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Abstract

damselflies and dragonflies.

groups.

Size, Territorial Behavior, Wing Coloration

Background: Wing size and shape have important aerodynamic implications on flight performance. We explored
how wing size was related to wing shape in territorial males of 37 taxa of the damselfly family Calopterygidae.
Wing coloration was also included in the analyses because it is sexually and naturally selected and has been shown
to be related to wing shape. We studied wing shape using both the non-dimensional radius of the second
moment of wing area (RSM) and geometric morphometrics. Lower values of the RSM result in less energetically
demanding flight and wider ranges of flight speed. We also re-analyzed previously published data on other

Results: The RSM showed a hump-shaped relationship with wing size. However, after correcting for phylogeny
using independent contrast, this pattern changed to a negative linear relationship. The basal genus of the study
family, Hetaerina, was mainly driving that change. The obtained patterns were specific for the study family and
differed from other damselflies and dragonflies. The relationship between the RSM and wing shape measured by
geometric morphometrics was linear, but relatively small changes along the RSM axis can result in large changes in
wing shape. Our results also showed that wing coloration may have some effect on RSM.

Conclusions: We found that RSM showed a complex relationship with size in calopterygid damselflies, probably as
a result of other selection pressures besides wing size per se. Wing coloration and specific behavior (e.g. courtship)
are potential candidates for explaining the complexity. Univariate measures of wing shape such as RSM are more
intuitive but lack the high resolution of other multivariate techniques such as geometric morphometrics. We
suggest that the relationship between wing shape and size are taxa-specific and differ among closely-related insect
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Background

Flight performance is a result of complex interactions
between body morphology (i.e., wings, tails), behavior
and the biological and physical environment [1-3]. In
addition, body size has an important aerodynamic effect
on flight performance [4,5]. One of the main reasons is
that Reynolds numbers change many orders of magni-
tude from small to large flying animals [5]. At small
body sizes, viscous effects due to small perturbations in
the air are dissipated more rapidly, while at larger body
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sizes those small perturbations can result in stronger un-
steadiness of the flow fields around wings [4]. Another
aspect of morphology that has a large impact on flight
performance is wing shape [6-8]. For instance, in insects,
long and slender wings are optimal at long duration
flight, while short and broad wings are optimal at slow
and agile flight [6,7]. Moreover, a broad wing base allows
a wider speed range [9] and a narrow wing tip allows less
costly extensive flight [6]. Other body traits such as the
centers of body and wing mass are also very important in
predicting flight performance [10,11]. It is important to
note that wing shape has an allometric component [12]
and also a non-allometric component, since wings are
complex structures and a simple proportional change of
its shape with body size is unlikely [13-15]. For example,

© 2013 Outomuro et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.


mailto:outomuro.david@gmail.com
http://creativecommons.org/licenses/by/2.0

Outomuro et al. BMC Evolutionary Biology 2013, 13:118
http://www.biomedcentral.com/1471-2148/13/118

similar size clines may be achieved by different changes in
wing proportions [16]. Therefore, wing shape and wing size
may function as independent components of wing morph-
ology ([13] and references therein), although wing shape
would be expected to improve flight performance for a
given individual size [17]. Hence, comparative studies
on how wing shape changes with body size should be
important for a better understanding of flight performance.

Apart from body size, other variables might also affect
the optimal wing shape, for example flight behavior
[2,7,18-21]. We should expect a similar wing shape within
certain flight behaviors, and at the same time variation of
this shape related to body size. In a comparative analysis
between size and wing shape it is therefore important to
take behavior into account or using species with the same
behavior. Another variable that potentially could affect
wing shape is the presence of ornaments on the wings that
are used for sexual displays. These ornaments are typically
positively sexually selected, either by male-male interactions
and/or by female choice, and are condition dependent
[22-25]. Wing shape may thus also play a role in ornament
sexual signaling, since it might maximize both flight
performance (e.g., flight style) and ornament display
(e.g., size and shape of the ornament) [26-28]. For ex-
ample, a large color patch at the tip of the wing should
select for a broad wing tip shape [28] while a high
agility (e.g., in territorial species) should select for a
broad and short overall wing [6]. Hence, the optimal
shape might be somewhere in between these two.
Therefore, the observed wing shape would differ from
that predicted by aerodynamic theory per se.

In this study, we explore how wing shape is related to
wing size (used as a proxy of body size), and discuss its
implications on flight performance. For that purpose we
compare males of damselfly taxa within the family
Calopterygidae. These species display territorial behavior
[29]. Territorial flight is a common flight behavior in
insects such as butterflies and damselflies [30,31] and is
associated with broad and short wings, which are expected
to improve flight agility [6,10,32]. Many calopterygid males
have wing coloration that is used for signaling in sexual
selection processes [23,33-39] and species discrimination
[40-42], and it is also selected by bird predators [43,44].
Although calopterygid males all have more or less short
and broad wings, males still show a wide variation in wing
morphology, which is related to wing size and coloration
[28,45,46]. The present study differs from our previous
works on wing shape in Calopterygidae [28,45,46] in
that here we focus explicitly on the allometric effects
on wing shape and the expected consequences on
flight performance.

We studied wing shape using uni- and multivariate
methods. First, we quantified wing shape using the non-
dimensional radius of the second moment of wing area
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[10,32,47] (hereafter RSM). This parameter can be defined
as wing area distribution along the wing axis and is pro-
portional to the mean lift force and hence important for
energetics of flight [10,47]. Lower values involve a more
basal distribution of the wing area and less energetically
demanding flight with a wider range of available flight
speeds [9,10]. It has also been used as an estimate of flight
agility [32], although this relationship might not be as
straightforward. Second, we estimated wing shape using
geometric morphometrics which allowed the analysis and
visualization of shape in a very precise way [48]. Since these
two estimates of wing shape differ in how they capture
shape and since wing shape affects flight performance, we
also explored the relationship between them and with size.

In the present work, we specifically studied 37 taxa of
male calopterygid damselflies that differ in wing shape,
wing size and wing coloration patterns. We first explored
the allometry of wing shape (using the RSM and geometric
morphometrics) and the effect of wing coloration. We
then compared wing shape captured by the RSM and by
geometric morphometrics. We also investigated how the
RSM and body length were related in a larger sample of
both dragonflies and damselflies, by re-analyzing previously
published data. Finally, we also performed independent
contrasts for taking into account the evolutionary relation-
ships of our study taxa.

Results

RSM and size

Before correcting for phylogenetic effects, the RSM was
related in a quadratic way to wing centroid size in both
fore- and hindwings (Figure 1). Thus, the smallest and
largest taxa showed the lowest values of the RSM. The
quadratic term was significant both for fore- (linear
regression: R”=0.013, F,35=0457, P=0.503; quadratic
regression: R”=0.424, F,s4=12.520, P<0.001) and
hindwings (linear regression: R*=0.151, F 35 = 6.246,
P =0.017; quadratic regression: R*=0.435, F534=13.094,
P <0.001). Our study taxa were sorted in six different
coloration groups according to the position, color and
extension of wing coloration [28]. The quadratic term
was mainly driven by the coloration group 1, i.e. with
a wing spot located at the wing base: the genera
Hetaerina and Archineura (Figure 1). Using geometric
morphometrics, we visualized how the RSM was re-
lated to wing shape and wing centroid size in our study
taxa. For forewings, shape changed from a long slender
wing with a broad base at small size to a wing with a
broad tip and narrower base at intermediate sizes, then
changing towards a longer wing with a broad base and
a more slender tip at larger sizes (Figure 1). Hindwings
showed a similar qualitative pattern. Thus, overall wing
shape did not change in a merely proportional manner
with wing centroid size (Figure 1).
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Figure 1 Relationship between wing shape, measured as the non-dimensional radius of the second moment of wing area (RSM),
and wing centroid size (A: forewings; B: hindwings). Wing shape variation is shown as deformation grids obtained from geometric
morphometrics. The deformation grids are based on certain taxa contained in circles and numbered. Data are grouped into the different
coloration groups (see Methods; group 1: filled circles; group 2: triangles; group 3: inverted triangles; group 4: rhombuses; group 5: crosses;
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The RSM showed a linear relationship with wing shape
estimated from geometric morphometric methods as shape
scores, both for fore- and hindwings (Figure 2). This
relationship was supported by a MANCOVA on the shape
components (obtained using geometric morphometrics)
(fixed factor, fore- and hindwings: Wilk’s lambda =
0.157, Fyp 55 = 13.984, P <0.001; covariate, RSM: Wilk’s
lambda = 0.035, Fyq 55 = 72.692, P <0.001). Nevertheless,
for similar values of the RSM very different shapes can
be obtained, partially as a result of differences in wing
size (Figures 1 and 2).

We also tested the relationship between the RSM and
body length in a larger size range of dragonflies and dam-
selflies, by re-analyzing previously published data [32]. The
Odonata groups (calopterygid damselflies, non-calopteryid
damselflies and dragonflies) differed significantly in the
RSM, but body length did not show a significant effect in
the model (Odonata group: F, 104 = 812.344, P < 0.001; Body
length: F; 104 = 0.552, P = 0.459). Hence, we found no linear
or hump-shaped relationship between the RSM and size
when using a larger size range. Calopterygid damselflies
showed intermediate values of the RSM with respect to
non-calopterygid damselflies and dragonflies (Figure 3).

After accounting for phylogenetic non-independence
among our study taxa, a visual inspection of the re-
lationship between the RSM vs. wing centroid size

revealed that a quadratic term was no longer present
(Figure 4). Instead, a negative linear pattern was observed
(forewings: R* = 0.194, F, 35 = 8.450, P = 0.006; hindwings:
R*>=0.270, F, 35=12.954, P<0.001). Therefore, the RSM
tended to decrease with wing centroid size. We also
note that at smaller sizes, the values of the RSM were
more constrained, while at larger sizes there was more
variation (Figure 4), i.e., at large size different wing
shapes were observed.

RSM and wing coloration

In a previous study using 36 taxa and geometric mor-
phometrics, we showed that the coloration groups
differed in the non-allometric component of fore- and
hindwing shape before correcting for phylogeny [28].
Moreover, the non-allometric component of hindwing
shape remained significant after correcting for the phylo-
genetic relationships [28]. For comparative purposes, we
ran a similar approach for the RSM. Before correcting
for phylogeny, we did not find significant differences in
the RSM among the coloration groups for forewings
and marginally non-significant differences for hindwings
(Table 1). A phylogenetic ANOVA on the non-allometric
component of the RSM for hindwings revealed non-
significant differences among the coloration groups
(phylogenetic-P = 0.199).
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Figure 2 Relationship between wing shape expressed as shape
scores, and wing shape measured as the non-dimensional radius
of the second moment of wing area (RSM) (A: forewings;

B: hindwings). The symbols indicate the different coloration groups
(see Methods; group 1: filled circles; group 2: triangles; group 3: inverted
triangles; group 4: rhombuses; group 5: crosses; group 6: open circles).
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Discussion

Our study showed a quadratic relationship between the
RSM and wing centroid size, implying that small and
large species have lower values of this parameter
compared to intermediate-sized species. This result was
somewhat surprising since a linear relationship would be
expected from aerodynamic theory [15], and in a previ-
ous study we found a linear relationship between wing
shape (studied with geometric morphometrics) and wing
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Figure 3 Relationship between wing shape, expressed as the
non-dimensional radius of the second moment of wing area
(RSM), and body length (based on the data of Serrano-Meneses
et al. [32] for Odonata) (dark circles: non-calopterygid
damselflies; triangles: calopterygid damselflies; white circles:
dragonflies). Pictures show an example of hindwings of a
non-calopterygid damselfly (Lestes viridis), a calopterygid damselfly
(Calopteryx maculata) and a dragonfly (Anax imperator).

centroid size [28]. However, in the previous study [28] one
of the largest species (genus Archineura) was not included.
When we analyzed a larger size range of Odonata, we did
not find the quadratic term, nor a linear relationship
between the RSM and body length. These results suggest
that our quadratic relationship is taxa-specific.

When phylogeny was taken into account, the RSM
tended to decrease with wing centroid size. The change
in this relationship after correcting for phylogenetic
effects suggests a phylogenetic signal, i.e., that more
closely related species tend to resemble each other more
than a randomly chosen species sampled from the phyl-
ogeny. In fact, a significant phylogenetic signal of wing
shape is present in this family of damselflies [28]. We
also found that at small size, the values of the RSM were
more constrained than at large size. All together, these
results suggest that shape changes along the size axis can
be only partially related to the aerodynamic demands
of flight at different sizes and more comparative stud-
ies in other groups are needed to explore if this pattern
is general.

The linear negative relationship between the RSM and
size was a result from small species showing a higher
distribution of the wing area towards the wing apex,
whereas large species showed a concentration of the
wing area towards the wing base. A tendency to a higher
concentration of wing area towards the wing base in the
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Figure 4 Phylogenetic independent contrasts of wing shape
(measured as the non-dimensional radius of the second moment of
wing area, RSM) on wing centroid size (A: forewings; B: hindwings).

large species not only promotes less-energetically
demanding flight [10,47], it also results in a higher range of
available flight speeds [49,50], which would be beneficial
for avoiding predators and/or increasing prey captures
[51-53]. The wing shape shown at smaller sizes is expected
to be more energetically costly in terms of flight energetics.
A possible explanation to this costly design might be the
need to display during territorial behaviors. For instance,
butterfly Batesian mimics were shown to pay important
aerodynamic costs for flying slower and with more
agility, as distasteful mimics do, improving color signaling
to predators [54].

The genus Hetaerina had the smallest wing centroid
size and was a main driver in the quadratic relationship
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Table 1 Results of the general linear models on the
non-dimensional radius of the second moment of wing
area (RSM) for fore- and hindwings

Effect df. SS F P-value
A. Forewings

Coloration group 5 0.00068 1.802 0.144
Log Centroid size 1 0.00005 0633 0433
(Log Centroid size)? 1 0.00001 0.048 0.828
Error 29 0.00220

B. Hindwings

Coloration group 5 0.00091 2404 0.061
Log Centroid size 1 0.00085 11.279 0.002
(Log Centroid size)2 1 0.00003 0.351 0.558
Error 29 0.00219

between the RSM and wing centroid size. Hetaerina is
the basal genus in the whole Calopterygidae family
(around 150 My) [55] (see also Methods) and this is
likely to be the reason why after taking into account the
phylogenetic relationships the quadratic term was no
longer present. Hence, Hetaerina is probably on a different
evolutionary pathway with regard to aerodynamic design.
This is supported by the fact that this genus has not
evolved a courtship flight, as in more recent genera such as
Calopteryx [29]. Hetaerina showed long, slender wings
with a broad base and a slender tip. This shape was shared
with the genus Archineura, which showed the largest wing
centroid size and is a more recently diverged genus
(less than 45 My) [55]. Interestingly, both genera share
the same wing color pattern. In fact, we only found
marginally non-significant differences for the RSM of
hindwings (controlling for size effects) which was driven
by coloration group 1 (genera Hetaerina and Archineura).
However, after correcting for phylogeny, that marginal
difference was no longer present. Both genera might show
some level of convergence in wing shape driven by a more
effective display of the wing patch at the base of the
wings. In this situation, a broader wing should provide
a stronger signal of the color patch [27,28]. Therefore,
it is possible that the differences in the RSM among
taxa are a consequence of a combination of wing size
and wing coloration. However, since our results are
correlative, it is still uncertain whether differences in
wing shape are due to the presence of certain types of
wing coloration or vice versa [28].

The lack of significant differences in the RSM of the
hindwings among coloration groups after correcting for
phylogeny contrasts with our previous study using
geometric morphometrics, where we found significant
differences [28]. Thus, our results emphasize the need
for using multivariate analyses of wing shape. In fact,
although we showed that the RSM was linearly related
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to the shape scores, we obtained quite similar values of
the RSM for very different wing shapes. For example,
similar values of the RSM can be gained in a short and
broad wing and a long and slender wing, given that the
distribution of wing area is proportionally similar between
both. Therefore, although the RSM has been broadly used
before and its intuitive interpretation is very useful, the use
of multivariate methods such as geometric morphometrics
is much more precise and should, at least, be combined
with other traditional measures of wing shape.

Conclusions

In this study we have shown that the relationships between
wing shape and size are complex and taxon-specific, even
within a group of species with similar flight behavior:
territoriality. Moreover, the presence of wing coloration,
a sexually and naturally selected trait, might influence
the optimal wing shape within a trade-off between flight
energetics and coloration display. The net selection pres-
sures acting on flight performance, wing size, wing shape
and body size probably differ among species, resulting in
relationships that differ from the aerodynamic predictions
alone. Experimental work in a comparative framework is
needed to disentangle the role of wing morphology and size
on flight performance.

Methods
Study taxa
Wing pictures of 338 males from 37 taxa of calopterygid
damselflies (5-10 specimens per taxa) were collected from
museum specimens (NCB Naturalis of Leiden and The
Swedish Museum of Natural History, Stockholm), from col-
leagues or from our own samples (Table 2). Wings were ei-
ther scanned in a flatbed scanner or photographed, together
with a scale as a size reference. For the species of the genus
Mnais Sélys, 1873, we used only territorial, colored morphs
[56], so that only territorial taxa are included in our study.
Because wing shape is at least partially associated to
wing coloration [28], taxa were grouped into different
categories depending on the wing coloration position,
color and extension (Table 2): 1) coloration only in the wing
base; 2) yellow wing coloration covering most of the wing;
3) extensive dark wing coloration covering more than 85%
of the wing area; 4) less extensive dark wing coloration,
covering 30-85% and located either at the central part
of the wing or at the wing apex; 5) very reduced wing
coloration restricted to the wing tip and covering less than
20% of the wing area; and 6) no conspicuous coloration.
Notice that in some species there are differences in
coloration between fore- and hindwings (Table 2).

Wing shape analysis
We estimated shape using two different methods. First,
we calculated the RSM. Second, we used geometric
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Table 2 Study taxa including the sample size and the
assigned coloration group (see text)

Taxa N (fore/hindwings) Coloration group
(fore/hindwings)

Archineura incarnata 8/8 11
Archineura hetaerinoides 10/10 11
Atrocalopteryx atrata 9/10 3/3
Caliphaea confusa 6/6 6/6
Calopteryx aequabilis 10/10 4/4
Calopteryx amata 5/5 6/5
Calopteryx cornelia 10/10 2/2
Calopteryx exul 6/6 6/6
Calopteryx haemorrhoidalis 10/10 3/3
Calopteryx maculata 10/10 3/3
Calopteryx splendens splendens  10/10 4/4
Calopteryx virgo meridionalis 10/10 3/3
Calopteryx virgo virgo 10/10 3/3
Calopteryx xanthostoma 10/10 4/4
Echo modesta 10/10 6/6
Hetaerina americana 10/10 11
Hetaerina titia 10/10 11
Matrona basilaris 10/10 3/3
Matronoides cyanipennis 5/7 3/3
Mnais andersoni 10/10 2/2
Mnais costalis 10/10 2/2
Mnais mneme 10/10 2/2
Mnais pruinosa 10/10 2/2
Mnais tenuis 10/10 2/2
Neurobasis chinensis 10/10 6/3
Phaon camerunensis 10/10 6/6
Phaon iridipennis 10/10 6/6
Phaon sp. from Madagascar 6/6 6/6
Psolodesmus mandarinus 6/6 5/5
dorothea

Sapho bicolor 10/10 4/4
Sapho ciliata 10/8 3/3
Sapho gloriosa 5/7 3/3
Umma longistigma 10/10 6/6
Umma saphirina 10/10 6/6
Vestalis amoena 10/10 6/6
Vestalis gracilis 10/10 5/5
Vestalis lugens 10/10 3/3

morphometrics techniques to study graphical changes
in wing shape. The RSM has been used in the study of
quasi-steady aerodynamics of hovering flight [10,57].
This parameter can be defined as a quantitative measure



Outomuro et al. BMC Evolutionary Biology 2013, 13:118
http://www.biomedcentral.com/1471-2148/13/118

of wing area distribution along the wing axis [10] and for
a pair of wings is calculated as follows:

72(S) = [ d,

where ¢ is the normalized wing chord and 7 is the non-
dimensional radius equal to 7/R, where r is the distance
to the wing base on the chord ¢ and R is wing length
(Figure 5). This parameter is proportional to the mean
lift force and thus lower values involve less energetically
demanding flight [10,47]. We note that the first three
non-dimensional radii of moments of wing area are highly
correlated [6,10]. The RSM has been used before in
dragonflies and damselflies [32,50,57] and thus we decided
to use this specific radius for comparative purposes.
We also note that in Odonata, fore- and hindwings do
not form a common functional surface as in butterflies
[49,57]. Therefore, we calculated the RSM separately
for fore- and for hindwings by following the protocol
of Serrano-Meneses et al. [32], using Image] [58] and
Microsoft Excel version 14.0 (Microsoft corp. 2010). We
are aware that both pairs of wings may aerodynamically
interact with each other, however, the aim of this study is
rather descriptive and comparative.

We also used a geometric morphometrics approach to
analyze wing shape variation. Although much more
refined that the RSM, it does not provide an intuitive,
quantitative estimate of wing shape as the RSM does,
but it does provide an excellent visualization. In geometric
morphometrics, shape is quantified from landmark
coordinates after holding mathematically constant the ef-
fects of non-shape variation (position, orientation and scale)
[48,59,60]. On the wing images, we digitized 12 landmarks
and semi-landmarks (Figure 6) using tpsDig2 [61]. Ten
biologically homologous landmarks were located at the
wing base or along the wing margin where some major
veins terminate. To incorporate some aspects of the wing
curvature, we also used two semi-landmarks (Figure 6).
Only non-damaged wings were used. The landmarks and
semi-landmarks were subjected to a Generalized Procrustes
Analysis (GPA), where all specimens are translated to the
origin, scaled to unit centroid size, and rotated to minimize

Figure 5 Parameters used in the calculation of the non-dimensional
radius of the second moment of wing area, RSM (see main text).
R represents wing length, while r is the radius of the wing at a certain
point along the wing length and also involves a wing chord c.
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Figure 6 Landmarks and semi-landmarks (*) used for the study

of wing shape in the geometric morphometric approach. As an
example a wing of Archineura incarnata is shown.

the total sums-of-squares deviations of the landmark coor-
dinates from all specimens to the average configuration
[62]. To minimize Procrustes distance between specimens
during GPA, semi-landmarks were permitted to slide along
their tangent directions [59,63]. A single reference shape
configuration (i.e., consensus wing) was obtained. The
consensus wing was used for aligning all individual shape
configurations and for computing the shape components
(i.e., partial warps and the uniform component) in tpsRelw
[64]. Centroid size was computed for each wing and was
logarithmic transformed in all analyses. Since centroid size
had been previously shown to be highly correlated with
body size in Calopterygidae [45,65] we used it as a proxy
for body size.

Phylogenetic tree

We used independent contrasts to correct for the phylo-
genetic non-independence of our study taxa. To obtain a
phylogenetic tree that included all our study taxa, we
re-analyzed previously published nucleotide sequences of
the following genes: 18S, 5.8S, partial 28S rDNA, and of the
spacers ITS1 and ITS2 [55,66-69]. We used 70 taxa of the
family Calopterygidae and three more taxa as outgroups
(two non-calopterygids damselflies and one dragonfly)
(see Supplementary Table 1 in [28]). We aligned the
sequences using the ClustalW algorithm [70] in MEGA ver-
sion 5 [71]. Aligned sequences were analyzed by a Bayesian
phylogenetic approach in the package BEAST version 1.7.1
[72], using a SRD06 model as the nucleotide substitution
model, a relaxed molecular clock (uncorrelated lognormal)
and a birth-death process as a tree prior. The Markov chain
Monte Carlo sampling was run for 10’ generations and
logged every 1,000 generations. The consensus tree was
pruned and was then used for the independent contrasts
(Figure 7). The tree obtained was similar to previously
published trees [55].

Statistical analyses

For all statistical tests, species were used as our level of
replicate. Hence, we calculated for each species a mean
value for each variable. We performed analyses both
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before and after accounting for the phylogenetic relation-
ships among taxa. The statistical analyses were carried out
in SPSS (IBM Corp.), unless otherwise stated.

We first performed a regression of the values of the
RSM against wing centroid size. After visual inspection of
the plot, we ran both a linear and a quadratic regression of
the values of the RSM on wing centroid size. To visualize
how wing shape was related to the variation in the values of
the RSM and to wing centroid size, we computed thin-plate
spline deformation grids in tpsSplin [73] using the shape
components (partial warps and the uniform component).
We did this by comparing the consensus wing shapes of
certain taxa to the corresponding consensus wing shape,
for both fore- and hindwings separately.

We also investigated how the RSM and the wing shape
obtained by geometric morphometrics were related in
our dataset, for fore- and hindwings separately. To do
this, we first visualized this relationship by applying the
approach developed by Drake and Klingenberg [74]
which computes shape scores from multiple regressions
of the Procrustes coordinates on a continuous variable
(in our case, the RSM). The shape scores are the
predicted shape variables in the regression including

the residual variation in the direction of the shape
space. Thus, the shape scores summarize all the landmark
information into one single value. We ran this approach
in R version 2.15 [75]. To statistically support the
obtained relationship, we also ran a MANCOVA using
the shape components from geometric morphometrics
(partial warps and the uniform component) as the
dependent variables. The RSM was included as a covariate
and wing (fore- and hindwing) was included as a fixed
factor. Since the interaction term between the RSM
and wing was non-significant, it was not included in
the model.

To explore how the RSM was related to size over a larger
size range in Odonata, we re-analyzed data published in
Serrano-Meneses et al. [32], which contains 27 taxa of
non-calopterygid damselflies (smaller than our study taxa),
54 taxa of dragonflies (covering a larger size range that
our study taxa) and 27 taxa of calopterygid damselflies.
These data were based on the mean of the values of the
RSM between fore- and hindwings and size was measured
as body length. We ran an ANCOVA to compare the
values of the RSM among the three groups of Odonata,
with body length as the covariate.
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We also studied the relationship between the RSM
and wing centroid size in our dataset using phylogenetic
independent contrasts applying the method described by
Felsenstein [76] for examining the correlated evolution
of continuous traits. We did this for fore- and hindwings
separately. We used the package PDAP:PDTREE version
1.16 [77] for the Mesquite version 2.75 [78]. After
inspection of the plots of the absolute values of the
standardized phylogenetically independent contrasts
versus their standard deviations, we transformed the
branch lengths of the tree to satisty the requirements of the
independent contrasts [79]. All the obtained results were
equivalent for both wings, so we only show the results for
the exponentially transformed branch lengths. The plots
of contrasts were standardized for both axes and also
positivized for the X axis [79]. After visual inspection of the
relationships, least squared regressions were performed on
the contrasts.

Finally, we inspected whether there were differences
among the coloration groups in the values of the RSM.
We have previously shown similar results for a dataset
of 36 taxa of the same family, but using geometric
morphometrics approaches [28]. In the present study,
we asked a similar question for comparative purposes
between the two methods of measuring wing shape. We
first explored the effect of wing coloration on wing shape
without taking into account the phylogenetic effects. We
ran a general linear model including the RSM as the
response variable, wing centroid size and squared wing
centroid size as covariates, and coloration group as a fixed
factor, separately for fore- and hindwings. Non-significant
interactions were removed one by one from the model.
Second, we explored the effect of wing coloration on the
RSM controlling for the phylogenetic non-independence.
We removed the size effects on the RSM by performing a
regression for each wing (fore- and hindwings). To correct
for the quadratic relationship between the RSM and wing
centroid size, we included in the model wing centroid size
and squared wing centroid size as covariates. We saved
the residuals from the regression, i.e., the non-allometric
component of the RSM. We used this size-corrected RSM
for examining the differences among the coloration groups
from a phylogenetic perspective by running a phylogenetic
ANOVA [80], for both fore- and hindwings separately. In
this case, we used the R-package geiger [81], which returns
a P-value based on Brownian motion simulations.
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