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Abstract 

Background:  GC pairs are generally more stable than AT pairs; GC-rich genomes were proposed to be more adapted 
to high temperatures than AT-rich genomes. Previous studies consistently showed positive correlations between 
growth temperature and the GC contents of structural RNA genes. However, for the whole genome sequences and 
the silent sites of the codons in protein-coding genes, the relationship between GC content and growth temperature 
is in a long-lasting debate.

Results:  With a dataset much larger than previous studies (681 bacteria and 155 archaea with completely assembled 
genomes), our phylogenetic comparative analyses showed positive correlations between optimal growth tempera‑
ture (Topt) and GC content both in bacterial and archaeal structural RNA genes and in bacterial whole genome 
sequences, chromosomal sequences, plasmid sequences, core genes, and accessory genes. However, in the 155 
archaea, we did not observe a significant positive correlation of Topt with whole-genome GC content (GCw) or GC 
content at four-fold degenerate sites. We randomly drew 155 samples from the 681 bacteria for 1000 rounds. In most 
cases (> 95%), the positive correlations between Topt and genomic GC contents became statistically nonsignificant 
(P > 0.05). This result suggested that the small sample sizes might account for the lack of positive correlations between 
growth temperature and genomic GC content in the 155 archaea and the bacterial samples of previous studies. 
Comparing the GC content among four categories (psychrophiles/psychrotrophiles, mesophiles, thermophiles, and 
hyperthermophiles) also revealed a positive correlation between GCw and growth temperature in bacteria. By includ‑
ing the GCw of incompletely assembled genomes, we expanded the sample size of archaea to 303. Positive correla‑
tions between GCw and Topt appear especially after excluding the halophilic archaea whose GC contents might be 
strongly shaped by intense UV radiation.

Conclusions:  This study explains the previous contradictory observations and ends a long debate. Prokaryotes 
growing in high temperatures have higher GC contents. Thermal adaptation is one possible explanation for the 
positive association. Meanwhile, we propose that the elevated efficiency of DNA repair in response to heat mutagen‑
esis might have the by-product of increasing GC content like that happens in intracellular symbionts and marine 
bacterioplankton.
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Background
As guanine (G) strictly pairs with cytosine (C) and ade-
nine (A) pairs with thymine (T) in DNA double helix, the 
amount of G is equal to C, and that of A is equal to T 
in the genomes of any cellular organisms. GC content, 
i.e., the percentage of G + C, is widely used to measure 
genomic nucleotide composition. It is a highly variable 
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trait ranging from 8 to 75% [1–3]. This genomic trait has 
been widely studied, and its evolution has been proposed 
to be associated with numerous mutational and selective 
forces driven by genetic, metabolic, and ecological factors 
[4–19]. The high temperature might be the most long-
debating [20–22]. Because G:C pairs have an additional 
hydrogen bond than A:T pairs, the GC-rich genomes 
are expected to be thermally more stable in high-tem-
perature environments [23]. Bernardi and Bernardi [24] 
proposed that high GC content is a thermal adaptation of 
warm-blooded animals.

As prokaryotes have a much wider thermal distribu-
tion than plants and animals, bacterial and archaeal 
genomes are the best materials to test the thermal 
adaptation hypothesis. An analysis of 764 prokaryotic 
species, including mesophilic genera and thermophilic 
genera, did not find a correlation between whole-
genome GC content (GCw) and the optimal growth 
temperature (Topt) [22]. However, this study found a 
significant positive correlation between Topt and the 
GC content of structural RNAs (tRNAs and rRNAs). 
The rationale of these observations is that the second-
ary structures of tRNAs and rRNAs are more sensi-
tive to high temperatures than the double-strand helix 
of DNA. In most prokaryotes, protein-coding genes 
take most of the genome size. Protein structures and 
functions constrain the GC content evolution at the 
nonsynonymous sites of the codons. This functional 
constraint might conceal the hypothetical thermal 
adaptation. Compared with GCw, the GC content at the 
third site of the codons (GC3) is more desirable to test 
the thermal adaptation hypothesis. Early solitary cases 
indicated that GC3 might be related to growth tempera-
ture. For example, the tyrosy1-tRNA synthetase gene 
isolated from the thermophile Bacillus stearothermo-
philus (current name: Geobacillus stearothermophilus) 
has a higher GC3 than the homologous gene in Escheri-
chia coli, 68.0% vs. 59.4% [25]. The leuB gene isolated 
from the extreme thermophile Thermus thermophilus 
HB8 has an extremely high GC3, 89.4% [26]. Hurst and 
Merchant examined the relationship between GC3 and 
Topt of 29 archaeal species and 72 bacterial species for 
a general conclusion [27]. They did not find significant 
correlations between Topt and GC3 or Topt and GCw. 
At the same time, they also found a significant posi-
tive correlation between the GC content of structural 
RNAs and the Topt in both archaea and bacteria. Their 
analysis accounted for the effect of shared ancestry, so 
they provided more robust evidence against the ther-
mal adaptation hypothesis. Soon afterward, Xia et  al. 
[28] showed that the growth at increasing temperature 
(from 37 °C to 45 °C) for 14,400 generations did not 
increase but decreased the genomic GC content of the 

bacterium Pasteurella multocida. Furthermore, Lam-
bros et al. [29] reported a negative correlation between 
optimal growth temperature and the GC content of 
protein-coding genes in 550 prokaryotes. As the effect 
of the shared ancestry had not been controlled in their 
study, we must be cautious in response to their results 
because the potential nonindependence among their 
data might violate the basic assumption of the statisti-
cal models used in their study.

Subsequently, Musto et  al. [30] published a debate-
provoking study. As many environmental factors likely 
influence genomic GC content evolution, closely related 
species are expected to differ in fewer environmental fac-
tors than distantly related species. The correlation of GC 
content with growth temperature is less likely disturbed 
by other factors when the analysis is limited within 
closely related species. Therefore, Musto et al. [30] exam-
ined the relationship between genomic GC content and 
Topt with each prokaryotic family. Among the 20 families 
they studied, the number of families with positive cor-
relations is significantly higher than expected by chance, 
no matter the effect of the common ancestors was 
accounted for or not. Meanwhile, they observed a signifi-
cant positive correlation when considering all independ-
ent contrasts from different families together. However, 
Marashi and Ghalanbor [31] noticed that most of the 
significant correlations within each family depend heav-
ily on the presence of a few outlier species. Exclusion of 
only one species would lead to loss of significant correla-
tions in several families. Basak et al. [32] pointed out that 
the correlation is sensitive to the presence or absence of 
a few outliers in some families because the sample sizes 
in these families were too small. Using non-parametric 
correlation analysis that is not sensitive to the presence 
of outliers, Musto et  al. [33] repeated their analysis and 
confirmed their previous results. The debate did not 
end after that. Wang et al. [34] updated the Topt values 
for some species and found that the positive correlation 
between Topt and genomic GC content in two families 
disappeared. Besides, they suggested that the positive 
correlation between Topt and genomic GC content in 
the family Enterobacteriaceae should be explained by 
the correlation between genome size and optimal growth 
temperature. Still, this study did not shake the confidence 
of Musto et al. [35] on the correlation between Topt and 
genomic GC content in prokaryotes. Although Musto 
and coauthors have rebutted all the criticisms, their stud-
ies have not convinced later authors of review articles [4, 
20, 36]. For example, Agashe and Shankar [4] claimed 
that “it seems unlikely that genomic GC content is driven 
by thermal adaptation” after reviewing the results of 
Hurst and Merchant [27] and Xia et al. [28], but without 
mentioning the debate on Musto et al. [30].
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As prokaryotic genomes often have many acces-
sory genes frequently lost and gained, the genome-wide 
measures of GC content could roughly reflect the shap-
ing effects of environmental factors in evolution. By 
contrast, the structural RNA genes ubiquitously exist in 
prokaryotic genomes, and their GC contents are more 
comparable in large-scale phylogenetic analyses. Simi-
larly, the core genome or strictly defined orthologous 
genes could also accurately reflect the historical shap-
ing effect of growth temperature on GC content evolu-
tion. Ream et  al. [37] analyzed the GC contents of two 
genes (ldh-a and α-actin) across 51 vertebrate species 
with adaptation temperatures ranging from − 1.86 °C to 
approximately 45 °C. They did not find any significant 
positive correlations between living temperature and 
GC content, whether the GC content is measured by the 
entire sequences, the third codon position, or the four-
fold degenerate sites. However, Zheng and Wu [38] found 
a positive correlation between growth temperature and 
the GC content in the coding regions of four genes across 
815 prokaryotic species, including mesophiles, thermo-
philes, and hyperthermophiles. These four genes shared 
by all the 815 prokaryotic genomes could be considered 
strictly defined core genomes.

Using a manually collected dataset of growth tempera-
ture and without accounting for the effect of the common 
ancestors, Sato et al. [39] recently confirmed the results 
of Galtier and Lobry [22]. It should be noted that the cor-
relation between Topt and the GC content of structural 
RNA was consistently observed in much more studies 
than those mentioned above [19, 39–43]. By contrast, 
as reviewed above, the correlation between Topt and 
genomic GC content, if it exists, depends heavily on the 
sample size, the families of prokaryotes, the sequences, 
and the methods used to detect it.

Benefitting from the manually curated growth tem-
perature dataset from the database TEMPURA [39], 
we comprehensively analyzed the relationship between 
growth temperature and GC content. The present study 
covers three indexes of growth temperature (maximal 
growth temperature [Tmax], Topt, and minimal growth 
temperature [Tmin]) and a series of GC content indexes, 
including GCw, GC content of the protein-coding 
sequences (GCp), GC content at fourfold degenerate sites 
(GC4), GC content of the genes coding structural RNAs 
(tRNA, GCtRNA; 5S rRNA, GC5S; 16S rRNA, GC16S; 23S 
rRNA, GC23S) and GC content of non-coding DNA 
(GCnon, including intergenic sequences and untrans-
lated regions of mRNA that are generally unannotated 
in prokaryotic genomes). The whole genome, primary 
chromosome sequences, plasmid sequences, core genes, 
and accessory genes have been examined separately. Our 

results support a positive correlation between genomic 
GC content and growth temperature in bacteria and 
likely in archaea.

Results
Strong phylogenetic signals in both GC contents 
and growth temperatures
A significant force shaping prokaryotic evolution is hori-
zontal gene transfer, making the genealogical relation-
ships among bacteria and archaea exhibit a somewhat 
network-like structure. If bifurcation is not the phylog-
eny’s dominant pattern, most phylogenetic comparative 
methods are not necessary for prokaryotic evolutionary 
studies. We are unsure how much this impression has 
influenced the researchers in prokaryotic genomic stud-
ies, but many papers did not use any phylogenetic com-
parative methods. Despite the frequent horizontal gene 
transfers, careful examination of the prokaryotic phylog-
eny could see a statistical tree [44–46]. In principle, the 
necessity of phylogenetic comparative methods depends 
on the significance of the phylogenetic signal, a meas-
ure of the correlation between the evolution of the ana-
lyzed trait and the presumed phylogenetic tree. We first 
measured the phylogenetic signals of the analyzed traits 
for the 681 bacteria and 155 archaea obtained from the 
database TEMPURA [39]. As shown in Table 1 and Addi-
tional file 1: Tables S1-S4, all the λ values are close to one, 
which indicates that simple statistical analysis that does 
not account for common ancestry’s effect would lead to 
inaccurate results [47, 48].

Bacterial but not archaeal GC contents correlated 
with growth temperatures
We used the phylogenetic generalized least squares 
(PGLS) regression to examine the relationships between 
GC contents and growth temperatures. The significant 
positive and negative slopes of the regressions corre-
spond to significant positive and negative correlations, 
respectively. The slope value represents the phylogeneti-
cally corrected rate of change in GC content as growth 
temperature changes. Four phylogenetic models, the 
Brownian motion model (BM), the Ornstein-Uhlenbeck 
model with an ancestral state to be estimated at the root, 
the Pagel’s lambda model, and the early burst model, have 
been applied in the analysis. Their results are qualitatively 
identical and quantitatively similar. As the four models 
lead to the same conclusion, the trivial differences among 
their results are unrelated to understanding the rela-
tionship between GC content and growth temperature. 
We present the BM model results in the main text and 
deposit other models’ results as Additional file 1: Tables 
S5-S7.
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Interestingly, we also found that Tmax and Topt are 
positively correlated with various indexes of genomic 
GC contents, GCw, GCp, GC4, and GCnon, in bacteria 
(Table 2). Nevertheless, bacterial Tmin is not correlated 
with three GC content indexes (Table  2). In archaea, 
none of the three temperature indexes (Tmax, Topt, or 
Tmin) have any significant correlations with any of the 
four genomic GC content indexes (Table 2).

Consistent with numerous previous studies, we found 
positive correlations between the GC contents of struc-
tural RNA genes (GCtRNA, GC5S, GC16S, and GC23S) and 
the growth temperatures (Tmax, Topt, and Tmin) in 
bacteria and archaea (Table 2). The significance values 
of these correlations are much smaller than the corre-
lations between genomic GC content and growth tem-
perature. Although the correlations between GC5S and 
growth temperatures are statistically significant, their 
significance values are bigger than other structural 
RNAs. These observations indicate that the strong-
est correlations between GC content and growth tem-
peratures exist in tRNAs, 16S RNA, and 23S rRNA. We 
noticed a rank in the slope values, from Tmax, Topt, to 
Tmin.

If growth temperature could shape GC contents by the 
stabilities of RNA secondary structures and DNA double 
helix, a structural RNA or a DNA double helix that is sta-
ble at the Tmax or Topt is, of course, stable at the Tmin. 
This logic makes it reasonable to see that the Tmin has 
weaker or no significant correlations with GC contents.

The difference in the correlations between bacteria 
and archaea might be attributed to either unknown 
intrinsic differences between these two domains or the 
substantial difference in the sample size, 681 vs. 155.

Sample sizes matter
If the lack of significant correlations between genomic 
DNA and Tmax and Topt in archaea results from the 
small sample size, the correlations in bacteria would 
be lost when the sample size of bacteria is reduced to 
155. For this reason, we randomly selected 155 bacte-
ria from the 681 bacterial samples for 1000 rounds. The 
resampling analysis confirmed the idea that the sam-
ple sizes matter (Table  3; Additional  file  2: Data S1). In 
> 950 rounds, the genomic GC content indexes (GCw, 
GCp, GC4, and GCnon) are not correlated with Tmax or 
Topt (P > 0.05). This result could also explain the differ-
ence between the present study with Hurst and Merchant 
[27], which did not find significant correlations between 
GCw/GC3 and Topt by phylogenetic analysis of about 100 
prokaryotes. Meanwhile, a few positive correlation cases 
happen, indicating that significant positive correlations 
could also be found by chance when the analyzed sample 
is small.

Besides, the correlations between growth tempera-
ture and the GC contents of structural RNA genes 
might also be lost occasionally when the sample size is 
severely reduced (Table  3). In the 1000 rounds of resa-
mpling, lacking significant correlations happens in 308 
(for Tmax) and 473 (for Topt) rounds for 5S rRNA genes. 
However, in the 16S and 23S rRNA genes, positive corre-
lations were consistently observed in all the 1000 rounds 
of resampling. We suspected that the tens of times more 
nucleotides in 16S and 23S rRNA than 5S rRNA make 
the results of 16S and 23S rRNAs less sensitive to small 
sample sizes.

In statistics, the rule of thumb boundary between 
small and large samples is n = 30. However, the results 

Table 1  The phylogenetic signals of the variables analyzed in this study

Tmax, Topt, and Tmin represent maximal, optimal, and minimal growth temperature, respectively; GCw, GCp, GC4, GCtRNA, GC5S, GC16S, GC23S, and GCnon represent the 
GC contents of the whole genome, the protein-coding sequences, the fourfold degenerate sites, the genes coding tRNAs, the genes coding 5S rRNA, the genes coding 
16S rRNA, the genes coding 23S rRNA, and the non-coding DNA (including intergenic sequences and untranslated regions of mRNA), respectively. The phylogenetic 
signals of the chromosomal, plasmid, core and accessory genes are also very close to one and deposited in Additional file 1: Tables S1-S4

Bacteria Archaea

Traits n Pagel′s λ P n Pagel′s λ P

Tmax 681 0.957 3.5 × 10−178 155 1.000 1.5 × 10−72

Topt 681 0.950 1.1 × 10− 196 155 0.988 5.7 × 10−70

Tmin 681 0.933 6.6 × 10−152 155 0.966 1.9 × 10−53

GCw 681 1.000 2.6 × 10− 294 155 1.000 5.8 × 10−60

GCp 681 1.000 4.7 × 10− 292 155 1.000 2.4 × 10−59

GC4 681 1.000 4.8 × 10− 238 155 1.000 5.1 × 10−53

GCnon 681 1.000 8.6 × 10− 305 155 1.000 2.0 × 10−65

GCtRNA 681 0.998 6.0 × 10− 275 155 1.000 2.1 × 10−91

GC5S 646 1.000 7.0 × 10−178 130 1.000 9.1 × 10−51

GC16S 681 0.999 8.7 × 10− 250 155 0.996 3.7 × 10−86

GC23S 681 1.000 2.1 × 10− 245 155 1.000 6.8 × 10−83
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in Table 3 indicate that n = 155 is a too-small sample in 
the phylogenetic comparative analyses of the relationship 
between growth temperature and genomic GC content. 
Because of the common ancestor, two closely related lin-
eages with similar growth temperatures and GC contents 
should be regarded as nearly one effective sample rather 
than two independent samples. The effective sample size 
in phylogenetic comparative studies should be much 
lower than the census number of the analyzed lineages.

Positive correlations observed in genes 
of both chromosomes and plasmids
Previous studies showed that plasmids have significantly 
lower GC contents than chromosomes [8, 49, 50]. There-
fore, we examined the correlations between growth tem-
peratures and GC contents separately in chromosomes 
and plasmids. The separations of plasmids and chro-
mosomes are arbitrary. We strictly followed the clas-
sifications of chromosomes and plasmids of the NCBI 
genome database [51]. Among the 681 bacteria and 155 
archaea analyzed above, 172 bacteria and 42 archaea have 

plasmid genomes. The bacterial chromosomes also have 
GC contents (GCw, GCp, GC4, and GCnon) positively cor-
related with Tmax and Topt (Table  4; Additional  file  1: 
Tables S8-S10). Interestingly, the same pattern was also 
found in the bacterial plasmids (Table 4) in spite that the 
correlations of Tmax with GC4 and GCnon are just signifi-
cant at marginal levels (0.05 < P < 0.1). All these correla-
tions are not significant in archaea.

The common ancestor effect was not accounted for 
in the two previous studies comparing the GC content 
between plasmids and chromosomes [48, 49]. By the 
way, we performed a phylogenetic paired t-test [52] and 
confirmed the pattern of lower GC content in plasmids 
(Additional file 1: Table S11).

Positive correlations were observed in both core genes 
and accessory genes
To correspond to the previous gene-centered studies 
[38], we examined the correlations in bacterial core 
genes, i.e., genes present in all the bacteria. The number 
of core genes decreases rapidly with the increase in the 

Table 2  PGLS regression of GC contents and growth temperatures

GC contents were the dependent variables, and growth temperatures were the independent variables. The results in this table were obtained using the Brownian 
motion model. Similar results obtained from three other models are deposited in Additional file 1: Tables S5-S7. PBH, Benjamini-Hochberg adjusted P value. Please see 
Table 1 for the meanings of the other abbreviations

Bacteria Archaea

Slope P PBH Slope P PBH

GCw-Tmax 7.1 × 10−4 7.1 × 10− 4 9.4 × 10− 4 6.6 × 10− 4 0.115 0.153

GCw-Topt 5.7 × 10− 4 0.009 0.011 3.3 × 10−4 0.377 0.503

GCw-Tmin 2.8 × 10−4 0.156 0.226 5.2 × 10−4 0.126 0.168

GCp-Tmax 6.6 × 10−4 0.002 0.002 5.6 × 10−4 0.183 0.209

GCp-Topt 5.3 × 10−4 0.015 0.016 2.4 × 10−4 0.522 0.597

GCp-Tmin 2.5 × 10−4 0.202 0.231 4.6 × 10−4 0.180 0.205

GC4-Tmax 0.001 0.003 0.003 9.9 × 10−4 0.321 0.321

GC4-Topt 0.001 0.016 0.016 2.2 × 10−4 0.806 0.806

GC4-Tmin 5.5 × 10−4 0.239 0.239 6.9 × 10−4 0.393 0.393

GCnon-Tmax 8.0 × 10−4 1.7 × 10− 4 2.8 × 10− 4 9.1 × 10− 4 0.025 0.041

GCnon-Topt 6.4 × 10−4 0.004 0.006 6.4 × 10−4 0.080 0.129

GCnon-Tmin 2.7 × 10−4 0.170 0.226 6.5 × 10−4 0.048 0.077

GCtRNA-Tmax 4.1 × 10−4 2.2 × 10−16 5.9 × 10−16 7.1 × 10− 4 1.8 × 10−11 7.2 × 10−11

GCtRNA-Topt 3.9 × 10−4 2.6 × 10−14 6.9 × 10−14 5.0 × 10− 4 2.5 × 10−7 6.7 × 10−7

GCtRNA-Tmin 1.5 × 10−4 9.1 × 10− 4 0.002 4.2 × 10− 4 1.8 × 10−6 4.7 × 10−6

GC5S-Tmax 5.5 × 10−4 1.2 × 10−6 2.4 × 10−6 0.001 1.9 × 10−5 3.9 × 10−5

GC5S-Topt 4.4 × 10−4 1.4 × 10−4 2.9 × 10− 4 8.9 × 10− 4 1.6 × 10− 4 3.2 × 10− 4

GC5S-Tmin 3.5 × 10− 4 0.001 0.002 6.1 × 10− 4 0.005 0.010

GC16S-Tmax 5.4 × 10−4 2.2 × 10−16 5.9 × 10− 16 8.2 × 10− 4 3.9 × 10−11 1.0 × 10−10

GC16S-Topt 5.2 × 10−4 2.2 × 10− 16 8.8 × 10− 16 7.2 × 10− 4 1.1 × 10− 10 4.5 × 10− 10

GC16S-Tmin 4.6 × 10− 4 2.2 × 10− 16 8.8 × 10− 16 5.5 × 10− 4 8.5 × 10−8 3.4 × 10− 7

GC23S-Tmax 6.6 × 10− 4 2.2 × 10− 16 5.9 × 10− 16 0.001 2.2 × 10− 16 1.8 × 10−15

GC23S-Topt 6.5 × 10− 4 2.2 × 10− 16 8.8 × 10−16 0.001 1.2 × 10− 14 9.5 × 10− 14

GC23S-Tmin 4.9 × 10− 4 2.2 × 10− 16 8.8 × 10− 16 8.3 × 10− 4 8.0 × 10−11 6.4 × 10− 10
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number of analyzed bacterial genomes. With a trade-
off between the number of core genes and the number 
of bacterial genomes, we selected 28 core genes present 
in 420 genomes, mostly ribosomal protein genes. Sig-
nificant positive correlations have been found between 
GC contents (GCp and GC4) and growth temperatures, 
Tmax, and Topt (Table  5; Additional  file  1: Tables 
S12-S14).

At the opposite side of the core genes, the accessory 
genes are present in one or a few bacteria. When we 
define the accessory genes as the genes present in less 
than 5% of the analyzed bacterial genomes, on average, 
each bacterium has 152 accessory genes. Positive cor-
relations were observed between GC contents (GCp 
and GC4) and growth temperatures (Tmax and Topt), 
although the values of significance are slightly larger than 
those in core genes (Table 5; Additional file 1: Tables S12-
S14). Similar patterns were observed when we increased 
the threshold in defining accessory genes to 10% (P < 0.05 
for all cases).

In addition, we compared the GC content between 
bacterial core genes and accessory genes using a phylo-
genetic paired t-test [52]. Unlike the previous analysis of 
36 prokaryotes that did not account for the effect of com-
mon ancestors [53], we did not observe significant dif-
ferences in GC content between the core genes and the 
accessory genes (Additional  file  1: Table  S15). We also 
compared the chromosomal accessory genes and plasmid 
accessory genes. The accessory genes on chromosomes 
have significantly higher GC contents than those on plas-
mids (Additional file 1: Table S16).

Qualitative data on growth temperature lead to the same 
conclusion
In the ProTraits database and the IMG database [54, 55], 
many prokaryotes lack quantitative measures of growth 
temperature but are qualitatively classified into four cat-
egories: psychrophiles/psychrotrophiles, mesophiles, 
thermophiles, and hyperthermophiles. We constructed 
a qualitative dataset of prokaryote growth tempera-
ture, including data downloaded from these two data-
sets and the prokaryotes in the TEMPURA database 
classified into the four categories referring reference 
[39] (Additional  file  1: Table  S17). We transformed the 

Table 3  The appearance of correlations in 1000 rounds of 
resampling analyses

In each round of resampling, 155 samples were randomly drawn from the 681 
bacteria. PGLS regression analyses were performed for each round. GC contents 
were the dependent variables, and growth temperatures were the independent 
variables. The results in this table were obtained using the Brownian motion 
model. Please see Table 1 for the meanings of the other abbreviations. The 
datasets for each round of resampling are deposited in Additional file 2: Data S1

Significantly 
Negative
(P < 0.05)

Not Significant
(P > 0.05)

Significantly 
Positive
(P < 0.05)

GCw-Tmax 0 974 26

GCw-Topt 0 991 9

GCp-Tmax 0 976 24

GCp-Topt 0 993 7

GC4-Tmax 0 962 38

GC4-Topt 0 992 8

GCnon-Tmax 0 974 26

GCnon-Topt 0 992 8

GCtRNA-Tmax 0 12 988

GCtRNA-Topt 0 21 979

GC5S-Tmax 0 308 692

GC5S-Topt 0 473 527

GC16S-Tmax 0 0 1000

GC16S-Topt 0 0 1000

GC23S-Tmax 0 0 1000

GC23S-Topt 0 0 1000

Table 4  PGLS regression of GC contents and growth temperatures in chromosomes and plasmids

GC contents were the dependent variables, and growth temperatures were the independent variables. The results in this table were obtained using the Brownian 
motion model. Similar results obtained from three other models are deposited in Additional file 1: Tables S8-S10. PBH, Benjamini-Hochberg adjusted P value. Please see 
Table 1 for the meanings of the other abbreviations

Plasmid Chromosome

Slope P PBH Slope P PBH

GCw-Tmax 0.001 0.009 0.043 9.6 × 10− 4 0.029 0.043

GCw-Topt 0.001 0.005 0.031 9.6 × 10− 4 0.023 0.031

GCp-Tmax 0.001 0.016 0.043 9.1 × 10− 4 0.038 0.046

GCp-Topt 0.001 0.010 0.031 9.2 × 10− 4 0.031 0.034

GC4-Tmax 0.002 0.072 0.072 0.002 0.027 0.043

GC4-Topt 0.002 0.044 0.044 0.002 0.017 0.031

GCnon-Tmax 8.3 × 10−4 0.055 0.060 0.001 0.021 0.043

GCnon-Topt 9.3 × 10− 4 0.025 0.031 0.001 0.021 0.031
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qualitative characters into numerical values by assign-
ing 1, 2, 3, and 4 to the psychrophiles/psychrotrophiles, 
mesophiles, thermophiles, and hyperthermophiles, 
respectively. Because only some genomes have been 
completely assembled, we used their GCw values down-
loaded directly from the NCBI genome database. Using 
the phylogenetic tree retrieved from the Genome Tax-
onomy Database [53], we performed PGLS regression 
analysis using the models mentioned above. The four 
models gave qualitatively identical results, so we only 
present the BM model because it has the smallest Akaike 
information criterion (AIC) value. There is a positive cor-
relation between GCw content and growth temperature 
in bacteria (slope = 0.457, P = 0.001), but not in archaea 
(slope = − 0.582, P = 0.170). Although this dataset (4696 
bacteria and 279 archaea) is much larger than analyzed 
above (681 bacteria and 155 archaea), it lost much infor-
mation during the qualitative classification. All the dif-
ferences in growth temperature within each category 
disappear.

We also examined whether the contrast in the temper-
ature category is correlated with the contrast in the GC 
content between terminal tips of the phylogenetic tree. 
Consulting reference [6], 273 bacterial and 41 archaeal 
pairs were retrieved from the Genome Taxonomy Data-
base [56]. On average, the bacteria with higher ranks in 
Topt have 1.43% more GC than their paired bacteria with 
lower ranks (Additional file 1: Table S18). Pairwise com-
parison showed significantly higher GC contents in the 
bacteria with higher ranks in growth temperature (Wil-
coxon signed rank test, P = 0.019, Fig. 1A). Still, no signif-
icant differences were observed between paired archaea 
with different growth temperature ranks (Wilcoxon 
signed rank test, P = 0.446, Fig. 1B).

Evolutionary jumps in bacterial GC contents are correlated 
with Topt changes
Mahajan and Agasheand [4] recently found that the 
Lévy jumps model [57] could explain prokaryotic GC 
content evolution better than the Brownian model. The 

GC content constantly evolves and sometimes experi-
ences discrete changes, i.e., jumps. Following Mahajan 
and Agasheand [3], we first confirmed that the Lévy 
jumps model could better explain the GCw and Topt in 
our dataset than the simple Brownian model.

The Lévy jumps model has not been integrated into 
the PGLS packages. It could not replace the BM model 
in regression analysis. As an alternate, we retrieved 
the detected jumps in GCw and examined whether sig-
nificant changes in Topt accompany them. The phy-
logenetic locations of jumps were inferred using the 
levolution software [57]. In this procedure, only the 
posterior probabilities (pp) of the presence of > 0 jumps 
were estimated, but the exact number or magnitude of 
jumps on each branch could not be predicted. In prac-
tice, the “precision” of jump inference is negatively cor-
related with the “recall” of actual jumps. By adjusting 
the threshold of posterior probabilities of the pres-
ence of > 0 jumps for a precision > 85%, we obtained 
the GCw jumps with 88.5% precision and an acceptable 
recall of 37.0% (Additional file 1: Table S19). As shown 
in Fig. 2A, the magnitudes of bacterial GCw jumps are 
positively correlated with the changes in Topt (Spear-
man’s rank correlation, 2-tailed, n = 108, rho = 0.209, 
P = 0.030). When the precision of jump inference was 
increased to 96.9%, the recall decreased to 21.5%, and 
no significant correlation was observed in the smaller 
sample (Spearman′s rank correlation, 2-tailed, n = 56, 
rho = 0.195, P = 0.150).

Meanwhile, we detected the evolutionary jumps in 
Topt using the same model. By adjusting the thresh-
old of posterior probabilities, we inferred the Topt 
jumps with 95.3% precision and 21.5% recall (Addi-
tional  file  1: Table  S20). A positive correlation was 
observed between the magnitudes of the jumps in Topt 
and the changes of GC contents at the positions of Topt 
jumps (Spearman’s rank correlation, 2-tailed, n = 86, 
rho = 0.280, P = 0.009, Fig. 2B).

These two correlations indicate that dramatic evo-
lutionary changes in bacterial Topt are statistically 

Table 5  PGLS analysis of GC contents and growth temperatures in core genes and accessory genes

GC contents were the dependent variables, and growth temperatures were the independent variables. The results in this table were obtained using the Brownian 
motion model. Similar results obtained from three other models are deposited in Additional file 1: Tables S12-S14. PBH, Benjamini-Hochberg adjusted P value. Please 
see Table 1 for the meanings of the other abbreviations

Core Genes Accessory Genes

Slope P PBH Slope P PBH

GCp-Tmax 7.6 × 10−4 9.6 × 10− 4 0.002 9.0 × 10− 4 0.001 0.002

GCp-Topt 6.4 × 10−4 0.007 0.025 6.3 × 10−4 0.026 0.030

GC4-Tmax 0.002 6.3 × 10−4 0.002 0.002 0.003 0.003

GC4-Topt 0.002 0.004 0.025 0.002 0.019 0.030
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Fig. 1  Pairwise comparison of the GC contents between closely related prokaryotes with different growth temperature ranges. Both bacteria 
(A) and archaea (B) were classified into four ranks according to their growth temperature, from low to high: psychrophiles/psychrotrophiles, 
mesophiles, thermophiles, and hyperthermophiles. The diagonal line represents cases in which prokaryotes with different ranks have the same GC 
contents. Points above the line (153 pairs of bacteria and 17 pairs of archaea) represent cases in which prokaryotes with higher ranks have higher 
GC contents than their paired relatives, while points below the line (119 pairs of bacteria and 24 pairs of archaea) indicate the reverse. The p values 
were calculated using two-tailed Wilcoxon signed-rank tests. The exact values of the GC contents are present in Additional file 1: Table S18

Fig. 2  Positive correlations between the sudden changes in GC content and growth temperature of bacteria. Following Mahajan and Agasheand 
[3], the evolutionary jumps of GCw (whole-genome GC content) and Topt (optimal growth temperature) in the bacterial phylogenetic tree were 
detected using the Lévy jumps model [57]. A the magnitude of the GCw jumps are significantly correlated with the accompanied changes in 
Topt (Spearman′s rank correlation, 2-tailed, n = 108, rho = 0.209, P = 0.030). B the magnitude of the Topt jumps is significantly correlated with the 
accompanying change in GCw (Spearman’s rank correlation, 2-tailed, n = 86, rho = 0.280, P = 0.009). The exact values shown in this figure are present 
in Additional file 1: Tables S19-S20
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accompanied by changes in GC contents in the same 
direction and vice versa.

Positive correlation between GCw and Topt appears 
in Archaea after excluding halophiles
The above resampling analysis indicates that a positive 
correlation between genomic GC contents and growth 
temperature might be observed when we have a larger 
sample of archaea. In bacteria, we found such positive 
correlations in both chromosomes and plasmids, core 
and accessory genes. It seems that the positive correla-
tion could be observed in partial sequences of bacte-
rial genomes. For this reason, we expanded the archaeal 
sample size by including the incompletely assembled 
genomes.

For the archaea indexed in the database TEMPURA 
[39], we found 303 species in the All-Species Living Tree 
[58], a phylogenetic tree constructed using 16S rRNA 
sequences. These 303 samples include complete genomes 
and incompletely assembled genomes labeled as chromo-
some, scaffold, and contig in the NCBI genome database 
[51]. First, a significant positive correlation was observed 
between Topt and GC16S in the present dataset for all 
the four models we used (P ≤ 1.3 × 10− 6 for all the four 
cases). Since many genomes of the 303 archaeal samples 
are not full genome sequences, we did not calculate the 
GCp, GC4, GCnon, GCtRNA, GC5S, or GC23S. The GCw of 
these 303 archaea were downloaded directly from the 
database TEMPURA [39]. Four models gave conflicting 

results on the relationship between GCw and Topt. 
Only Pagel’s lambda model showed a positive correla-
tion between GCw and Topt (slope = 9 × 10− 4, P = 0.02). 
All the other three models showed significantly negative 
correlations (P ≤ 2.2 × 10− 16 for all the  cases). Pagel’s 
lambda model has the lowest AIC value and thus could 
be regarded as the model most fitting the data. Despite 
this, we are not confident in giving a conclusion based on 
Pagel’s lambda model.

By closely examining the scatter diagram, we noticed 
that Halobacteria have uniquely higher GC contents 
than other archaea with similar Topt (Fig.  3). The high 
GC content of Halobacteria was suggested to reduce the 
chance of thymine dimer formation caused by the intense 
sunlight UV irradiation [59]. The strong selective force 
resulting from UV irradiation could overturn the poten-
tial effect of their low growth temperatures. For this rea-
son, we examined the relationship between GCw and Topt 
in other archaea. Although the sample size decreased 
to 152, the positive correlations could be observed with 
high confidence. Ornstein-Uhlenbeck and Pagel’s lambda 
models were the first and the second models most fitting 
the data. They all showed significant positive correlations 
between GCw and Topt (slope = 0.001 for both cases and 
P = 0.029 and 0.046, respectively). Although the other 
two models, the BM model and the early burst model, did 
not show statistically significant correlations (P = 0.08 
and 0.12, respectively), they presented positive slopes for 
the phylogenetic regressions (7.8 × 10− 4 and 6.5 × 10− 4).

Fig. 3  Relationship between whole-genome GC content (GCw) and optimal growth temperature (Topt) in Archaea. The Topt ranges of Halobacteria 
(n = 151), other halophilic archaea (n = 2), and nonhalophilic archaea (n = 150) are 30 to 53 °C, 31 to 38 °C, and 23.6 to 106 °C, respectively. 
Phylogenetic generalized least squares regression analysis using the Ornstein-Uhlenbeck model with an ancestral state to be estimated at the root 
showed a significant positive correlation between GCw and Topt in nonhalophilic archaea (slope = 0.001, P = 0.025)
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Furthermore, we found two halophilic archaea, Metha-
nocalculus halotolerans and Methanohalophilus halo-
philus, not belonging to Halobacteria, by consulting the 
HaloDom database [60]. Excluding these two species 
further slightly reduced three significance values of the 
PGLS regression slopes, P = 0.025, 0.046, 0.064, and 0.10 
for the Ornstein-Uhlenbeck model, the Pagel’s lambda 
model, the BM model (BM), and the early burst model, 
respectively. It should be noted that the sample size of the 
non-halophilic archaeal dataset is only 150. According to 
our resampling analysis in bacteria, it is a small size with 
low statistical power.

Nonlinearity in the relationship between Topt and GC 
contents
PGLS regression is a method measuring linear corre-
lations. It could just approximately show the general 
relationship if the correlation between GC content and 
Topt is nonlinear. The generalized additive mixed model 
(GAMM) could be used to measure the nonlinear asso-
ciations across phylogenetic lineages if a low taxonomic 
level (e.g., species or genus) is adjusted for as a random 
effect [61, 62]. By assuming that the species belonging 
to the same genus have more similar GC contents and 
growth temperatures than species belonging to differ-
ent genera, we adjusted for the genus as a random effect. 
According to the genus names, the 681 bacteria and 
155 archaea were divided into 536 groups. The GAMM 
model could give a value of the effective degrees of free-
dom (edf ), a proxy for the degree of nonlinearity in the 
relationships between Topt and GC contents. An edf of 
1 indicates a linear relationship, whereas a high value 
(8 ~ 10 or higher) indicates high nonlinearity in the rela-
tionship [63]. Using the GAMM model, we examined 
the nonlinear relationships between Topt and GC con-
tents across the 836 prokaryotic genomes. As shown in 
Fig.  4A, the relationship between Topt and GCw exhib-
its a moderate level of nonlinearity (edf = 5.3, P = 10− 4), 
most likely to have some inflection points like 30 °C and 
70 °C. Similar levels of nonlinearity have been observed 
in the relationships of Topt with GCp, GC4, GCtRNA, 
GC16S, and GC23S (edf = 4.5 ~ 6.2, P < 0.001, Fig.  4B-F 
and Additional file 3: Fig. S1). The relationship between 
Topt and GC5S exhibits a weak nonlinearity (edf = 1.5, 
P = 2 × 10− 16). In spite of the nonlinear correlations, Topt 

and the GC contents of structural RNA genes exhibit 
clear positive associations (Fig.  4 and Additional  file  3: 
Fig. S1). The overall trends between Topt and other GC 
content indexes could not be easily figured out from 
Fig. 4 and Additional file 3: Fig. S1. We suggest that the 
above results of PGLS regressions give us the answer.

We also examined the relationships between Topt and 
GC contents in two subsamples of the 681 bacteria, the 
highest 30% Topt species and the lowest 30% Topt spe-
cies using PGLS regression. No statistically significant 
results were obtained (P > 0.05 for all the cases). It may be 
attributed to the smaller sample sizes or the local nonlin-
earity of the relationship within the analyzed ranges.

Other concerns on the correlation between GCw and Topt
Some previous studies suggest that the stability of DNA 
double helix depends heavily on the frequency of spe-
cific dinucleotides [64–66]. If GC contents influence 
DNA thermostability through the frequencies of spe-
cific dinucleotides, we might see positive correlations 
of Topt with the frequencies of some GC-content or 
AT-content-related dinucleotides. Referring to [67], we 
calculated the dinucleotide frequencies of the 681 bacte-
rial genomes and the 155 archaeal genomes. In bacteria, 
no significant correlations were observed between Topt 
and the frequency of any dinucleotides (Additional file 1: 
Table S21). In archaea, only the frequency of AG(CT) is 
positively correlated with Topt (BM model, slope = 0.002, 
P = 0.004). This dinucleotide is not related to GC content.

We also performed multiple PGLS regression to sepa-
rate archaea and bacteria as a new variable. From the 
dataset of 681 bacteria and 155 archaea, a scaled phy-
logenetic tree including 415 bacteria and 119 archaea 
was retrieved from TimeTree [68]. GC content was the 
dependent variable in this regression, while the Topt 
and the phylogenetic domain were the two independent 
variables. Bacteria and Archaea were assigned to 0 and 1. 
PGLS regression of only two variables (GC content and 
Topt) was also performed as a control. Pagel’s lambda 
model had the lowest AIC values in both regressions, so 
we present the results of this model in Additional file 1: 
Table  S22. The slope of the domain is not statistically 
significant (P > 0.220 for all cases), and the adding of this 
variable did not change the relationship between GC 
content and Topt (Additional file 1: Table S23).

(See figure on next page.)
Fig. 4  Nonlinearity in the relationship between prokaryotic optimal growth temperature and GC contents. It was estimated using the generalized 
additive mixed model (GAMM) by adjusting the genus as a random effect. The dataset including 836 prokaryotes (681 bacteria and 155 archaea) 
was used in this analysis. The 5S rRNA genes were not annotated in 60 genomes, so the analysis of the 5S rRNA has a sample size of 776. The 
effective degrees of freedom (edf ) proxy for nonlinearity in the relationships. We presented the relationships of optimal growth temperature with 
the GC contents of the whole genome, fourfold degenerate sites, tRNA, 5S rRNA, 16S rRNA, and 23S rRNA as (A), (B), (C), (D), (E), and (F) in this figure 
and those of the protein-coding sequences and the non-coding DNA were deposited in Additional file 3: Fig. S1. The significance values of the 
results presented in (A) ~ (E) are P = 10− 4, 8 × 10− 7, 2 × 10− 16, 2 × 10− 16, 2 × 10− 16, and 2 × 10− 16, respectively
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Fig. 4  (See legend on previous page.)
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Similarly, we examined whether the presence and 
absence of plasmid affect the relationship between 
GC content and Topt. As shown in (Additional  file  1: 
Table  S24), the presence and absence of plasmid is not 
a statistically significant variable to the evolution of GC 
content (P > 0.641 for all cases). In addition, the relation-
ship between GC content and Topt was not affected by 
the presence of the second variable.

Discussion
The GC pairs are thermally more stable than AT pairs in 
DNA double helix and structural RNAs [23]. However, 
this difference is not necessarily a strong enough force 
to shape the evolution of GC content. As RNA struc-
tures are more sensitive to temperature elevation than 
DNA double helix, the growth temperature is expected to 
have a more substantial effect in shaping the GC content 
evolution of the structural RNA genes than in shaping 
the genomic GC content evolution. Positive correlations 
between growth temperature and the GC content of 
structural RNA genes have been repeatedly observed 
in various prokaryotic studies [22, 27, 39–43]. How-
ever, there was a long debate on the correlation between 
growth temperature and genomic GC content. Benefit-
ting from a new manual-curated dataset of prokaryotic 
growth temperature [39], we performed a phylogenetic 
comparative analysis with a much larger sample than 
previous studies [27, 30]. In 681 bacteria, the genomic 
GC contents, GCw, GCp, GC4, and GCnon, are all posi-
tively correlated with growth temperatures, Tmax and 
Topt. However, in 155 archaea, there are no significant 
correlations. Then, we resampled 155 bacteria from the 
682 bacteria for 1000 rounds. The significant positive 
correlations between genomic GC contents and growth 
temperatures disappeared in most cases. The resampling 
analysis indicates that the small sample sizes of the pre-
vious analyses [27] might lead to the lack of significant 
correlations. It is easy to increase the sample size several 
times if accurate phylogenetic relationships [56] are not 
considered in the analysis. As shown in Table 1, we found 
that both growth temperatures and GC contents exhibit 
strong phylogenetic signals. Overlooking the effect of 
common ancestors would severely affect the accuracy of 
the results [47].

Our resampling analysis indicates that the lack of 
significant correlations in the 155 samples of archaea 
might result from the small number of effective sam-
ples. Then, we expanded the sample size to 303 archaea 
by including the GC contents of incompletely assembled 
genomes (Fig.  3). A positive correlation between GCw 
and Topt in Archaea appears, especially after excluding 
the halophilic archaea. The halophilic archaea have much 
higher GC content than other archaea of similar growth 

temperature, probably because of the intense UV irradia-
tion they have to experience [59]. This result indicates 
that the effect of temperatures on the GC content evo-
lution is not strong and could be easily overwhelmed by 
other evolutionary forces. By the same logic, we suspect 
that other exceptions to the positive correlation between 
GC content and growth temperature might have experi-
enced some other more vital evolutionary forces shaping 
GC content in evolution. For example, within the hyper-
thermophilic genus Thermococcus (Topt ranging from 
75 to 89 °C), the GCw ranges from 40.2 to 58% [39]. The 
low-GC-content species in this genus have small genome 
sizes. Their low GC content might be explained by the 
reduced efficiency of DNA repair resulting from genome 
reduction and losses of DNA repairing genes [4, 69–72]. 
In addition, GC pairs are not always more stable than 
AT pairs. In the presence of some ions, AT pairs become 
more stable than GC pairs [73]. In special environmen-
tal or physiological conditions that accumulate such ions, 
AT-rich sequences would be more stable than GC-rich 
sequences, and the correlation between GC content and 
growth temperature would be overturned.

Besides adaptive explanations, nonadaptive processes 
may be explored in the future. In two ecologically distinct 
groups of bacteria, intracellular symbionts (including 
mitochondria) and marine bacterioplankton, increased 
AT contents are accompanied by genome reduction and 
gene losses (especially the losses of DNA repair genes 
like mutY genes) [4, 69–72]. If most DNA damages tend 
to decrease GC content, as suggested by some previ-
ous studies [74, 75], many DNA repairing genes would 
counter such effects or even increase GC content as 
documented in gene conversions [10, 17]. Heat stress 
can lead to various DNA damages from deaminated 
cytosine, 8-oxoguanine, to single- and double-stranded 
DNA breaks [76, 77]. Together with the sensitivity of 
macromolecular stability to increased temperature, ther-
mophiles experienced a strong selective force for low 
mutation rates [78, 79] and efficient DNA repair systems. 
We propose that an increase of DNA repair efficiency 
associated with the increasing growth temperature, or 
a decrease of DNA repair efficiency associated with the 
decreasing growth temperature, might shape the evolu-
tion of GC content evolution like that happens in intra-
cellular symbionts and marine bacterioplankton.

A recent study suggests that sequential amino acid sub-
stitutions are involved in the thermal adaptation in the 
archaeal order Methanococcales and revealed arginine as 
the most favored amino acid [80]. As six GC-rich codons 
encode the arginine, the thermal adaptation at the pro-
teomic level would affect the evolution of genomic GC 
content. Because the 4-fold degenerate sites are free from 
the evolutionary forces coming from the natural selection 
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acting on protein sequences, our observations of similar 
correlations of GCw, GCp, and GC4 with growth tem-
perature indicate that the nucleotide composition 
evolved independently in bacterial adaptation to high 
temperatures.

As the frequent gain and loss of plasmids, the plasmid 
DNAs could be regarded as accessory genomes. Because 
of the high turnover rates of plasmids and accessory 
genes in prokaryotic evolution, we could regard them 
as new immigrants, as opposed to the natives for the 
chromosomes and core genes. Although the core genes 
and even the ribosomal RNA genes may occasionally be 
transferred across different prokaryotic lineages [81, 82], 
the fitness cost of inter-species replacement of homolo-
gous sequences [83] restricts the frequency of the core 
genes. Genes performing essential informational tasks 
in the cell are less frequently transferred across lineages 
[84, 85]. Our phylogenetic correlation analysis showed 
positive correlations between GC contents and growth 
temperatures in chromosomes, core genes, plasmids, 
and accessory genes. Also, there is no sharp difference 
in the correlations between the new immigrants and the 
natives. In large-scale analyses of horizontal gene trans-
fer in prokaryotes, GC-content similarity between donor 
and recipient was found to be the factor, or one of the fac-
tors, governing the compatibility of the new immigrants 
in new hosts [86, 87]. The effect of promoter GC content 
on the expression of the new immigrants was suggested 
to be the underlying mechanism governing the compat-
ibility [88]. Here, we suggest that the temperature-associ-
ated structural stabilities, including the stability of DNA 
double helix, the stability of the transient DNA-RNA 
duplex during transcription, and maybe the stability of 
the possible secondary structures of mature mRNA [1], 
might be another nonexclusive factor governing the com-
patibility. The new immigrants compatible with the host 
should have GC contents adapted to the host’s growth 
temperature.

A previous serial transfer experiment seems to be con-
tradictory to our results. Increased genomic GC content 
was not observed in the bacterium P. multocida after 
14,400 generations of increasing temperature from 37 °C 
to 45 °C [28]. Although we observed a positive correlation 
between genomic GC content and growth temperature, 
we do not think a small increment in GC content, result-
ing from either a GC-biased mutator or integration of a 
GC-rich exogenous sequence, would bring a great advan-
tage to the host organism. Most likely, it is just a slight 
advantage. According to the population genetic theory, 
the slightly beneficial mutants are efficiently selected only 
when they are in a large population. The experimental 
evolution generally involves severe, periodic reductions 
in population size, and the bottleneck effect dramatically 

reduces the fixation probability of beneficial mutations 
[89]. As we see, large-scale statistical analysis has the 
advantage of revealing slightly beneficial traits.

Musto et al. [30] emphasize that the growth tempera-
ture can be the only influencing factor in GC content 
evolution only when closely related species are com-
pared. Our pairwise comparison of neighboring branches 
with different ranks of growth temperature (Fig. 1) gave 
the same conclusion as our PGLS analyses. We agree that 
many factors influence GC content evolution, and the 
positive relationship between growth temperature and 
GC content is statistically significant. In the 273 pairs of 
bacteria, there are 153 pairs where high growth tempera-
ture ranks have higher GC contents and 119 pairs with 
the opposite pattern.

Mahajan and Agashe [3] and the present study found 
that the evolutionary rates of GC content and growth 
temperature have occasional jumps assumed in the Lévy 
jumps model [57]. As shown in Fig. 2, the jump-ups and 
jump-downs of GC content are significantly correlated 
with changes in growth temperature and vice versa. It 
should be emphasized that not all increases in growth 
temperature were accompanied by increases in GC con-
tent. There are just statistically significant correlations 
(P < 0.05).

Some dinucleotides could significantly enhance the 
stability of double-strand DNA [64–66]. To examine 
whether the effect of some dinucleotides underlies the 
positive correlation between GC content and growth 
temperature, we examined the relationship between Topt 
and the frequencies of dinucleotides. Unfortunately, no 
GC-content-altering dinucleotides meet the expectation.

Conclusions
We should remark that what we observed are weak cor-
relations between genomic GC content and growth 
temperature. The slopes of the PGLS regressions are 
generally between 10− 3 and 10− 4. The bacteria rank 
higher in growth temperature have just 1.43% more GC 
(Fig.  1A). Considering the significant difference in the 
thermoresistence of nucleic acids between in  vivo and 
in  vitro [36], we believe that other cellular components 
mainly contribute to the thermostability of nucleic acids 
in thermophiles and hyperthermophiles, and the increase 
of GC content just plays a supplemental role. Moreo-
ver, we observed correlations between GC content and 
growth temperature, suggesting rather than proving the 
causal effects between the two variables. We should be 
open to the thermal adaptation hypothesis [23] and other 
intricate explanations, including nonadaptive ones. This 
paper aims to end the long-standing debate on the rela-
tionship between GC content and growth temperature. 
Only after establishing the positive correlation could the 
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attention of genome biologists be paid to the biological 
significance of the correlation.

Methods
We downloaded the prokaryote growth temperatures 
from the database TEMPURA [39]. This database con-
tains 8639 manual curated prokaryotes (549 archaea and 
8090 bacteria). Using the links to the NCBI Taxonomy 
database [90] and the taxonomy IDs provided by TEM-
PURA for each prokaryotic strain, we obtained 1110 
prokaryotes whose genome assembly levels were labeled 
as”complete” from the NCBI database [91]. Among them, 
we found the phylogenetic information for 682 bacteria 
and 156 archaea from Genome Taxonomy Database [56]. 
The sequences of these genomes were downloaded from 
the NCBI genome database [51]. To avoid annotation bias 
resulting from different methods, all the genomes were 
re-annotated using the DFAST, version 1.2.11, with its 
default parameters [92]. In total, we obtained the genome 
annotations for 836 prokaryotes (681 bacteria and 155 
archaea). The GC contents of these prokaryotes were 
calculated from their genome sequences. The genomes 
accession numbers and the database links for the 836 
prokaryotes are deposited in Additional file 1: Table S25.

We also constructed a large dataset according to their 
growth temperature qualitatively. First, we divided the 
836 prokaryotes (from the database TEMPURA) men-
tioned above into four categories according to their 
growth temperature referring to [39]: psychrophiles/
psychrotrophiles (Topt < 20 °C), mesophiles (20 ≤ Topt 
< 45 °C), thermophiles (45 ≤ Topt < 80 °C), and hyperther-
mophiles (80 °C ≤ Topt). Then, we downloaded the lists 
of prokaryotes labeled with psychrophiles/psychrotro-
philes, mesophiles, thermophiles, or hyperthermophiles 
from the ProTraits database and the IMG database [54, 
55]. Then, we combined the datasets from these three 
sources (TEMPURA, ProTraits, and IMG) and discarded 
the overlapping items, the conflicting items, and the 
items lacking phylogenetic information in the Genome 
Taxonomy Database [56]. Finally, we obtained a new 
dataset including 4696 bacteria and 279 archaea (Addi-
tional file 1: Table S17). The whole-genome GC contents 
of these prokaryotes were downloaded directly from the 
genome report file of the NCBI genome database [93].

As the contrasts between different pairs of terminal tips 
of the phylogenetic tree are independent, pairwise com-
parisons between pairs of terminal tips could control the 
effect of common ancestors. Referring to reference [6], 
we wrote a script to select pairs of closely related bacte-
ria with different ranks of growth temperature (psychro-
philes/psychrotrophiles, mesophiles, thermophiles, and 
hyperthermophiles). In cases where two or more neigh-
boring tips with the same rank were used to pair with 

bacteria with another rank, we used the average value of 
their GC contents to represent the GC content of their 
internal node. The script is deposited as Additional file 4: 
Data S2.

The phylogenetic signals (λ) of both GC contents and 
growth temperatures were estimated using the phylosig 
function of the R (Version 4.0.3) package phytools (Ver-
sion 0.7–70) [94]. The PGLS regression was performed 
using the R (Version 4.0.3) package phylolm (version 
2.6.2) with the default parameters [95].

To avoid false-positive results that might happen in 
multiple correlation analyses of the same dataset, we 
controlled the false discovery rate by the Benjamini-
Hochberg (BH) procedure using the p.adjust function in 
R (Version 4.0.3).

Following Mahajan and Agasheand [3], we used the gei-
ger package [96] and the levolution software [57] to simu-
late our datasets, estimate the branch-specific posterior 
probabilities of jumps and infer the phylogenetic location 
of jumps.

The GAMM regressions were performed using the 
gamm4 function of the package gamm4 (Version 0.2–6, 
based on package mgcv and package lme4). The formula 
is:

where the GCw is the response variable, and the Topt is 
the explanatory variable, s(X) means that a smoothing 
function is used for the explanatory variable. The expres-
sion (1|genus) means that a random component was 
specified with genus as random effects.

Abbreviations
A: Adenine; BM: Brownian motion model; C: Cytosine; G: Guanine; GC16S: GC 
contents of the genes coding 16S rRNA; GC23S: GC contents of the genes 
coding 23S rRNA; GC3: GC content at the third site of the codons; GC4: GC 
contents of the fourfold degenerate sites; GC5S: GC contents of the genes cod‑
ing 5S rRNA; GCnon: GC contents of the non-coding DNA (including intergenic 
sequences and untranslated regions of mRNA); GCp: GC contents of the 
protein-coding sequences; GCtRNA: GC contents of the genes coding tRNAs; 
GCw: GC contents of the whole genome; PGLS: Phylogenetic generalized 
least squares; T: Thymine; Tmax: Maximal growth temperature; Tmin: Minimal 
growth temperature; Topt: Optimal growth temperature.
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155 archaeal species was used in this analysis. The effective degrees of 
freedom (edf ) is a proxy for the level of nonlinearity in the relationships. 
We presented the relationships of optimal growth temperature with 
the GC contents of protein-coding sequences and non-coding DNA 
(intergenic sequences and untranslated regions of mRNA that are gener‑
ally unannotated in prokaryotic genomes) as (A) and (B) in this figure. The 
significance values of the results presented in (A) and (B) are P = 5 × 10−5 
and 9 × 10−4, respectively.

Additional file 4: Supplementary Data S2. The script used to select 
pairs of the terminal tips of the phylogenetic tree. 
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