tools for SUN/Solaris, Intel/Windows, and Intel/Linux is freely avail-
able to academics; a license fee applies to commercial use. See http://BioCyc.org/download.shtml

for more details.

Acknowledgments
Julio Collado-Vides contributed to development of evidence codes related

to transcriptional regulation. This work was supported by grant R01-HG02729-
01 from the NIH National Human Genome Research Institute. The contents
of this article are solely the responsibility of the authors and do not necessarily
represent the official views of the National Institutes of Health.

1. P.D. Karp, S. Paley, and P. Romero. The Pathway Tools Software.
Bioinformatics, 18:S225–S232, 2002.

2. P.D. Karp, M. Riley, M. Saier, I.T. Paulsen, S. Paley, and A. Pellegrini-
Toole. The EcoCyc database. Nuc. Acids Res., 30(1):56–8, 2002.

3. P.D. Karp, M. Riley, S. Paley, and A. Pellegrini-Toole. The MetaCyc
database. Nuc. Acids Res., 30(1):59–61, 2002.

4. M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry,
A.P. Davis, K. Dolinski, S.S. Dwight, J.T. Eppig, M.A. Harris, D.P. Hill,
L. Issel-Tarver, A. Kasarskis, S. Lewis, J.C. Matese, J.E. Richardson,
M. Ringwald, G.M. Rubin, and G. Sherlock. Gene Ontology: Tool for
the unification of biology. Nature Genetics, 25:25–29, 2000.

5. J. Doyle. Truth maintenance systems. Artificial Intelligence, 12(3):231–
72, 1979.

6. S. Paley and P.D. Karp. Evaluation of computational metabolic-pathway
predictions for H. pylori. Bioinformatics, 18(5):705–714, 2002.

7. P. Romero and P.D. Karp. PseudoCyc, a Pathway/Genome Database
for Pseudomonas aeruginosa. J. Mol. Microbiol. Biotech., 5(4):230–9,
2003.


