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Results: PoMelo (Predictor of Metabolic Loss) is a novel evolutionary genomics-
guided computational approach for identifying metabolic gaps in the genomes

of pathogenic bacteria. PoMeLo leverages a centralized public database of high-
quality genomes and annotations and allows the user to compare an unlimited
number of genomes across individual genes and pathways. PoMelo runs locally using
user-friendly prompts in a matter of minutes and generates tabular and visual out-
puts for users to compare predicted metabolic capacity between groups of bacteria
and individual species. Each pathway is assigned a Predicted Metabolic Loss (PML)
score to assess the magnitude of genome streamlining. Optionally, PoMel.o places
the results in an evolutionary context by including phylogenetic relationships in visual
outputs. It can also initially compute phylogenetically-weighted mean genome sizes
to identify genome streamlining events. Here, we describe PoMelo and demonstrate
its use in identifying metabolic gaps in genomes of pathogenic Treponema species.

Conclusions: PoMelo represents an advance over existing methods for identify-

ing metabolic gaps in genomic data, allowing comparison across large numbers

of genomes and placing the resulting data in a phylogenetic context. PoMelo is freely
available for academic and non-academic use at https://github.com/czbiohub-sf/
pomelo.
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Background

All obligate bacterial pathogens begin, evolutionarily, as free-living organisms. As they
evolve to become more reliant on their hosts, metabolic genes and resulting capa-
bilities are lost in favor of siphoning metabolites from the host [1, 2]. Over time, the
pathogen can become completely reliant upon the host for one or more essential metab-
olites. Reductive evolution, or genome streamlining, is the process by which microor-
ganism genomes become smaller and less complex over time and can be particularly
pronounced during evolution towards symbioses [3, 4]. It is thought to be driven by a
preference for minimized energy expenditure and is often hastened in an environment
in which metabolites are freely available (e.g. within a host cell). Consequently, genome
streamlining has been observed across many distinct lineages of bacterial pathogens
including Treponema pallidum, the causative agent of syphilis, and Mycoplasma pneu-
moniae, a common cause of bacterial pneumonia [5, 6]. We predict that identifying these
missing genes and affected pathways will elucidate essential host pathways required for
bacterial survival, and we hope that inhibiting these pathways could be clinically useful.

To determine which genes have been lost during pathogen evolution and which met-
abolic pathways are affected within the context of their phylogeny, genome annota-
tion and reconstruction of metabolic pathways is required. The widely used RAST and
KEGG servers allow users to perform basic annotations and comparisons, though they
are limited to a small number of genomes [7, 8]. Here we describe PoMeLo (Predictor
of Metabolic Loss), a novel computational approach to analyze metabolic loss in bacte-
rial genomes. This tool allows us to quantify metabolic gene loss across an unlimited
number of genomes and identify metabolic pathways and genes within those pathways
to target using host-directed therapeutics.

Given two sets of genome groups—target and non-target species—PoMeLo system-
atically characterizes and compares the metabolic capabilities of any number of bac-
terial genomes via a user-friendly interface. An optional phylogenetically-weighted
mean genome size analysis allows users to identify evolutionary branch points at which
genome streamlining has potentially taken place, to inform their initial selection of tar-
get and non-target genomes. PoMeLo performs comparative analyses across individ-
ual genes as well as full pathways, and it summarizes the results at the group (target/
non-target) and species levels. Importantly, a Predicted Metabolic Loss (PML) score is
computed for each pathway to illustrate the magnitude of gene loss across all individ-
ual pathways. PoMeLo leverages a large public microbial genome repository, in which
all genomes and annotations have been generated in the same manner, ensuring con-
sistency across multiple comparisons. The tool runs locally in a matter of minutes,
generating tabular and visual outputs that allow users to compare predicted metabolic
functionality between groups of genomes and individual species.

As a demonstration, we use PoMeLo to perform an analysis of genomes within the
genus Treponema. Both T. pallidum and T. paraluiscuniculi, the causative agents of
syphilis in humans and rabbits, respectively, show strong evidence for having undergone
extensive genome reduction [5, 9], making them good candidates for interrogating meta-
bolic pathway changes in comparison to related bacterial groups. These organisms have
an average genome size of 1.1 Mb, while genomes of close relatives such as T. phagedenis
(2.9-3.8 Mb) are all greater than 2.5 Mb in size. Thus, we selected T. pallidum and T.
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paraluiscuniculi as the target group and T. phagedenis as the non-target group in our
analysis. We show that PoMeLo facilitates high-throughput, rapid analysis of metabolic
loss in bacterial genomes, providing a Predicted Metabolic Loss (PML) score for each

metabolic pathway and placing the results in evolutionary context.

Implementation

Running PoMeLo

Before running PoMeLo, the user must have an internet connection, download the
‘PML_script.R’ script and the ‘mapping BVBRC_allECs.tab’ mapping file (Additional
File 1) from the GitHub repository (https://github.com/czbiohub-sf/pomelo), install the
required R packages (Additional File 2), and load them using the /ibrary() function in R.
PoMeLo accepts as input two lists of genomes designated as “target” and “non-target”
The functional annotations associated with the input genomes are used to predict the
metabolic potential of pathogens of interest in comparison to their free-living relatives.

Genome selection
Two lists of genomes, target and non-target, must be generated via the Bacterial and
Viral Bioinformatics Resource Center (BV-BRC) [10] and downloaded from their web-
site (https://www.bv-brc.org/), formatted as comma-separated values (CSV) files. Target
genomes should be reduced in gene content in comparison to non-target genomes, so
that differences in metabolic potential are more easily discerned (see Optional phyloge-
netic analysis section). It may be necessary to include non-target genomes that are more
evolutionarily distant from the target group to observe genome reduction and stream-
lining, especially in cases where significant genome reduction has occurred across the
entire genus (e.g. Mycoplasma). Users can navigate to their organisms of interest via
either the search bar on the home page or the ‘Organisms’ tab at the top of the page,
by selecting ‘All Bacteria’ and navigating through the resulting page. It may be helpful
for users to explore the ‘Phylogeny’ tab to view which organisms have representative
genomes available within the BV-BRC database and how they are related to one another.
To generate the list of target genomes, users can click on the ‘Genomes’ tab and filter
the results by clicking on the ‘FILTERS’ icon. To ensure that pathway annotations and
metabolic predictions are accurate, high quality genomes should be used for this analy-
sis. The authors suggest filtering by ‘Genome Quality’ for ‘Good’ quality genomes and
filtering by ‘Genome Status’ for ‘Complete’ genomes. After filtering the genome list, the
user can select genomes for download by checking the boxes to the left of the genome
name. Once the target genomes have been selected, the user can click the ‘DOWN-
LOAD’ icon and select the ‘CSV’ option. This will trigger an automatic download of the
genomes list in CSV format. This process should then be repeated to select and down-
load the list of non-target genomes.

Optional phylogenetic analysis

As a part of the PoMeLo GitHub repository, we have provided an additional script
(‘PML_PICanalysis.Rmd’) that takes as input a list of genomes of interest along
with a user-supplied phylogeny of the genomes in Newick format (NWK). The
script estimates the genome size gain or loss across the phylogeny by computing
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phylogenetically-weighted mean genome sizes. The phylogeny can be constructed using
the BV-BRC resource by the following steps: 1) select one representative genome for
each species in the ‘Genomes’ tab, 2) create a genome group by clicking on the ‘GROUP’
icon, 3) navigate to the ‘“Tools & Services’ dropdown menu and select ‘Bacterial Genome
Tree’ under the ‘Phylogenomics’ header, and 4) build a tree using the previously defined
group. The phylogenetically-weighted mean genome size analysis takes shared evolu-
tionary history into account and follows the first steps of phylogenetically independent
contrasts (PICs) but skips the final standardization by the variance [11-13].

At each internal node of the tree, the algorithm computes phylogenetically-weighted
mean genome sizes by summing the actual values (for external tips, i.e. actual genomes)
or computed values (for internal nodes) of its descendants and dividing the total by the
number of descendant branches of that node. These estimates are propagated from the
external tips to the root of the tree (Additional file 9: Figure s1). The algorithm then esti-
mates the percentage change in genome size along each branch. This allows the user
to visualize the genome size changes for each species and each progressively distant
clade in the tree. Using this approach, users can easily pinpoint lineages where related
genomes similarly shrink in size and estimate the magnitude of that loss. In conjunction
with biological knowledge of the organism, its pathogenicity, and localization within the
host (e.g. extracellular, vacuolar, cytoplasmic), users can more easily distinguish which
species to select for target versus non-target groups. For accurate prediction of meta-
bolic loss in pathogen genomes, it is important for the target group genomes to have
undergone measurable gene loss.

Optionally, the two files generated for genome size analysis can also be used to incor-
porate phylogenetic information to the visual outputs of PoMeLo. After completing all
calculations and scoring, PoMeLo prompts the user to provide the same NWK and CSV
files of representative genomes (one per species) used in the genome size analysis. Once
these files are uploaded, PoMeLo regenerates figures in the context of the phylogeny and
adds trees to the visualizations. In cases of one-to-one comparisons between two spe-
cies, the optional phylogenetic portion of the PoMeLo script may be skipped as it yields
no useful information.

Data Import
Once launched, PoMeLo automatically loads all required R packages and prompts the
user to create a new directory to store all intermediate and output files. PoMeLo pre-
sents a pop-up window prompting the user to select their “target genomes” file contain-
ing the list of pathogen genomes to be targeted for host-directed therapeutics. These
should include genomes of the pathogen of interest and optionally genomes of similarly
sized relatives. After the file is selected, PoMeLo accesses BV-BRC [10] and downloads
the full pathway annotations for each genome individually. The same process is then
repeated for the “non-target genomes” file containing the list of genomes of non-path-
ogenic or free-living organisms to be used for comparison with the target genomes of
interest.

This process of downloading genomic annotations for target and non-target genomes
is the most time-consuming part of the PoMeLo pipeline. Because the computational
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time increases linearly with the number of selected genomes, it is advisable to limit the
total to fewer than 1000 individual genomes per analysis. Selecting one or a few rep-
resentatives of each species for the analysis from the BV-BRC database will also help
to optimize computational efficiency and reduce download time. Once genome anno-
tation files have been downloaded to the working directory, PoMeLo combines all the
data from both target and non-target genomes into a single comprehensive data frame.
PoMeLo then prompts the user to find the ‘mapping_ BVBRC_allECs.tab’ file that con-
tains a list of the annotated metabolic pathways and corresponding genes in the BV-BRC
database, allowing for mapping to a complete reference. PoMeLo integrates this infor-
mation into the larger data frame to allow the identification of missing pathways and
genes in the target and non-target genomes. PoMeLo also accesses BV-BRC and down-
loads the genome summary file to extract genome statistics for all genomes included in
the analysis.

Data pruning

Before conducting further calculations, PoMeLo carries out a series of validation and
name correction steps. First, the genome names are modified for simplicity and clar-
ity, e.g. by abbreviating phrases like “endosymbiont of ..., removing terms like “Candida-
tus” and “uncultured’;, and adding underscores after terms like “sp.,” “strain,” or genome
project acronyms such as “ATCC,” “FDAARGOS; “NCTC,” and “USDA”. Next, PoMeLo
creates new columns that combine the first two names from both the “Genome Name”
and “Species” fields for downstream merging of genome annotations with identical tax-
onomy. PoMeLo compares the “Genome Name” and “Species” fields and defaults to the

name used in the “Species” field that has been manually curated by BV-BRC.

Statistical calculations

In the integrated data frame described earlier, each row corresponds to a genome-gene
pair. The dataset contains detailed information about the genome, gene, and associ-
ated pathway. Using this data along with the universal mapping file, PoMeLo calculates
summary statistics at the individual gene level and the pathway level. These statistics
describe the extent to which genes are identified within a given species or group, at both
the individual gene and pathway level. Note that some genes can be assigned to multiple
pathways, leading to ambiguity about their importance in any given pathway. Further-
more, the presence of these genes can artificially inflate the importance of included but
irrelevant pathways (e.g. photosynthesis). To address this, three additional metrics are
provided: the “promiscuity index’”, which represents the number of unique pathways in
which a specific gene is found, the average promiscuity index across each pathway, and
the percentage of “promiscuous” genes in each pathway. These metrics help to refine the
interpretation of gene and pathway significance.

Percentage differential metric

To assess differential gene loss between groups within each pathway, we first calculate
the number of genes identified in a given pathway for the target group and the non-target
group, respectively. These counts are then divided by the total number of pathway genes
identified in the target and non-target genomes combined (“bvbrc_genes_inpathway”),
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which yields the percentage of the pathway that is missing in either the target or non-
target group (“perc_missing_in_target_group_bypathway’, “perc_missing_in_nontar-
get_group_bypathway”). We chose to use the “bvbrc_genes_inpathway” metric in lieu of
the full number of possible genes in the pathway (as determined by the mapping file)
because both the target and non-target genomes commonly undergo significant genome
reduction. If we were to divide the count metrics by the full number of pathway genes,
both groups would be missing a significant percentage of the pathway, making detection
of significant gaps between the groups more difficult.

After calculating the percent missing in each group, these values are subtracted from
each other to yield the differential in percentages between the groups. This provides a
measure of the distance between the groups based on gene presence at the overall path-
way level. In cases of genome reduction in the target group, “perc_differential_nontar-
get_bypathway” will be high. Conversely, in cases where the target group has acquired
additional genes via horizontal gene transfer or other mechanisms, the “perc_differ-
ential_target_bypathway” will be high instead. Although beyond the primary scope
of PoMeLo, these measures could be utilized to identify areas in the target genomes
that may have gained metabolic potential, providing insights into their function and
pathogenicity.

Calculation of total differences at gene level

While the most obvious signs of metabolic loss between groups may be observed in
differences at the pathway level, it is also important to examine their gene-level differ-
ences. For example, while both target and non-target groups may encode 50% of the
genes in the pathway, those individual genes might not overlap. In this case, the per-
cent differential metric described above would not capture the differences between the
groups, though informative data still exists to separate them. To address this, the algo-
rithm calculates the percentage of genomes within each group that contain a specific
gene, recorded as “genepercentage_target_group_by_ecnumber”. This value from the
target group is then subtracted from that of the non-target group to yield the percent
differential between groups for each gene, recorded as “differential_bygene”. To focus on
pathway loss in the target group, all negative values are converted to zero. The “differen-
tial_bygene” values for each gene in the pathway are summed together and reported as
“total_differences_target_bygene”.

Predicted metabolic loss score

To determine which pathways have undergone the most extensive reduction, we devel-
oped a scoring algorithm for Predicted Metabolic Loss (PML). This algorithm assigns
an overall score to each pathway analyzed across the target and/or non-target genomes.
The PML score is a positive integer calculated on a linear scale that is equivalent to the
“total_differences_target_bygene” metric described above for each pathway. High PML
scores indicate a greater degree of metabolic loss in the target genomes compared to
the non-target genomes. The magnitude of the predicted metabolic loss score will vary
between analyses, as the metrics depend on the genomes queried.
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PML = i X
i=1

The PML calculation is shown above where x; is equal to the “differential bygene”
value for each gene (i), summed over all # genes in the pathway.

Data outputs

PoMeLo produces both tabular and visual output files in the ‘pomelo_outputs’ folder.
The four tabular files are: 1) ‘ec_number_pathway_stats.tab; a catalog of individual genes
and their corresponding pathways; 2) ‘pathway_stats.tab, a compendium of every gene-
genome combination; 3) ‘summary_of _ranked_pathways.tab, which shows statistics by
pathway; and 4) ‘PML_fulldata_bypathway.xlsx} a multi-tabbed spreadsheet of individual
gene statistics for every pathway, ordered by the pathways’ PML score (Additional Files
3,4, 5, 6).

PoMeLo generates visualizations in two different formats. In the first, single heatmaps
summarize pathway presence (along the x-axis) by group, genus, or species (Additional
file 9: Figures s2-s4). In the second, multiple heatmaps—one per pathway—summarize
gene presence and thus PML scores (along the y-axis) by group, genus, or species (Addi-
tional file 9: Figures s5-s6). Running the phylogenetic steps will generate additional files,
including phylogenies in both PNG & NWK formats (Additional file 9: Figure s7, Addi-
tional File 7), a figure combining phylogeny and genome size, and a final visualization
combining phylogeny with pathway heatmaps, ordered by phylogeny (Additional file 9:
Figures s8-59). To avoid an overabundance of outputs, only a selected subset of visuali-
zations is saved in the ‘pomelo_outputs’ folder, while additional visualizations are saved
in subfolders. All visualizations are generated in both PDF and PNG format, and each
filename is appended with the date and a taxon name. The PoMeLo workflow is sum-
marized in Fig. 1.
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Computational time

The time and computational requirements to run PoMeLo were assessed by conducting
a comparative analysis with varying numbers and sizes of genomes included. Genome
size can differ significantly across different taxonomic groups, from under 1 Mb to over
5 Mb, especially in the non-target group where major genome reduction is not expected.
To account for this, we calculated computational time for different genome size ranges
(< 1 Mb, 1-2 Mb, 2-3 Mb, 3-4 Mb, and 4-5 Mb). Because the number of genomes avail-
able through BV-BRC and included in the analysis can also vary significantly depending
on the taxonomic group, we also varied this as a factor in our comparison with levels of
10, 50, 100, and 500 genomes.

Under all of these conditions, the comparisons were completed within 15 min of com-
putational time when running PoMeLo locally on a Macbook Pro (5 GHz, M1, 8-core
CPU, 8-core GPU, 16-core Neural Engine, 16 GB memory; Additional File 8). The effect
of genome size was minimal. This can be attributed to the fact that PoMeLo leverages
pre-computed genome annotations generated by BV-BRC, rather than performing
genome annotations de novo. Conversely, the number of total genomes in the analy-
sis had a large effect on computational time, varying from~ 3 min (2:37-3:24) for 10
genomes to~13 min (11:18-14:20) for 500 genomes. Although computational run time
is not a limitation, the authors nonetheless suggest limiting the number of genomes
used to< 500, to make interpretation of the results more manageable. It is important to
note that the optional phylogenetic portion of PoMeLo is dependent upon the BV-BRC
phylogenetic tree-building resource, which has a limit of 200 genomes. Users can avoid
this limit by selecting a single representative genome for each species in the full analy-
sis when building the phylogenetic tree. When running PoMeLo without the optional
phylogenetic portion, there is no computational limitation to the number of genomes
analyzed.

Results

As a demonstration, we used PoMeLo to analyze genomes within the genus Treponema.
Using the phylogenetically-weighted mean genome size analysis, we identified two
species, T. pallidum and T. paraluiscuniculi, within a branch that is estimated to have
undergone a genome size reduction of 49.6% compared to the estimated common ances-
tor (Additional file 9: Figure s10). T. pallidum and T. paraluiscuniculi have an average
genome size of 1.1 Mb, in comparison to their closest relatives T. parvum (2.6-2.7 Mb),
T. vincentii (2.6—3.0 Mb), T. denticola (2.7-3.1 Mb), and T. phagedenis (2.9-3.8 Mb).
Therefore, we chose T. pallidum and T. paraluiscuniculi as the target group, with T.
phagedenis, their closest evolutionary relative, as the non-target group. Using BV-BRC,
we selected 52 genomes (51 of T. pallidum, and the 1 available genome of T. paralusi-
cuniculi) in the target genomes file and 10 genomes of T. phagedenis in the non-target
genomes file.

The PML scores for this comparison ranged from 0 to 2100, with a median score of
100 (Fig. 2A). The target group encoded zero genes in 106/166 total pathways. For 37 of
these pathways, the non-target genomes encoded at least one gene. The three pathways
with the highest PML scores were purine metabolism (PML=2100), amino sugar and



Glascock et al. BMC Bioinformatics (2024) 25:49 Page 9 of 13

A PML I
score - | nummnannnn e
T. paraluiscuniculi Pathway
® presence
9 100
g i
T. pallidum 0
25
- s k
)
2
o}
’«"c T phagedenis
S
z
Pathways
B Purine Metabolism | Amino Sugar & Nucleotide Sugar Metabolism Cysteine & Methionine Metabolism
PML score 2100 | PML score 1500 PML score 1200
o 13
o | [
c | [
o Q
o | (4] i
Target Non-target Target Non-target Target Non-target

Fig. 2 PoMelo results in Treponema. The target group contains genomes of T. pallidum and T. paraluiscuniculi.
The non-target group contains T. phagedenis genomes. A Completeness for all pathways in Treponema,
shown at the species level. Color corresponds to percent pathway completeness; associated PML scores
shown above the heatmap. B Pathways with the top 3 PML scores. Color corresponds to presence of
individual genes in the group. Values inside the cells represent the percentage of genomes in the target/
non-target group containing each gene

nucleotide sugar metabolism (PML=1500), and cysteine and methionine metabolism
(PML=1200) (Fig. 2B). In these pathways, 12 to 21 genes were lost in the target spe-
cies, representing a range of 58—75% of the genes encoding metabolic enzymes observed
across all three species in the analysis. Because PML scores are a sum of the gene-level
differences across a given pathway, pathways that have a small number of genes may
have low PML scores, even in cases where the difference in pathway completeness is
significant. Taken together, our results clearly indicate that the genomes of T. pallidum
and T. paraluiscuniculi have undergone massive genome streamlining, and these patho-
gens have lost the ability to biosynthesize and metabolize multiple amino acids, carbo-
hydrates, and nucleic acids in favor of importing these metabolites from the host cell. As
described in an accompanying manuscript (Medicielo et al. [14]), this information can
be used to identify host pathways required for intracellular pathogen survival.

Discussion

PoMeLo is a novel evolutionary genomics-guided computational approach to identifying
metabolic gaps in pathogenic organisms using publicly available genomic data. The tool
runs locally using user-friendly prompts and completes in a matter of minutes, with the
largest determinant of computational time being the total number of genomes included
in the analysis. PoMeLo generates both tabular and visual outputs that facilitate the
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comparison of predicted metabolic functionality between groups of genomes and indi-
vidual species. It also algorithmically assigns each pathway a Predicted Metabolic Loss
(PML) score to allow identification of genome streamlining at the pathway level.

Commonly used computational approaches for comparative metabolic profiling rely
on large databases such as KEGG and RAST [7, 8, 15]. While these databases offer large
pre-computed functional annotations for thousands of high-quality genomes, a major
drawback of these approaches is that comparison across genomes is limited. PoMeLo
leverages the existing structure of BV-BRC [10] to maintain the advantages of a central-
ized high-quality database of genomes, and it builds upon existing approaches by allow-
ing the user to compare an unlimited number of genomes across individual genes as well
as pathways. Furthermore, PoMeLo places the findings in an evolutionary context, which
is critical for understanding the genome streamlining observed in pathogen genomes.

It is important to note that the accuracy and reliability of PoMeLo analyses depend
on the quality of the genomes and associated annotations provided. This fact underlies
the choice of utilizing BV-BRC for genome selection, which allows the user to screen
their potential genomes for high quality and completeness. Expansion into lower qual-
ity genomes may be considered when the number of available genomes is limited, or
when one complete genome is used along with several other lower quality genomes for
validation with additional data points. The standardized annotation framework used
by BV-BRC ensures better comparability across these genomes and annotations than
those generated from different sources. Users who wish to work with new genomes are
encouraged to submit them to NCBI for eventual incorporation in BV-BRC.

One potentially valuable application of PoMeLo is in the search for efficacious host-
directed therapeutics that prevent pathogen parasitism of host metabolites.. When
pathogens lose the capability to generate certain metabolites, they pivot to siphoning
nutrients from the host. By therapeutically inhibiting the production of these metabo-
lites in the host, the pathogen can be starved of essential nutrients, aiding the host in
clearing the infection [16—18]. Using PoMeLo to identify promising targets would
reduce the time and cost associated with host-directed drug screening by repurposing
existing drugs developed for other human diseases. It is important to validate PoMeLo
findings in vitro, as we demonstrate in our accompanying manuscript where we (1) iden-
tify pathways to target for host-directed therapeutics using PoMeLo, (2) validate the
targets in vitro in pathogen-infected cells, and (3) show using metabolomics that the
PoMeLo-identified pathways largely overlap with pathways that are depleted in infected
versus mock-infected cells, signaling pathogen metabolite stealing [14].

While PoMeLo was developed to identify gene loss in pathogenic organisms, users
may also compare groups of non-pathogenic bacteria that have undergone genome
streamlining. This approach could be used to identify metabolic differences in closely
related organisms or genes commonly lost via genome streamlining across diverse
clades. Additionally, while we focus on genes that have been lost, PoMeLo can also iden-
tify genes that have been gained, which are easily visualized in the heatmap output files.
This approach could be used to identify new metabolic functions acquired by pathogenic
genomes via horizontal gene transfer.

PoMelLo is currently only applicable for comparative analysis of bacterial genomes.
Future directions could involve expanding its application to eukaryotic pathogens, for
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which evidence of genomic streamlining is also well-documented [19-21]. However, sig-
nificant hurdles including the lack of high-quality and/or complete eukaryotic pathogen
genomes, increased genome size and complexity, and the effects of polyploidy must be
overcome. Other applications of PoMeLo may be to characterize the metabolic capabili-
ties of entire microbial communities and the contributions of individual species to the
overall metabolic profile. The extensive collection of genomes and annotations available
at BV-BRC facilitates such an application. Combining PoMeLo analysis with metabolic
profiling of the microbiome could be used to predict the effects of host-directed thera-
peutics on the host microbiome at various body sites [22].

In summary, PoMeLo is a novel computational approach for identifying metabolic
gaps in genomes of pathogenic organisms. The tool represents an advance over existing
methods by facilitating the comparison of an unlimited number of genomes and plac-
ing the results in evolutionary context. Through the analysis of genome streamlining,
PoMeLo enables prediction of essential genes or pathways that could be targeted by
host-directed therapeutics. PoMeLo is freely available for academic and non-academic
use at https://github.com/czbiohub-sf/pomelo.
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Additional file 1: Pathway mapping file.

Additional file 2: List of R packages. This file contains a list of all R packages required to run PoMeLo and provides a
description of what each package is used for.

Additional file 3: EC number pathway statistics. This file is generated by PoMelLo and returned as'ec_number_path-
way_stats_organism_date.tab'where the organism and date are specific to the analysis. This file lists all EC numbers
observed in the analysis with their associated description (ec_description), pathway information (pathway_name,
pathway_id), and measures of gene "promiscuity” (ec_pindex, avg_pindex_by_pathway).

Additional file 4: Pathway statistics. This file is produced by PoMelo and stored as'pathways_stats_organism_date.
tab'where the organism and date are specific to the analysis. This file contains all genome-gene combinations either
found in the genomes in the analysis (target/non-target) or present in the complete reference set. For each genome-
gene pair, information is provided about the genome statistics, genome name, genus and species, ec_number,
patric_id, gene_name, and product description. Additionally, statistics are provided on the gene presence/absence
across species, genus, group (target/non-target) and pathway.

Additional file 5: Summary of ranked pathways. This file is produced by PoMeLo and stored as‘'summary_of_
ranked_pathways_organism_date.tab’where the organism and date are specific to the analysis. This file contains a
list of all of the pathways in the analysis ranked and sorted by their Predicted Metabolic Loss (PML) score. For each
pathway, the total number of genes in the entire pathway and the number of genes detected in the analysis are
shown (bvbrc_genes_inpathway), as well as statistics demonstrating the gene presence/pathway completeness
across groups (target vs. non-target).

Additional file 6: PML data by pathway. This multi-tabbed Excel file is produced by PoMelo and stored as ‘PML_full-
data_bypathway_organism_datexIsx’where the organism and date are specific to the analysis. Each tab of the file
contains information on a different pathway. Within each tab, information on all of the genes (EC numbers) associ-
ated with the pathway, their products, and statistics measuring their presence across groups and the pathways itself
are provided.
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Additional file 7: Treponema Newick output. This output is generated by PoMelo during the optional phylogenetic
portion of the code. This represents the phylogenetic reconstruction in Newick format. This is used by the program
to build a tree, and it can be used by the user to build a tree of their own.

Additional file 8: Computational time analysis. All times shown in minutes:seconds (m:s) format.

Additional file 9: Supplementary figures 1-10.
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