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Abstract 

Objective:  The relationship between genomic variables (genome size, gene number, intron size, and intron number) 
and evolutionary forces has two implications. First, they help to unravel the mechanism underlying genome evolu-
tion. Second, they provide a solution to the debate over discrepancy between genome size variation and organismal 
complexity. Previously, a clear correlation between genomic variables and effective population size and mutation rate 
(Neu) led to an important hypothesis to consider random genetic drift as a major evolutionary force during evolution 
of genome size and complexity. But recent reports also support natural selection as the leading evolutionary force. As 
such, the debate remains unresolved.

Results:  Here, we used a multivariate method to explore the relationship between genomic variables and Neu in 
order to understand the evolution of genome. Previously reported patterns between genomic variables and Neu 
were not observed in our multivariate study. We found only one association between intron number and Neu, but no 
relationships were observed between genome size, intron size, gene number, and Neu, suggesting that Neu of the 
organisms solely does not influence genome evolution. We, therefore, concluded that Neu influences intron evolu-
tion, while it may not be the only force that provides mechanistic insights into genome evolution and complexity.
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Introduction
All eukaryotic genomes possess similar features such as 
genome size, gene number, intron size, intron number, 
and transposable elements. These genomic variables can 
be attributed to the evolutionary forces acting over long 
evolutionary time. In the previous analysis, genomic vari-
ables were shown to have a strong correlation with the 
effective population size (Ne) and mutation rate (u) of 
the organism. Expansion of genome size and complexity 
were attributed to random genetic drift [1]. This is also 
known as the mutational hazard hypothesis [2], and it is 
influential in terms of genome evolution and complexity 
[3].

The interplay between Ne and u may impact genome 
size variation across kingdoms, and can be regarded 

as a plausible explanation to understand mechanism 
of genome evolution [2, 4, 5]. On the other hand, many 
old theories such as mutational pressure, nucleoskeletal, 
and nucleotypic have emphasized adaptive arguments to 
explain genome size variation and evolution. But these 
arguments received minimal recognition [6]. In addition, 
the mutational equilibrium model stated that each spe-
cies acquired their own genome size by deletion or inser-
tion, and thus different species showed variation in their 
genome size [7]. We think that genomic variables being 
a multivariate dataset of a genome, multivariate statis-
tical analysis is important to examine the relationship 
between genomic variables and Neu in order to under-
stand genome evolution.

Main text
Methods
Data collection
Data on genomic variables and Neu were obtained from 
reference [1, 8–13, NCBI annotation release101]. Some 
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of the species had missing data on either one of the 
genomic variables or Neu; therefore, we excluded them 
from the multivariate analysis because it will cause mis-
interpretation of the dataset. Species were grouped in 
rows, while genomic variables and Neu were represented 
as columns to create a multivariate dataset (Additional 
file 1: Table S1).

Multivariate statistical analysis
Multivariate analysis called principal component analy-
sis (PCA), cluster analysis (CA), and exploratory fac-
tor analysis (EFA) were carried out by executing stats 
package in R software (R version 3.2.3). The correlation 
matrix was chosen in the PCA analysis for the dataset 
(Additional file 1: Table S1). In addition, the dataset was 
standardized, centered, scaled, and prcomp function 
was used to perform PCA analysis. A hierarchical clus-
ter analysis was carried out after standardization of the 
dataset (Additional file 1: Table S1), using euclidean dis-
tance method. Then, ward. D2 method in R software was 
applied to construct dendrogram by utilizing hclust func-
tion. The exploratory factor analysis was also performed 
in R by executing factanal function, which is based on 
maximum-likelihood methods. In addition, the dataset 
(Additional file  1: Table  S1) was standardized, rotated 
by varimax, and only two factors were considered dur-
ing analysis. The test for two factors is sufficient for the 
hypothesis showed Chi square statistic 1.35 and p-value 
0.246 for the raw data, while Chi square statistic 2.32 and 
p-value 0.128 for the phylogenetically independent con-
trasts in EFA.

Phylogenetically independent contrasts (PICs) analysis
Phylogeny for the species under study was obtained from 
TimeTree database [14] with branch length. Then, phylo-
genetically independent contrasts [15] analysis was per-
formed with APE package [16] by executing pic function 
in R software (R version 3.2.3). After obtaining phyloge-
netically independent contrasts data of genomic variables 
and Neu, the matrix was tabulated and then subjected to 
the same multivariate statistical analysis as described in 
the above section.

Results
We used raw data to compare with Lynch and Conery 
[1] analyses, while phylogenetically independent con-
trasts method was used to provide nonindependence 
of species in this study. We could not find relationship 
between genomic variables and Neu in PCA (Fig.  1a, 
b), CA (Fig. 2a, b), and EFA (Fig. 3a, b) by applying raw 
data but in phylogenetically independent contrasts, we 
found only association between intron number and Neu. 

Additionally, we did find relationship among genomic 
variables only.

The PCA analysis reduces the dimensionality of multi-
variate dataset and explains the variability pattern among 

Fig. 1  Principal component analysis of genomic variables and Neu. 
a PCA biplot from raw data. b PCA biplot from phylogenetically 
independent contrasts. The horizontal scale denoted principal 
component 1 (PC1) and the vertical scale denoted principal 
component 2 (PC2) in the biplot. The genomic variables are genome 
size in Mb (Genome.size), average intron size in bp (Av.intron.size), 
number of genes (No.of.gene), average introns per gene (Av.intron.
per.gene), all marked in red. The effective population size and 
mutation rate (Neu) also marked in red. The red arrows showed the 
magnitude and direction of the genomics variables and Neu vectors
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multiple variables by showing most of the variation in 
all original variables as principal components (PC) [17]; 
therefore, we chose this method to summarise genomic 

variables and Neu to uncover any evolutionary patterns. 
The PC1 explained 61.24% and 44.06% of the variance, 
while PC2 explained an additional 19.21% and 23.91% of 
the variance in biplot for raw data and phylogenetically 
independent contrasts, respectively. Surprisingly, the 
angles between vector of genomic variables viz. genome 
size, average intron no per gene, average intron size, 
gene number, and Neu were wide and in different direc-
tions, suggesting there were no correlations in raw data 
(Fig.  1a). But in phylogenetically independent contrasts 
(Fig.  1b), we found angle between intron number and 
Neu to be narrow although they were in opposite direc-
tions, suggesting moderate inverse correlation. All vec-
tor lengths showed similar magnitude, suggesting almost 
equal contribution to the overall variance in the analysis. 
Similarly, we found correlation between genome size and 
intron size as indicated by small angle between these var-
iable’s vectors in phylogenetically independent contrasts 
(Fig. 1b).

The cluster analysis is the most parsimonious way to 
cluster variables in term of correlation or distance in the 
multivariate dataset [17], therefore; we used this method 
to find if any relationship exists between genomic vari-
ables and Neu. However, in the cluster analysis, the 
genomic variables formed one cluster while Neu formed 
another cluster, indicating no similar variability pat-
tern between them in raw data (Fig. 2a) but in phyloge-
netically independent contrasts, intron number and Neu 
clustered together (Fig.  2b). This clearly indicated that 
intron number tend to vary together with Neu. Similarly, 
genome size and intron size also formed cluster in phylo-
genetically independent contrasts (Fig. 2b).

Finally, we performed EFA analysis to disclose any hid-
den relationships among genomic variables and Neu. 
Perhaps Neu affects genome evolution by indirectly mod-
ulating genomic variables, and we may see some hidden 
relationships in the EFA analysis. By contrast, we clearly 
observed that genomic variables and Neu were not at the 
same location in the plot, revealing that there were no 
hidden relationships between them in raw data (Fig. 3a) 
but in phylogenetically independent contrasts (Fig.  3b), 
intron number and Neu were located at similar position 
in the plot, indicating association between them there-
fore we believe that intron evolution was modulated by 
Neu. In raw data, Factor 1 had the highest loading for 
average intron size than genome size, suggesting some 
correlation between these two variables, with 49% of total 
variance. In Factor 2, gene number had the highest load-
ing compared to average intron no per gene, indicating 
relatively small correlation, but Neu had the lowest load-
ing thus playing no part, with 26% of total variance. Simi-
larly, in phylogenetically independent contrasts, Factor 1 
had the highest loading for average intron size compared 

Fig. 2  Cluster analysis of genomic variables and Neu. a A 
dendrogram obtained from hierarchical cluster analysis by using 
euclidean distance and ward.D2 methods on raw data. Two distinct 
clusters are formed around the height of eight. The Neu formed 
one cluster and genomics variables formed another cluster. b A 
dendrogram acquired by hierarchical cluster analysis after applying 
euclidean distance and ward. D2 methods on phylogenetically 
independent contrasts. Three distinct clusters are formed around the 
height of seven. The observations Genome size and Average intron 
size are quite similar as they formed cluster at the bottom of the 
dendrogram, while Neu formed cluster with Average introns per gene 
only
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to genome size, suggesting some correlation, with 39% 
of total variance. In Factor 2, we found the highest load-
ing for gene number but intron number and Neu had the 
lowest loading, implying some correlation, with 21% of 

total variance. In the current analysis, we deduced that 
Neu played almost no part in the evolution of genome 
size and complexity but may have influenced intron 
evolution.

Discussion
One of the fundamental questions regarding genome size 
evolution is to examine if different genomic variables 
within genome vary together according to their corre-
lations during evolution [18], and which evolutionary 
forces cause them to vary in such a correlative fashion is 
an unsolved mystery. Our multivariate analysis shows no 
relationship between genomic variables and Neu using 
only raw data but in phylogenetically independent con-
trasts, we observed some correlation between Neu and 
intron number. This observation is remarkably consist-
ent with some results from the previous research [19]. 
But this observation is contrary to the previous conclu-
sions which were based on the bivariate method only [1]. 
We found relationship between Neu and intron number 
by using phylogenetically independent contrasts method 
only. This shows that intron evolution may be influenced 
by Neu. Moreover, Ne in higher organisms is always 
smaller than that in prokaryotes; therefore, it is believed 
that introns never colonised the prokaryotic genome. 
Eukaryotes, however, fixed the introns in their genome 
and the average number of introns per gene increased 
with an increase in the complexity of organisms [20]. 
Interestingly, in agreement with the notion that introns 
were only fixed in eukaryotes, analysis of introns in cel-
lulose synthase gene suggested that introns are eukary-
otic invention [21]. A high u in Arabidopsis caused loss of 
introns, exemplifying the importance of u in intron and 
genome size evolution, as predicted by the mutational 
hazard hypothesis [22]. While analysis of non-recombin-
ing region of the genome as a site of inefficient selection 
showed no signs of introns gain. This contradicted the 
notion that a genetic drift alone was responsible for gain 
of introns in the multicellular organisms [23].

Other genomic variables such as genome size and 
intron size showed similar variability patterns with each 
other but not with Neu. In contrast, the analysis of a 
phylogenetically diverse group of species, genome size, 
average intron length, and Neu showed strong negative 
correlations, suggesting that random genetic drift plays a 
significant role in genome size evolution [1]. Equally our 
multivariate analysis contradicted this theory, as we can 
see Neu does not have relationship with either genome 
size or average intron size. Probably, a drift alone may 
not be responsible for the evolution of genome size. 
For instance, salamanders have large genome, and they 
exhibit a persistent long-term reduction in the popula-
tion size. But there is no evidence of drift in their long 

Fig. 3  Exploratory factor analysis of genomic variables and Neu. a 
An EFA plot is generated from the standardized dataset by using 
factanal function and varimax rotation in R software on raw data. 
b An EFA plot is generated from phylogenetically independent 
contrasts by applying factanal function and varimax rotation. Two 
factors were considered as latent variables. The genomic variables 
and Neu are regarded as manifest variables. The genomic variables 
showed no relationships with Neu in raw data but in phylogenetically 
independent contrasts, only association between Neu and Average 
introns per gene is observed



Page 5 of 6Bhattachan and Dong ﻿BMC Res Notes           (2019) 12:60 

evolutionary history. In this regard, the lower muta-
tional hazard may have contributed to large genome size 
in these tetrapods as opposed to the mutational hazard 
hypothesis of genome size evolution [24]. In case of seed 
beetles, the reproductive fitness as a measure of selection 
was highly correlated with genome size which implies 
that natural selection has contributed to their genome 
size [25].

The variability pattern of gene number of an organism 
was not similar to Neu. However, a sufficient correlation 
between average gene number and Neu has already been 
established [1]. In many other eukaryotes, genome size 
has been found to show a positive correlation with gene 
number [26]. To date, genome sequencing in various 
taxa has revealed that gene number does not correlate 
with complexity of the organism in case of eukaryotes. 
For instance, humans are the most complex in terms of 
development, but they do not possess large number of 
genes than Caenorhabditis elegans [27].

A correlation exists between few phenotypic traits 
such as cell size, metabolic rate, developmental rate, 
and genome size [6]. Lynch and Conery [1] attempted 
to explain genome complexity by considering key popu-
lation genetic parameter Neu, but received criticism 
because they could not consider phylogenetic relation-
ships and their association with genomic variables in 
case of large phylogenies, and all genomic variables did 
not show a correlation with Neu [19]. The lack of associa-
tion between genomic variables and Neu may be due to 
inaccuracy in time estimates of species divergence [28]. 
Although time estimates are controversial [29], but we 
think that phylogenetically independent contrasts data is 
more reliable than raw data since phylogenetic informa-
tion is important to obtain meaningful conclusions. Here, 
we revisited Lynch and Conery dataset with a more holis-
tic approach by multivariate analysis in order to deter-
mine any undisclosed patterns among genomic variables 
and Neu. Our results were not the same as the previous 
results obtained using the bivariate method only [1]. We 
confirmed that Neu may influence intron evolution in a 
correlative fashion but with no other genomic variables, 
implying that the enigma of genome size variation and 
organismal complexity needs further investigation.

Limitations

1.	 We acknowledge that our study is based on analysis 
of previous data using multivariate methods to gain 
new insights into genome evolution. Here, we could 
only analyse eukaryotic genome because there are 
no introns present in the prokaryotic genome. This 

exclusion of prokaryotic data in this study provides 
only views regarding eukaryotic genome evolution.

2.	 The multivariate statistical analysis methods are 
exploratory methods, which analyse several variables 
together for the interpretation of the datasets. Thus, 
this method lacks quantitative measurements.

Additional file

Additional file 1. A multivariate dataset of genomic variables and Neu. It 
is a table with species names and numerical values of genomic variables 
and Neu. 
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