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Background: Although ADP-ribosylation has been described five decades ago, only recently a distinction has been
made between eukaryotic intracellular poly- and mono-ADP-ribosylating enzymes. Poly-ADP-ribosylation by ARTD1
(formerly PARP1) is best known for its role in DNA damage repair. Other polymer forming enzymes are ARTD2
(formerly PARP2), ARTD3 (formerly PARP3) and ARTD5/6 (formerly Tankyrase 1/2), the latter being involved in Wnt
signaling and regulation of 3BP2. Thus several different functions of poly-ADP-ribosylation have been well described
whereas intracellular mono-ADP-ribosylation is currently largely undefined. It is for example not known which
proteins function as substrate for the different mono-ARTDs. This is partially due to lack of suitable reagents to
study mono-ADP-ribosylation, which limits the current understanding of this post-translational modification.

Results: We have optimized a novel screening method employing protein microarrays, ProtoArrays”™, applied here
for the identification of substrates of ARTD10 (formerly PARP10) and ARTD8 (formerly PARP14). The results of this
substrate screen were validated using in vitro ADP-ribosylation assays with recombinant proteins. Further analysis of
the novel ARTD10 substrate GSK3( revealed mono-ADP-ribosylation as a regulatory mechanism of kinase activity by
non-competitive inhibition in vitro. Additionally, manipulation of the ARTD10 levels in cells accordingly influenced
GSK3p activity. Together these data provide the first evidence for a role of endogenous mono-ADP-ribosylation in

Conclusions: Our findings indicate that substrates of ADP-ribosyltransferases can be identified using protein
microarrays. The discovered substrates of ARTD10 and ARTD8 provide the first sets of proteins that are modified by
mono-ADP-ribosyltransferases in vitro. By studying one of the ARTD10 substrates more closely, the kinase GSK3(3, we
identified mono-ADP-ribosylation as a negative regulator of kinase activity.
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Lay abstract

Newly synthesized proteins need (i) to find their way
within a cellular environment and (ii) to be controlled in
their functionality. Small modifications termed post-
translational modifications, are added to these proteins to
guide them to different locations, regulate their activity or
induce their breakdown. ADP-ribosylation is a post-
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translational modification performed by enzymes that use
the cofactor NAD™ to add ADP-ribose to a substrate pro-
tein. Some enzymes, like ARTDIO, transfer only one
ADP-ribose unit, whereas others, such as ARTD]1, transfer
multiple units to form chains of ADP-ribose. It is currently
not known which proteins can be mono-ADP-ribosylated
or what the consequence thereof is. In this study, we
screened approximately 8000 proteins on microarrays to
test which proteins can be modified by ARTD10 and
ARTDS. Subsequently, we validated some of the identified
proteins in in vitro enzymatic assays and could confirm
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that ARTD10 and ARTDS transfer ADP-ribose to these
proteins. Next, we investigated what the consequence of
mono-ADP-ribosylation is for the ARTDI10 substrate
GSK3p, a kinase that controls many physiological pro-
cesses. We found that mono-ADP-ribosylated GSK3p is
less active than the non-modified protein. Finally, we
expressed ARTD10 and GSK3p together in cells and mea-
sured lower GSK3 activity in the presence of ARTD10. In
summary this study provides the first substrates of the
mono-ADP-ribosyltransferases ARTD10 and ARTDS.
Moreover, we could show that mono-ADP-ribosylation
inhibits the activity of a target protein, in vitro and in cells.
These first investigations of a mono-ADP-ribosylated pro-
tein show that this modification might have important
roles in signaling processes.

Background

ADP-ribosylation is a posttranslational modification where
ADP-ribose is transferred from the co-factor B-NAD"
onto a substrate, catalyzed by ADP-ribosyltransferases
(ARTs). The eukaryotic transferases can be divided into
two groups, the extracellular ARTCs (formerly ARTs) and
the intracellular ARTDs (formerly PARPs) [1]. The C and
D refer to C2/C3 and diphtheria toxin-like ARTs, respect-
ively, which represent the two distinct structures of cata-
lytic domains that can be distinguished [1]. Of the ARTD
family with 18 members [2], only class 1 enzymes are ca-
pable of forming polymers of ADP-ribose (PAR). Class 2
enzymes lack the catalytic glutamate necessary to support
the transition state during the enzymatic reaction. Instead,
they use substrate-assisted catalysis to transfer a single
ADP-ribose unit onto substrates [3]. During this process
the activating glutamate of the substrate is subsequently
ADP-ribosylated, consequently the modified glutamate is
not available for a following second catalytic step and thus
the reaction is limited to mono-ADP-ribosylation. Class 3
members are proposed to be inactive due to the inability
to bind B-NAD" [3].

Poly-ADP-ribosylation by ARTD1 (formerly PARP1) has
been investigated most thoroughly and is best known for
its role in DNA damage repair and the control of chroma-
tin and gene transcription [4-6]. In addition to ARTDI,
ARTD2 (formerly PARP2) also participates in DNA repair
and Artd1/Artd2 double knockout animals do not survive
[7,8]. ARTD5/6 (formerly Tankyrase 1/2) play a role in
Wnt signaling [9-11] and in controlling the stability of the
adaptor 3BP2, mutations of which are mechanistically
linked to Cherubism [12,13]. The poly-ADP-ribose chains
do not directly regulate the molecules they are synthesized
on, but for example indirectly reduce ARTDI1 activity by
disturbing the interaction of ARTD1 with DNA [14] or
serve as scaffolds to recruit other proteins through
domains such as the WWE domain and macrodomains
[4,6,15]. These are often found in DNA repair proteins,
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explaining the role of ARTD1 in this process [16-19].
Moreover the E3 ubiquitin ligase Iduna (RNF146) inter-
acts with PAR through its WWE domain, providing evi-
dence for poly-ADP-ribosylation indirectly regulating
protein stability [9,11,20,21].

In comparison to the polymer forming ARTDs, the
mono-ARTDs remain much less well understood, mainly
because they have only recently been recognized [3] and
because basic research tools such as antibodies recogniz-
ing mono-ADP-ribosylated residues are lacking [22].
Some of the mono-ARTDs are suggested to play a role
in immunity [23], however most of the data on the
mono-ARTDs are mainly descriptive and have not yet
revealed the mechanisms underlying the observed phe-
nomena. The founding member of the mono-ARTDs,
ARTDI10, was identified as interaction partner of MYC
[24] and was later on demonstrated to mono-ADP-
ribosylate itself and core histones [3]. Although ARTD10
can shuttle into the nucleus, its predominant localization
is cytoplasmic, where it associates at least in part with
dynamic p62/SQSTM1-positive bodies [25]. Moreover,
ARTDI10 seems vital for proliferation, as both knock-
down and overexpression inhibit normal cell growth, the
latter being dependent on catalytic activity [3,26]. How-
ever, it is currently unknown which proteins are modified
by ARTDI10 that could mediate this growth inhibitory
phenotype.

To increase our understanding of mono-ADP-ribosyla-
tion, we screened for substrates of the mono-ADP-
ribosyltransferases ARTD10 and ARTDS. For this we estab-
lished the use of protein arrays and were able to identify
potential substrates for both enzymes, with a remarkable
enrichment of kinases. We focused our further studies
on the ARTDI10 substrate glycogen synthase kinase 3
(GSK3p), a kinase with broad physiological relevance
[27,28], and not only confirmed its mono-ADP-ribosyla-
tion, but also found that this modification inhibits enzym-
atic activity. Moreover, siRNA mediated knockdown of
ARTDIO0 led to an increase in GSK3p activity, suggesting
that endogenous mono-ADP-ribosylation occurs. The data
reported here give a first insight into the functional rele-
vance of mono-ADP-ribosylation and demonstrate that
mono-ADP-ribose can directly regulate the enzymatic
activity of one of its acceptor proteins.

Results

ARTD10 and ARTDS8 substrate identification using
ProtoArrays®

To gain insight into the molecular function of mono-
ADP-ribosylation, we screened for substrates of the
mono-ARTDs ARTD10 and ARTDS. Since currently no
approaches have been published to carry out a broad
screening approach for mono-ADP-ribosyltransferases, we
optimized a novel method based on protein microarrays.
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We performed initial tests to address whether ARTD10
can use biotin-labeled NAD" as co-factor (Additional file
1: Figure S1A). Next we established optimal conditions to
enzymatically modify proteins on nitrocellulose-coated
slides. ARTD10 and core histones were loaded as positive
and BSA and GST as negative controls. These slides
were subsequently incubated with tandem affinity puri-
fication (TAP)-ARTD10 and biotin-NAD" and were
evaluated by horseradish peroxidase (HRP)-coupled
streptavidin (Figure 1A). Because TAP-ARTD10 was able
to modify immobilized core histones, the only known
substrate of ARTD10 besides its ability to automodify [3],
on these control slides, we used similar conditions for
large-scale screening of ARTD10 and ARTDS substrates.
These screens were performed on protein microarrays,
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ProtoArrays”, containing approximately 8000 proteins
spotted in tandem on a single array. These arrays have
been used before to study for example phosphorylation
[29]. We incubated the ProtoArrays® with tandem-affinity
purified (TAP)-ARTDI10, baculo-derived ARTD8 or BSA
and biotin-labeled NAD". The modification of proteins on
the array was visualized using streptavidin-AlexaFluor®
647 (Figure 1B). A sub-array is shown with different con-
trols and platelet-derived growth factor subunit B (PDGEF-
B) as top positive signal of ARTD10 (Figure 1C). Moreover
a comparison of several ARTD10 and ARTDS sub-arrays is
displayed (Additional file 1: Figure S1B). Proteins that
bound biotin or NAD" and NAD"-consuming enzymes
were identified on the control slides incubated with BSA
and biotin-labeled NAD". These signals were manually
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Figure 1 Application of ProtoArrays® to identify ARTD10 and ARTD8 substrates. A. Indicated proteins were spotted on nitrocellulose
membranes and subsequently incubated with TAP-ARTD10 and biotin-labeled NAD™ to optimize array conditions. The signals were detected with
HRP-coupled streptavidin. B. Schematic representation of ProtoArray®-based screens. The arrays were incubated with ARTD10, ARTDS or BSA and
25 UM biotin-B-NAD* and visualized using streptavidin-AlexaFluor™ 647. C. An exemplary magnification of a sub-array from an array incubated
with TAP-ARTD10 is shown with controls and top-outlier PDGF-B indicated. D. Venn diagram showing the overlap between the identified ARTD8
and ARTD10 substrates. E. All putative ARTD8 and ARTD10 substrates sorted according to function.
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removed from the positive hits obtained after incubation
with ARTD10 or ARTDS8 before further analysis, such as
the probably automodifying ARTD7 (formerly PARP15).
After these adaptations, 78 and 142 proteins were identi-
fied as substrates of ARTD10 and ARTDS, respectively,
with an overlap of 32 proteins (Figure 1D and Additional
file 2: Table S1 and Additional file 3: Table S2). Further
analysis revealed that the largest subgroup of ARTDI10
substrates was formed by kinases, followed by receptors
and growth factors (Figure 1E), kinases also form the largest
substrate subgroup of ARTDS8 substrates (Figure 1E). This
is also reflected by gene ontology (GO) enrichment analysis,
where multiple GO terms were found that are related
to phosphorylation such as “protein kinase cascade”
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(GO:0007243) (Additional file 4: Table S3). The total num-
ber of substrates identified was quite small, roughly 1% and
1.7% for ARTD10 and ARTDS, respectively, implying that
these enzymes are rather selective.

To confirm that the hits identified on the arrays are sub-
strates of ARTD10 and ARTDS, we verified several recom-
binant proteins in in vitro ADP-ribosylation assays. We
validated substrates from different subclasses, which were
purified with diverse methods to exclude artifacts caused
by tags or treatments. The top outlier PDGF-B was veri-
fied as ARTD10 substrate in an ADP-ribosylation assay
with BSA as negative control (Figure 2A). Interestingly,
PDGE-B was identified previously as a factor that can be
ADP-ribosylated by an extracellular ADP-ribosyltransferase
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Figure 2 Validation of the ProtoArray® results on diverse recombinant proteins. ADP-ribosylation assays with [*?PI-NAD" as cofactor,
analyzed by SDS-PAGE, coomassie blue (CB) staining and autoradiography with A. TAP-ARTD10-G888W or TAP-ARTD10 and BSA or PDGF-B
B. TAP-ARTD10 and IKKe or GSK3 3, or the negative control without ARTD10 C. TAP-ARTD10 and ACVR1(171-499), or the negative control without
ARTD10 D. TAP-ARTD10 and P-TEFb, or the negative control without ARTD10 E. His-ARTD8 and GST-ING5, or the negative control without
His-ARTDS.
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[30]. Several kinases could also be validated in independent
assays, such as NF-kB inhibitor epsilon (IKKe) and GSK3p
(Figure 2B). Of the receptor subclass, the activin receptor 1
(ACVR1) was confirmed using the ARTD10 catalytic do-
main, GST-ARTD10(818-1025), in the ADP-ribosylation
assay (Figure 2C). The cyclin T subunit of positive tran-
scription elongation factor B (P-TEFb), could also be modi-
fied by the full-length TAP-ARTD10 (Figure 2D).

Inhibitor of growth protein 5 (ING5) was confirmed as
ARTDS substrate (Figure 2E). ARTD8 protects B-cells from
apoptosis by modulating key regulators of apoptosis, such
as caspase-3 [31] and is also necessary for pro-survival
signaling and regulation of glycolytic rate in B-cells [32]. Se-
veral substrates identified on the ProtoArrays® are involved
in insulin signaling, such as insulin receptor substrate 1
(IRS1) and protein kinase C zeta type (PRKCZ), through
which glycolysis can be influenced. Proto-oncogene
tyrosine-protein kinase receptor Ret (RET) and protein
kinase C iota type (PRKCI) are two of the identified sub-
strates that potentially link ARTDS8 with apoptosis. The
underlying mechanisms through which ARTD8 mediates
its described functions might thus be uncovered through
the substrates we discovered. In the following, we concen-
trated our further studies on one ARTD10 substrate.

Mono-ADP-ribosylation inhibits GSK3p in vitro

To investigate the consequence of mono-ADP-ribosyla-
tion, we focused on the modification of the ARTD10
substrate GSK3p. Because it is currently not possible to
directly measure mono-ADP-ribosylation in cells by
using tools like antibodies, we decided to focus on a kin-
ase so that kinase activity can be determined in response
to mono-ADP-ribosylation as an indirect mean to inves-
tigate the consequence of the modification. Furthermore,
GSK3p is not only representative of the largest substrate
group formed by kinases, but also phosphorylates the
ARTDI10-interacting oncoprotein MYC ([33]. First, we
tested whether recombinant GST-GSK3p purified from
SF9 cells also serves as ARTD10 substrate in an in vitro
ADP-ribosylation assay with TAP-ARTD10. GST-GSK3p
but not GST was indeed substrate of ARTDI10
(Figure 3A), whereas the purified GST-GSK3f incubated
with [*P]-NAD in the absence of ARTD10 was not
modified. Next we asked whether mono-ADP-ribosylation
influences the enzymatic activity of GSK3p. GST-GSK3p
was mono-ADP-ribosylated by TAP-ARTD10 and subse-
quently tested in a kinase assay with radioactively labeled
[32p] -y-ATP and a primed substrate peptide [27]. The kin-
ase activity of mono-ADP-ribosylated GSK3f was reduced,
in contrast to incubation with ARTD10 without B-NAD*
or with the catalytically inactive ARTD10-G888W, which
resulted in a small increase in activity that might be due to
increased kinase stability, caused by the physical presence
of ARTD10 (Figure 3B). This demonstrated that mono-

Page 5 of 11

A TAP-ARTD10 TAP-ARTD10
. . a [<=N
o o (] o
X X X X
2] [2) [2) (2]
= e = = =
o 0 » o O ®
[CIRCING & 6 6
TAP-ARTD10
GST-GSK3p
GST
1.8 B
> 1.6 n.s
2~ 14
g % 1.2
58 10
-o o8
52 06
g§= 02
£ [0 N ) N E) RN S E— —
GST-GSK3p + + + +
TAP-ARTD10 + +
TAP-ARTD10- +
G888W
B-NAD+ + +
10000 - mADPr-GSK3B
- 9000 I GSK3p
TE 8000 :
8< 7000 .
82 6000 !
c .=
2§ 5000 . a
T8 4000 ppo-mm 7T T -
2 € 30001/
2000 1/
1000 §
0
0 2 4 6 8 10 12 14
[substrate] in ug
Figure 3 ARTD10 mono-ADP-ribosylates GSK3p and thereby
non-competitively inhibits its kinase activity in vitro.
A. ADP-ribosylation assay with [**PI-NAD*, TAP-ARTD10 and BSA or
GST-GSK3B, analyzed by SDS-PAGE, coomassie blue (CB) staining and
autoradiography. B. GST-GSK33 was mono-ADP-ribosylated and
subsequently assessed in a kinase assay with a primed substrate
peptide and [**P]-y-ATP. Incorporated radioactivity was measured by
scintillation counting. C. Substrate peptide was titrated as indicated
in a kinase assay with untreated or mono-ADP-ribosylated
GST-GSK3B and [*?P]-y-ATP. Incorporated radioactivity was measured
by scintillation counting.

ADP-ribosylation can directly influence the enzymatic
activity of a modified protein in vitro, which has not been
shown for any substrate of intracellular mono-ADP-
ribosyltransferases thus far. To understand how mono-
ADP-ribosylation interfered with the catalytic activity of
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GSK3p, in vitro kinase assays were performed with in-
creasing concentrations of substrate peptide. Even high
amounts of peptide failed to restore kinase activity of
mono-ADP-ribosylated GSK3p in these in vitro assays
(Figure 3C), suggesting that mono-ADP-ribosylation is a
non-competitive inhibitor. This is in contrast to Ser-9
phosphorylation of GSK3p, a site that is regulated by up-
stream signaling cascades and is a substrate of the AKT
kinase, which functions as competitive inhibitor by occu-
pying the site for the priming phosphate of the substrate
[34,35]. This implies that mono-ADP-ribosylation poten-
tially regulates GSK3p activity by a mechanism comple-
mentary to inhibition through Ser-9 phosphorylation.

ARTD10 modulates GSK3p activity in cells
Our previous study revealed that ARTDI10, but not
ARTD10-G888W, interferes with cell proliferation [3],
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suggesting that mono-ADP-ribosylation by ARTDI10 in
cells is taking place and is vital for normal cell physi-
ology. Therefore we co-expressed GFP-ARTDI10 or
GFP-ARTD10-G888W together with HA-GSK3p in
U20S cells and subsequently determined kinase activity
of immunoprecipitated GSK3f. We measured lower ki-
nase activity with co-expression of ARTD10 compared
with controls (Figure 4A), indicating that ARTDI10
modified GSK3p in cells and thereby inhibited kinase ac-
tivity similar to the in vitro assays. In contrast, co-
expression of high ARTD10-G888W amounts induced
kinase activity, which might be due to a dominant-
negative effect of the catalytically inactive ARTDI10
(Figure 4A). GSK3p expression levels were not in-
fluenced by co-expression of different ARTD10 constructs
and additionally, the immunoprecipitation efficiencies
were also comparable (Figure 4B). To complement these
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Figure 4 Manipulation of ARTD10 levels reflects on GSK3p activity in cells. A. GFP-ARTD10 or GFP-ARTD10-G888W was co-expressed with
HA-GSK3( in U20S cells. Immunoprecipitated HA-GSK3[3 was subsequently subjected to a kinase assay with a primed substrate peptide and
[*’P]-y-ATP. Incorporated radioactivity was measured by scintillation counting. B. Western blot analysis of the ARTD10 and GSK3@ expression and
immunoprecipitation levels of the kinase tested in (A) C. U20S cells were transfected with siARTD10 or siControl SMARTpools, GSK33 was
immunoprecipitated and subjected to kinase assays with a primed substrate peptide and [**P]-y-ATP. Incorporated radioactivity was measured by
scintillation counting. D. Western blot analysis of the ARTD10 and GSK3 expression levels of the kinase tested in (C) E. U20S cells were
transfected with HA-ARTD10, HA-ARTD10-G888W, HA-GSK3B or ARTD10 shRNA. 48 hours after transfection cells were lysed and analyzed.
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overexpression experiments with tests on endogenous
proteins, we performed an siRNA mediated knockdown of
ARTD10. Reducing ARTDI10 levels enhanced endogenous
GSK3p activity (Figure 4C), without influencing GSKf
protein levels (Figure 4D), thereby also hinting at the exist-
ence of endogenous mono-ADP-ribosylation by ARTD10.
To further validate these findings, we measured the phos-
phorylation of the NF-«kB subunit RELA/p65 at Ser-468, a
known GSK3p target [36]. ARTD10-G888W overexpres-
sion and knockdown of endogenous ARTD10 by shRNA
(initial tests of pSUPER-constructs are displayed in
Additional file 5: Figure S2) increased p65-Ser-468 phos-
phorylation (Figure 4E), supporting the concept that
mono-ADP-ribosylation of GSK3B by ARTDIO inhibits
kinase activity. Ser-468 phosphorylation of p65 negatively
regulates basal NF-«B activity [36], implying that ARTD10
could influence basal NF-kB activity through regulation of
GSK3p. Recent findings indicate that certain immune sig-
nals can induce ARTD10 expression [37,38], also suggest-
ing that ARTDI10 is involved in the immune response. It is
currently not possible to directly demonstrate mono-
ADP-ribosylation of GSK3p in cells due to lack of suitable
reagents, but together these findings support the hypoth-
esis that mono-ADP-ribosylation by ARTDI0 inhibits
GSK3p activity not only in vitro but also in cells. It
remains to be assessed whether this reflects a general
regulation of GSK3[B or whether distinct subpopulations
of GSK3p are affected, thus controlling specific pathways
only without affecting others as has been described for
regulation of GSK3p before [28].

Discussion

Mono-ADP-ribosylation is a currently poorly characterized
post-translational modification. It is not known which pro-
teins serve as substrate of the mono-ARTDs in cells and
what the consequences of mono-ADP-ribosylation are for
these proteins. Furthermore suitable methods are lacking to
investigate mono-ADP-ribosylation in cells. By employing a
protein substrate screen based on ProtoArrays® presented
here (Figure 1), we were able to define potential substrates
for two mono-ARTDs, ie. ARTD10 and ARTDS (Figure 2
and Additional file 2: Table S1 and Additional file 3: Table
S2). This method can be adapted for other members of the
ARTD family and also for the ARTC protein family. This
will allow the definition of a set of proteins as targets of in-
dividual ADP-ribosyltransferases and, by learning more
about the substrate preferences of the different enzymes,
their physiological roles can be unraveled.

The findings reported here are the first evidence that
mono-ADP-ribosylation by mono-ARTDs can regulate the
enzymatic activity of a substrate, both in vitro (Figure 3)
and in cells (Figure 4). The inhibitory effect measured on
GSK3p in cells was small but consistent in these assays,
which could possibly be caused by enzymes that remove
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the mono-ADP-ribosylation from GSK3p. It is known that
poly-ADP-ribose is degraded very rapidly in cells [2],
however poly-ADP-ribose glycohydrolase (PARG) and
ADP-ribosylhydrolase 3 (ARH3) display no activity towards
mono-ADP-ribosylated proteins [39-41]. We expect that
also mono-ADP-ribosylation is a reversible process and
therefore postulate that enzymes exist that can remove this
modification from a substrate. This may also occur during
cell lysis, especially under the mild conditions applied here
to preserve GSK3p kinase activity. However, because the
nature of such enzyme(s) has not been described thus far, it
is difficult to control their activity. Likewise it is also diffi-
cult to detect ubiquitination of proteins without overex-
pressing ubiquitin and inhibiting the deubiquitinating
enzymes [42]. Alternatively, only a distinct sub-population
of GSK3fB might be mono-ADP-ribosylated and therefore
the measured inhibition of kinase activity could be masked
by the unmodified population. This aspect needs to be
addressed once antibodies against mono-ADP-ribosylation
become available. Future analysis has to reveal which
GSK3p substrates are influenced most by its mono-ADP-
ribosylation. Moreover it will be important to define to
what extent the consequence of this modification overlaps
with the inhibitory effect of Ser-9 phosphorylation as well
as other regulatory mechanisms that target GSK3p [43-45].

Because such a remarkable number of kinases were
identified as ARTD8 and ARTDI10 substrate (Figure 1D),
it is tempting to speculate that mono-ADP-ribosylation
serves as a general regulator of kinase activity. This has
to be tested, however, by assessing the effect of mono-
ADP-ribosylation on these other identified kinases. Of
interest is also the observation that 10 of the 32 sub-
strates shared between ARTD10 and ARTDS are kinases.
We noticed that when these two transferases were co-
expressed in cells, they co-localized through specific
interaction of the macrodomains of ARTD8 with mono-
ADP-ribosylated ARTD10 (Forst et al, Structure, in
press). This might suggest that some of the substrates that
we identified are co-regulated. It is also possible that these
two transferases act successively. These aspects are in
need of further analysis. The consequences of mono-
ADP-ribosylation for the identified growth factors have
also to be investigated in more detail, where it should also
be addressed when ARTDIO is in spatial proximity to
these potential substrates. Currently, it is not clear if and
when ARTDI0 and the identified growth factors interact
to allow modification.

However, these findings imply that mono-ADP-
ribosylation might have an important role to play in the
regulation of multiple processes by modifying substrate
proteins such as GSK3p, IKKe and PDGE-B. This makes
the regulation of ARTDI10 itself an interesting research
question, because it is currently also not clear when
ARTDIO0 is active. At the moment, this is difficult to study
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because no direct read-outs for ARTDI10 activity in cells
exist. Furthermore, mono-ADP-ribosylation cannot be
measured as easily by mass spectrometry as for example
phosphorylation [46,47], as also illustrated by the fact that
publications that describe automodification sites in
ARTD1 contradict each other [48,49]. To be able to fully
understand the role of mono-ADP-ribosylation in cell
physiology, reliable methods have to be developed to study
this modification. With antibodies against mono-ADP-
ribosylated amino acids, it could for example be investi-
gated under which circumstances GSK3( is normally
modified by ARTD10 in cells or whether the other in vitro
substrates are indeed also ARTDI10 targets in cells.

Conclusions

In order to understand the PTM mono-ADP-ribosylation
better, it is necessary to identify target proteins, which can
be investigated with the screening method presented here.
Furthermore, we establish mono-ADP-ribosylation as a
PTM that can directly regulate the activity of a substrate
kinase. This not only adds another dimension to the regu-
lation of GSK3p, but also provides an example of the
relevance of intracellular mono-ADP-ribosylation. Unfor-
tunately, mono-ADP-ribosylation cannot be directly mea-
sured in cells at the moment. A major challenge for the
field will thus be the development of antibodies recogniz-
ing mono-ADP-ribosylated residues, as well as of reliable
methods for modification site mapping to enable the fur-
ther analysis of endogenous mono-ADP-ribosylation by
the ARTD family.

Methods

Cell lines and reagents

U20S and HelLa cells were kept at a humidified atmos-
phere at 37°C with 5% CO, at all times and were culti-
vated in DMEM supplemented with 10% heat-inactivated
fetal calf serum and 1% penicillin/streptomycin. Transfec-
tions were performed using the calcium phosphate pre-
cipitation technique. shRNA mediated knockdown was
achieved by co-transfection of two different pSUPER con-
structs targeting different regions [50]. Dharmacon siRNA
pools were transfected using Lipofectamin (Invitrogen)
according to manufacturer’s instructions at a final concen-
tration of 50 nM.

Cloning and mutagenesis

Cloning of ARTD10 constructs has been described before

[3,24,51]. pSUPER-ARTDI10_1 and pSUPER-ARTDI10_6

were generated with the following oligonucleotides:
siARTD10_1_for: GAT CCC CGG GTA GAG GGA

TTA TGA CAT TCA AGA GAT GTC ATA ATC CCT

CTA CCC TTT TTG GAA A
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siARTD10_1_rev: AGC TTT TCC AAA AAG GGT
AGA GGG ATT ATG ACA TCT CTT GAA TGT CAT
AAT CCC TCT ACC CGG G

siARTD10_2_for: GAT CCC CGT GCA GGG ACT
GTG ACA ATT TCA AGA GAA TTG TCA CAG TCC
CTG CACTTT TTG GAA A

siARTD10_2_rev: AGC TTT TCC AAA AAG TGC
AGG GAC TGT GAC AAT TCT CTT GAA ATT GTC
ACA GTC CCT GCA CGG G

siARTD10_3_for: GAT CCC CCT TGA AGG ACC
GGA TAT GAT TCA AGA GAT CAT ATC CGG TCC
TTC AAGTTT TTG GAA A

siARTD10_3_rev: AGC TTT TCC AAA AAC TTG
AAG GAC CGG ATA TGA TCT CTT GAA TCA TAT
CCG GTC CTT CAA GGG G

siARTD10_4_for: GAT CCC CTG GGT CCC ATG
GAG ATC ACT TCA AGA GAG TGA TCT CCA TGG
GACCCATTT TTG GAA A

siARTD10_4_rev: AGC TTT TCC AAA AAT GGG
TCC CAT GGA GAT CAC TCT CTT GAA GTG ATC
TCC ATG GGA CCC AGG G

siARTD10_5_for: GAT CCC CAG TGG CAG AAC
GAG TGT TGT TCA AGA GAC AAC ACT CGT TCT
GCCACT TTT TTG GAA A

siARTD10_5_rev: AGC TTT TCC AAA AAA GTG
GCA GAA CGA GTG TTG TCT CTT GAA CAA CAC
TCG TTC TGC CAC TGG G

siARTD10_6_for: GAT CCC CAG GCC TTG AAG
AGG TGG ACT TCA AGA GAG TCC ACC TCT TCA
AGG CCT TTT TTG GAA A

siARTD10_6_rev: AGC TTT TCC AAA AAA GGC
CTT GAA GAG GTG GAC TCT CTT GAA GTC CAC
CTC TTC AAG GCC TGG G

pcDNA3.1-HA-GSK3p Addgene plasmid 14753 [52]
was used to create pPDONR/zeo-GSK3p and pBAC-GST-
GSK3p using the GateWay cloning system according to
manufacturer’s recommendations. Primers used were
GSK3_attBl and GSK3_attB2.

GSK3_attBl: GGG GAC AAG TTT GTA CAA AAA
AGC AGG CTT CAT GTC AGG GCG GCC CAG A

GSK3_attB2: GGG GAC CAC TTT GTA CAA GAA
AGC TGG GTC TTA GGT GGA GTT GGA AGC
TGA TGC AG

Protein purification

Enzymatically active ARTD10 and the inactive ARTD10-
G888W were purified using the TAP-tagging method as
described before [3]. The GST-tagged catalytic domain
or inactive mutant G888W, comprising amino acids
818-1025, were purified from E.coli strain BI21, where
protein expression was induced with 04 mM IPTG
overnight at 20°C. GST-GSK3p was purified from insect
SF9 cells infected with GST-GSK3p virus, produced after
transfection of pBAC-GST-GSK3p by using BaculoGold
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(BD Biosciences) according to manufacturer’s instruc-
tions. Recombinant IKKe, GSK3 [ and P-TEFb were pur-
chased from Invitrogen. Recombinant His-ING5 was
purified from E.coli strain Bl21, after induction of pro-
tein expression with 1 mM IPTG for 2 hours at 37°C.
Recombinant ACVR1(171-499) was a gift from S. Knapp,
recombinant PDGF-B was a gift from T. Ostendorf and
recombinant His-ARTDS8 was a gift from P.O. Hassa.

Western blotting and antibodies

Cells were lysed in TAP-lysis buffer (50 mM Tris pH7.5,
150 mM NaCl, 1 mM EDTA, 10% (v/v) glycerol, 1% (v/v)
NP-40, 1 mM DTT and 100 uM sodium vanadate) supple-
mented with ProteoBlock Protease inhibitor cocktail
(Fermentas) and cleared by high-speed centrifugation.
After boiling with SDS-sample buffer 10-18%-SDS poly-
acrylamide gel electrophoresis was used to separate the
proteins followed by transfer to nitrocellulose membrane
(Millipore). Blocking of the membrane was performed at
RT for at least 30 minutes in 5% non-fat milk in TBS-T.
Primary antibodies were incubated at 4°C overnight.
Primary antibodies used are a-GSK3p (H-76, Santa Cruz),
a-GSK3B-S9A (Cell Signaling), a-ARTD10 (5H11, mono-
clonal antibody raised in rat against ARTD10 fragment 2
(amino acids 206-459), a-tubulin (T6557, Sigma), a-p65
(3987, Cell Signaling), a-p65 phospho Ser 468 (3039, Cell
Signaling), a-GFP (600-301-215, Rockland), a-HA (3 F10,
Roche) and a-MCM2 (N-19, Santa Cruz).

ADP-ribosylation assays

ADP-ribosylation assays were routinely carried out at
30°C for 30 minutes unless indicated otherwise. The re-
action mixture (50 mM Tris-HCI, pH 8.0, 0.2 mM DTT,
5 mM MgCl, and 50 pM B-NAD" (Sigma) and 1 pCi
[*’P]-B-NAD* (Amersham Biosciences)) was added to
0.5-1 g purified substrate protein and 0.5 ug enzyme in
a total reaction volume of 30 pl. Reactions were stopped
by adding SDS sample buffer and were subsequently
boiled and run on SDS-PAGE. Incorporated radioactivity
was analyzed by exposure of the dried gel to X-ray film.
Samples used in subsequent kinase assays were cooled
on ice before washing of beads with coupled GST-
GSK3p in kinase assay buffer (see below). Alternatively,
50 uM biotin-NAD™" (Trevigen) was added to the reaction
mixture instead of regular B-NAD* and [*’P]-B-NAD",
followed by analysis by SDS-PAGE and Western Blot.

Kinase assays

Kinase buffer: 5 mM MOPS pH7.2, 2.5 mM B-glycero-
phosphate, 1 mM EGTA, 0.4 mM EDTA, 4 mM MgCl,,
50 uM DTT and 40 ng/ul BSA. [**P]-y-ATP was diluted
to 0.16 pCi/pl in 250 uM ATP in 3x kinase assay buffer.
25 ng GST-GSK3p or precipitated material was incu-
bated in a reaction volume of 25 pl containing 5 pl
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0.16 uCi/ul [**P]-y-ATP-solution and 5 pg substrate
peptide RRRPASVPPSPSLSRHS(pS)HQRR (Millipore),
unless the substrate peptide was titrated in indicated
concentrations. After incubating at 30°C for 15 minutes
the reaction was stopped by placing on ice. Assays with
immunoprecipitated material were spun-down before
analysis to pellet the beads. Routinely 10 ul aliquots were
spotted on P81 paper in duplicate, washed with 0.5%
phosphoric acid and air-dried before scintillation count-
ing. Beads with immunoprecipitated material were sub-
sequently boiled and analyzed by Western Blot. Data of
the experiments with recombinant proteins are repre-
sented as mean + SD of at least triplicate measurements
from a representative experiment. Data of experiments
with immunoprecipitated material are represented as
mean = SEM of biological triplicates. Statistical signifi-
cance was determined by employing two-sided Student’s
t-tests (* = p < 0.05, n.s. = not significant).

ProtoArrays®

ProtoArrays® (v4.1) were purchased from Invitrogen and
contain approximately 8000 proteins spotted in duplicate
on a thin layer of nitrocellulose. All solutions used were
filtered through 0.22 pm filter devices prior to use to
eliminate background-causing dust particles. Arrays
were removed from -20°C and allowed to thaw at room
temperature for 20 minutes. Roti-Block (Roth) was used
to block the arrays by incubating for 1 hour at 4°C, sha-
king with 50 rpm. Arrays were washed once in plain re-
action buffer (50 mM Tris-HCI, pH 8.0) and dried at the
back and sides with Kim wipes. The reaction mixture
(50 mM Tris-HCI, pH 8.0, 0.2 mM DTT, 4 mM MgCl,,
25 puM biotin-NAD" and approximately 1.5 pg enzyme)
was applied to the slides upon which LifterSlips (Nunc)
were placed on the arrays to prevent evaporation of the
reaction mixture. This was incubated for 1 hour at 30°C
and subsequently washed 3x with 1% fatty-acid-free BSA
in TBS/T, 3x with 0.5% SDS in TBS/T and again 3x with
1% fatty-acid-free BSA, each wash step taking 10 mi-
nutes. To detect the biotinylated proteins, streptavidin-
AlexaFluor® 647 was applied in the dark for 90 minutes
at 4°C at a concentration of 2 pg/ml in 1% fatty-acid-
free BSA in TBS/T, after which five 10-minute wash
steps with 1% fatty-acid-free BSA in TBST/T and 5 wash
steps with ddH,O were performed. Arrays were centri-
fuged at 200xg for 2 minutes to remove residual ddH,O
and subsequently analyzed using an Axon GenePix
4100A microarray reader with the GenePixPro 6.0 pro-
gram. Results were analyzed with the Prospector soft-
ware provided by Invitrogen.

Z-scores were calculated to assess statistical signifi-
cance, according to the following formula: z = (x-p)/c
where x is the raw value, p the population mean and o
the standard deviation of the population. All proteins
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having a Z-score = 2.5 were considered as a positive hit
and were displayed in the Additional file 2: Table S1 and
Additional file 3: Table S2. Lists containing the Uniprot/
Swissprot IDs of all identified ARTD8 and ARTD10 sub-
strates were generated and subsequently analyzed using
the online Biocompendium high-throughput experimen-
tal data analysis platform (biocompendium.embl.de).
Enriched gene ontology (GO) terms are displayed in the
additional tables, with separate tables for ARTDS8 and
ARTDI10 substrate sets and GO terms for biological pro-
cesses or GO terms for molecular functions.

Additional files

Additional file 1: Figure S1. A. In vitro ADP-ribosylation assay
performed with GST-ARTD10(818-1025) and biotin-NAD", analyzed by
SDS-PAGE an Western Blot. ADP-ribosylation was detected with HRP-
coupled streptavidin, total protein with a GST-specific antibody. B. Three
different sub-arrays are displayed for the arrays incubated with ARTD10
and the ARTDS. Spots of exemplary proteins indicated with green are
enlarged.

Additional file 2: Table S1. List of identified ARTD10 substrates.
Additional file 3: Table S2. List of identified ARTDS8 substrates.
Additional file 4: Table S3. Summary of gene ontology analysis.

Additional file 5 Figure S2. Six different ShRNA constructs against
ARTD10 were tested in Hela cells on overexpressed HA-ARTD10. The
ARTD10 protein levels were normalized against actin.

Abbreviations

ACVRI1: Activin receptor type-1; ART: ADP-ribosyltransferase;

B-NAD™: Nicotinamide adenine dinucleotide; GSK3B: Glycogen synthase
kinase B3; IKK: IkB kinase; ING5: Inhibitor of growth protein 5; PAR: Poly-ADP-
ribose; PDGF: Platelet-derived growth factor subunit B; P-TEFb: Positive
transcription elongation factor b; TAP: Tandem-affinity purified.

Competing interests
The authors declare no competing financial interests.

Authors’ contributions

KLHF, HK, and AB established the screen; KLHF performed the GSK3(3
experiments; UL performed the ING5 experiment; AHF, NH, and PV purified
ARTD10; EK generated the mAbs; BL supervised the work; KLHF and BL
wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We thank T. Ostendorf for providing purified PDGF-B, S. Knapp for
recombinant ACVR1, P.O. Hassa for recombinant ARTDS, B. Lippok for
technical assistance and G. Conrads and H.-P. Horz for help with microarray
read-out. This work was supported by the START program of the Medical
School of the RWTH Aachen University to HK and BL, and by the Deutsche
Forschungsgemeinschaft DFG (LU 466/15-1) to BL.

Author details

'Institute of Biochemistry and Molecular Biology, Medical School, RWTH
Aachen University, Pauwelsstrale 30, 52074, Aachen, Germany. ’Helmholtz
Zentrum Munchen, Institute for Molecular Immunology, Marchioninistr. 25,
81377, Munchen, Germany. 3Present addresses: Abbott GmbH & Co. KG,
Max-Planck-Ring 2a, 65205, Wiesbaden, Germany (HK). 4Departmen‘[ of
Neurology, Medical School, RWTH Aachen University, 52074, Aachen,
Germany (AB). "Home office, SchoppershofstraRe 65, 90489, Niimberg,
Germany (AB).

Received: 31 October 2012 Accepted: 20 December 2012
Published: 19 January 2013

Page 10 of 11

References

1.

20.

21.

22.

Hottiger MO, Hassa PO, Luscher B, Schuler H, Koch-Nolte F: Toward a
unified nomenclature for mammalian ADP-ribosyltransferases.

Trends Biochem Sci 2010, 35:208-219.

Schreiber V, Dantzer F, Ame JC, de Murcia G: Poly(ADP-ribose): novel
functions for an old molecule. Nat Rev Mol Cell Biol 2006, 7:517-528.
Kleine H, Poreba E, Lesniewicz K, Hassa PO, Hottiger MO, Litchfield DW,
Shilton BH, Luscher B: Substrate-assisted catalysis by PARP10 limits its
activity to mono-ADP-ribosylation. Mol Cell 2008, 32:57-69.

Kalisch T, Ame JC, Dantzer F, Schreiber V: New readers and interpretations
of poly(ADP-ribosyl)ation. Trends Biochem Sci 2012, 37:381-390.

Hassa PO, Haenni SS, Elser M, Hottiger MO: Nuclear ADP-ribosylation
reactions in mammalian cells: where are we today and where are we
going? Microbiol Mol Biol Rev 2006, 70:789-829.

Gibson BA, Kraus WL: New insights into the molecular and cellular functions
of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Biol 2012, 13:411-424.
Schreiber V, Ame JC, Dolle P, Schultz |, Rinaldi B, Fraulob V, Fraulob V,
Menissier-de Murcia J: Poly(ADP-ribose) polymerase-2 (PARP-2) is required
for efficient base excision DNA repair in association with PARP-1 and
XRCC1. J Biol Chem 2002, 277:23028-23036.

Menissier de Murcia J, Ricoul M, Tartier L, Niedergang C, Huber A, Dantzer F,
Schreiber V, Ame JC, Dierich A, LeMeur M, et al: Functional interaction
between PARP-1 and PARP-2 in chromosome stability and embryonic
development in mouse. EMBO J 2003, 22:2255-2263.

Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O,
Wiellette E, Zhang Y, Wiessner S, et al: Tankyrase inhibition stabilizes axin and
antagonizes Wnt signalling. Nature 2009, 461:614-620.

Callow MG, Tran H, Phu L, Lau T, Lee J, Sandoval WN, Liu PS, Bheddah S,
Tao J, Lill JR, et al- Ubiquitin ligase RNF146 regulates tankyrase and Axin
to promote Wnt signaling. PLoS One 2011, 6:222595.

Zhang Y, Liu S, Mickanin C, Feng Y, Charlat O, Michaud GA, Schirle M, Shi X,
Hild M, Bauer A, et al: RNF146 is a poly(ADP-ribose)-directed E3 ligase
that regulates axin degradation and Wnt signalling. Nat Cell Biol 2011,
13:623-629.

Levaot N, Voytyuk O, Dimitriou |, Sircoulomb F, Chandrakumar A, Deckert M,
Krzyzanowski PM, Scotter A, Gu S, Janmohamed S, et al: Loss of
Tankyrase-mediated destruction of 3BP2 is the underlying pathogenic
mechanism of cherubism. Cell 2011, 147:1324-1339.

Guettler S, LaRose J, Petsalaki E, Gish G, Scotter A, Pawson T, Rottapel R,
Sicheri F: Structural basis and sequence rules for substrate recognition
by Tankyrase explain the basis for cherubism disease. Cell 2011,
147:1340-1354.

Ferro AM, Olivera BM: Poly(ADP-ribosylation) in vitro Reaction parameters
and enzyme mechanism. J Biol Chem 1982, 257:7808-7813.

Aravind L: The WWE domain: a common interaction module in protein
ubiquitination and ADP ribosylation. Trends Biochem Sci 2001, 26:273-275.
Ahel I, Ahel D, Matsusaka T, Clark AJ, Pines J, Boulton SJ, West SC:
Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint
proteins. Nature 2008, 451:81-85.

Timinszky G, Till S, Hassa PO, Hothorn M, Kustatscher G, Nijmeijer B,
Colombelli J, Altmeyer M, Stelzer EH, Scheffzek K, et al:

A macrodomain-containing histone rearranges chromatin upon sensing
PARP1 activation. Nat Struct Mol Biol 2009, 16:923-929.

Ahel D, Horejsi Z, Wiechens N, Polo SE, Garcia-Wilson E, Ahel |, Flynn H,
Skehel M, West SC, Jackson SP, et al: Poly(ADP-ribose)-dependent
regulation of DNA repair by the chromatin remodeling enzyme ALC1.
Science 2009, 325:1240-1243.

Gottschalk AJ, Timinszky G, Kong SE, Jin J, Cai Y, Swanson SK, Washburn MP,
Florens L, Ladurner AG, Conaway JW, Conaway RC: Poly(ADP-ribosyl)ation
directs recruitment and activation of an ATP-dependent chromatin
remodeler. Proc Natl Acad Sci USA 2009, 106:13770-13774.

Kang HC, Lee YI, Shin JH, Andrabi SA, Chi Z, Gagne JP, Lee Y, Ko HS, Lee BD,
Poirier GG, et al: Iduna is a poly(ADP-ribose) (PAR)-dependent E3
ubiquitin ligase that regulates DNA damage. Proc Natl Acad Sci USA 2011,
108:14103-14108.

Wang Z, Michaud GA, Cheng Z, Zhang Y, Hinds TR, Fan E, Cong F, Xu W:
Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose) by WWE
domains suggests a general mechanism for poly(ADP-ribosyl)ation-
dependent ubiquitination. Genes Dev 2012, 26:235-240.

Kleine H, Luscher B: Learning how to read ADP-ribosylation. Cell 2009,
139:17-19.


http://www.biomedcentral.com/content/supplementary/1478-811X-11-5-S1.pdf
http://www.biomedcentral.com/content/supplementary/1478-811X-11-5-S2.pdf
http://www.biomedcentral.com/content/supplementary/1478-811X-11-5-S3.pdf
http://www.biomedcentral.com/content/supplementary/1478-811X-11-5-S4.pdf
http://www.biomedcentral.com/content/supplementary/1478-811X-11-5-S5.pdf

Feijs et al. Cell Communication and Signaling 2013, 11:5
http://www.biosignaling.com/content/11/1/5

23. Welsby |, Hutin D, Leo O: Complex roles of members of the ADP-ribosyl
transferase super family in immune defences: looking beyond PARP1.
Biochem Pharmacol 2012, 84:11-20.

24. Yu M, Schreek S, Cerni C, Schamberger C, Lesniewicz K, Poreba E, Vervoorts J,
Walsemann G, Grotzinger J, Kremmer E, et al PARP-10, a novel Myc-
interacting protein with poly(ADP-ribose) polymerase activity, inhibits
transformation. Oncogene 2005, 24:1982-1993.

25. Kleine H, Herrmann A, Lamark T, Forst AH, Verheugd P, Luscher-Firzlaff J,
Lippok B, Feijs KL, Herzog N, Kremmer E, et al: Dynamic subcellular
localization of the mono-ADP-ribosyltransferase ARTD10 and interaction
with the ubiquitin receptor p62. Cell Commun Signal 2012, 10:28.

26.  Chou HY, Chou HT, Lee SC: CDK-dependent activation of
poly(ADP-ribose) polymerase member 10 (PARP10). J Biol Chem 2006,
281:15201-15207.

27. Cohen P, Frame S: The renaissance of GSK3. Nat Rev Mol Cell Biol 2001,
2:769-776.

28.  Doble BW, Woodgett JR: GSK-3: tricks of the trade for a multi-tasking
kinase. J Cell Sci 2003, 116:1175-1186.

29. Meng L, Michaud GA, Merkel JS, Zhou F, Huang J, Mattoon DR, Schweitzer B:
Protein kinase substrate identification on functional protein arrays. BMC
Biotechnol 2008, 8:22.

30. Saxty BA, Yadollahi-Farsani M, Upton PD, Johnstone SR, MacDermot J:
Inactivation of platelet-derived growth factor-BB following modification
by ADP-ribosyltransferase. Br J Pharmacol 2001, 133:1219-1226.

31.  Cho SH, Goenka S, Henttinen T, Gudapati P, Reinikainen A, Eischen CM,
Lahesmaa R, Boothby M: PARP-14, a member of the B aggressive
lymphoma family, transduces survival signals in primary B cells.

Blood 2009, 113:2416-2425.

32. Cho SH, Ahn AK, Bhargava P, Lee CH, Eischen CM, McGuinness O, Boothby M:
Glycolytic rate and lymphomagenesis depend on PARP14, an ADP
ribosyltransferase of the B aggressive lymphoma (BAL) family. Proc Nat/
Acad Sci USA 2011, 108:15972-15977.

33. Vervoorts J, Luscher-Firzlaff J, Luscher B: The ins and outs of MYC
regulation by posttranslational mechanisms. J Biol Chem 2006,
281:34725-34729.

34. Dajani R, Fraser E, Roe SM, Young N, Good V, Dale TC, Pearl LH: Crystal
structure of glycogen synthase kinase 3 beta: structural basis for
phosphate-primed substrate specificity and autoinhibition. Cell 2001,
105:721-732.

35. Frame S, Cohen P, Biondi RM: A common phosphate binding site explains
the unique substrate specificity of GSK3 and its inactivation by
phosphorylation. Mo/ Cell 2001, 7:1321-1327.

36. Buss H, Dorrie A, Schmitz ML, Frank R, Livingstone M, Resch K, Kracht M:
Phosphorylation of serine 468 by GSK-3beta negatively regulates basal
p65 NF-kappaB activity. J Biol Chem 2004, 279:49571-49574.

37. Mahmoud L, Al-Saif M, Amer HM, Sheikh M, Almajhdi FN, Khabar KS: Green
fluorescent protein reporter system with transcriptional sequence
heterogeneity for monitoring the interferon response. J Virol 2011,
85:9268-9275.

38. Salazar JC, Duhnam-Ems S, La Vake C, Cruz AR, Moore MW, Caimano MJ,
Velez-Climent L, Shupe J, Krueger W, Radolf JD: Activation of human monocytes
by live Borrelia burgdorferi generates TLR2-dependent and -independent
responses which include induction of IFN-beta. PLoS Pathog 2009,
5:¢1000444.

39. Dunstan MS, Barkauskaite E, Lafite P, Knezevic CE, Brassington A, Ahel M,
Hergenrother PJ, Leys D, Ahel I: Structure and mechanism of a canonical
poly(ADP-ribose) glycohydrolase. Nat Commun 2012, 3:878.

40. Oka S, Kato J, Moss J: Identification and characterization of a mammalian
39-kDa poly(ADP-ribose) glycohydrolase. J Biol Chem 2006, 281:705-713.

41. Slade D, Dunstan MS, Barkauskaite E, Weston R, Lafite P, Dixon N, Ahel M,
Leys D, Ahel I The structure and catalytic mechanism of a
poly(ADP-ribose) glycohydrolase. Nature 2011, 477:616-620.

42, Ellison MJ, Hochstrasser M: Epitope-tagged ubiquitin A new probe for
analyzing ubiquitin function. J Biol Chem 1991, 266:21150-21157.

43. Beurel E, Michalek SM, Jope RS: Innate and adaptive immune responses
regulated by glycogen synthase kinase-3 (GSK3). Trends Immunol 2010,
31:24-31.

44. Hur EM, Zhou FQ: GSK3 signalling in neural development. Nat Rev
Neurosci 2010, 11:539-551.

45. Wu D, Pan W: GSK3: a multifaceted kinase in Wnt signaling.

Trends Biochem Sci 2010, 35:161-168.

Page 11 of 11

46.  Hengel SM, Goodlett DR: A Review of Tandem Mass Spectrometry
Characterization of Adenosine Diphosphate-Ribosylated Peptides. Int J
Mass Spectrom 2012, 312:114-121.

47. Rosenthal F, Messner S, Roschitzki B, Gehrig P, Nanni P, Hottiger MO:
Identification of distinct amino acids as ADP-ribose acceptor sites by
mass spectrometry. Methods Mol Biol 2011, 780:57-66.

48. Altmeyer M, Messner S, Hassa PO, Fey M, Hottiger MO: Molecular
mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of
lysine residues as ADP-ribose acceptor sites. Nucleic Acids Res 2009,
37:3723-3738.

49. Tao Z, Gao P, Liu HW: Identification of the ADP-ribosylation sites in the
PARP-1 automodification domain: analysis and implications. / Am Chem
Soc 2009, 131:14258-14260.

50.  Brummelkamp TR, Bernards R, Agami R: A system for stable expression of
short interfering RNAs in mammalian cells. Science 2002, 296:550-553.

51. Lesniewicz K, Luscher-Firzlaff J, Poreba E, Fuchs P, Walsemann G, Wiche G,
Luscher B: Overlap of the gene encoding the novel poly(ADP-ribose)
polymerase Parp10 with the plectin 1 gene and common use of exon
sequences. Genomics 2005, 86:38-46.

52. He X, Saint-Jeannet JP, Woodgett JR, Varmus HE, Dawid IB: Glycogen
synthase kinase-3 and dorsoventral patterning in Xenopus embryos.
Nature 1995, 374:617-622.

doi:10.1186/1478-811X-11-5

Cite this article as: Feijs et al: ARTD10 substrate identification on
protein microarrays: regulation of GSK3f by mono-ADP-ribosylation. Cell
Communication and Signaling 2013 11:5.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BiolVied Central




	Abstract
	Background
	Results
	Conclusions

	Lay abstract
	Background
	Results
	ARTD10 and ARTD8 substrate identification using ProtoArrays
	Mono-ADP-ribosylation inhibits GSK3β in�vitro
	ARTD10 modulates GSK3β activity in cells

	Discussion
	Conclusions
	Methods
	Cell lines and reagents
	Cloning and mutagenesis
	Protein purification
	Western blotting and antibodies
	ADP-ribosylation assays
	Kinase assays
	ProtoArrays�®�

	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

