Skip to main content

A Partial Solution to the C-Value Paradox

  • Conference paper
Comparative Genomics (RCG 2005)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3678))

Included in the following conference series:

Abstract

In the half-century since the C-value paradox (the apparent lack of correlation between organismal genome size and morphological complexity) was described, there have been no explicit statistical comparisons between measures of genome size and organism complexity. It is reported here that there are significant positive correlations between measures of genome size and complexity with measures of non-hierarchical morphological complexity in 139 prokaryotic and eukaryotic organisms with sequenced genomes. These correlations are robust to correction for phylogenetic history by independent contrasts, and are largely unaffected by the choice of data set for phylogenetic reconstruction. These results suggest that the C-value paradox may be more apparent than real, at least for organisms with relatively small genomes like those considered here. A complete resolution of the C-value paradox will require the consideration and inclusion of organisms with large genomes into analyses like those presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Avery, O.T., MacLeod, C.M., McCarty, M.: Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction of Transformation by a Deoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III. J. Exp. Med. 79(1), 137–158 (1944)

    Article  Google Scholar 

  2. Watson, J.D., Crick, F.H.C.: A structure for Deoxyribose Nucleic Acid. Nature 171, 737–738 (1953)

    Article  Google Scholar 

  3. Mirsky, A.E., Ris, H.: The deoxyribonucleic acid content of animal cells and its evolutionary significance. J. gen. Physiol. 34, 451–462 (1951)

    Article  Google Scholar 

  4. Thomas, C.A.: The genetic organization of chromosomes. Annu. Rev. Genet. 5, 237–256 (1971)

    Article  Google Scholar 

  5. Cavalier-Smith, T. (ed.): The evolution of genome size. John Wiley, New York (1985)

    Google Scholar 

  6. Gregory, T.R.: Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol. Rev. 76, 65–101 (2001)

    Article  Google Scholar 

  7. Pagel, M., Johnstone, R.A.: Variation across species in the size of the nuclear genome supports the junk-DNA explanation for the C-value paradox. Proc. R. Soc. Lond. 249, 119–124 (1992)

    Article  Google Scholar 

  8. Goin, O.B., Goin, C.J., Bachmann, K.: DNA and amphibian life history. Copeia, 532–540 (1968)

    Google Scholar 

  9. Ohno, S.: Evolution by gene duplication. Springer, New York (1970)

    Google Scholar 

  10. Lovejoy, A.O.: The Great Chain of Being, p. 376. Harvard University Press, Cambridge (1936)

    Google Scholar 

  11. Cavalier-Smith, T.: Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J. Cell Sci. 43, 247–278 (1978)

    Google Scholar 

  12. Cavalier-Smith, T.: r- and K-tactics in the evolution of protist developmental systems: cell and genome size, phenotype diversifying selection, and cell cycle patterns. Biosystems 12, 43–59 (1980)

    Article  Google Scholar 

  13. Sessions, S.K., Larson, A.: Developmental correlates of genome size in plethodontid salamanders and their implications for genome evolution. Evolution 41, 1239–1251 (1987)

    Article  Google Scholar 

  14. Gregory, T.R.: Genome size and developmental complexity. Genetica 115, 131–146 (2002)

    Article  MathSciNet  Google Scholar 

  15. Gregory, T.R.: Macroevolution, hierarchy theory, and the C-value enigma. Paleobiology 30(2), 179–202 (2004)

    Article  Google Scholar 

  16. Doolittle, W.F., Sapienza, C.: Selfish genes, the phenotype paradigm and genome evolution. Nature 284, 601–603 (1980)

    Article  Google Scholar 

  17. Orgel, L.E., Crick, F.H.C.: Selfish DNA: the ultimate parasite. Nature 284, 604–607 (1980)

    Article  Google Scholar 

  18. Nelson, K.E., Paulsen, I.T., Heidelberg, J.F., Fraser, C.M.: Status of genome projects for nonpathogenic bacteria and archaea. Nature Biotechnology 18, 1049–1054 (2000)

    Article  Google Scholar 

  19. McShea, D.W.: Functional complexity in organisms: Parts as proxies. Biol. Philos 15(5), 641–668 (2000)

    Article  Google Scholar 

  20. Sneath, P.H.A.: Comparative biochemical genetics in bacterial taxonomy. In: Leone, C.A. (ed.) Taxonomic Biochemistry and Serology, pp. 565–583. Ronald Press, New York (1964)

    Google Scholar 

  21. Valentine, J.W., Collins, A.G., Porter Meyer, C.: Morphological complexity increase in metazoans. Paleobiology 20(2), 131–142 (1994)

    Google Scholar 

  22. Carroll, S.B.: Chance and necessity: the evolution of morphological complexity and diversity. Nature 409(6823), 1102–1109 (2001)

    Article  Google Scholar 

  23. Bell, G., Mooers, A.O.: Size and complexity among multicellular organisms. Biol. J. Linn. Soc. 60, 345–363 (1997)

    Article  Google Scholar 

  24. Bonner, J.T.: The evolution of complexity by means of natural selection, p. 260. Princeton University Press, Princeton (1988)

    Google Scholar 

  25. Harvey, P.H., Pagel, M.D.: The comparative method in evolutionary biology. Oxford University Press, Oxford (1991)

    Google Scholar 

  26. Felsenstein, J.: Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985)

    Article  Google Scholar 

  27. Garland Jr., T., Harvey, P.H., Ives, I.R.: Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst. Biol. 41, 18–32 (1992)

    Google Scholar 

  28. Valades, D.: Rhetorica Christiana. Pervsiae, apud Petrumiacobum Petrutium 10 (1579)

    Google Scholar 

  29. Fletcher, A.: Gender, Sex, and Subordination in England 1500-1800, p. 442. Yale University Press, New Haven (1995)

    Google Scholar 

  30. CBS Genome Atlas Database, Center for Biological Sequence Analysis Lyngby, Denmark (2003), http://www.cbs.dtu.dk/services/GenomeAtlas/

  31. GOLD Genomes OnLine DataBase, Integrated Genomics, Chicago, IL (2003), http://igweb.integratedgenomics.com/GOLD/

  32. Martins, E.P.: COMPARE, version 4.4. Computer programs for the statistical analysis of comparative data, Department of Biology, Indiana University, Bloomington IN (2001)

    Google Scholar 

  33. National Center for Biotechnology Information, National Library of Medicine, Washington, D.C (2003), http://www.ncbi.nlm.nih.gov/

  34. Jeanmougin, F., et al.: Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 23, 403–405 (1998)

    Article  Google Scholar 

  35. Swofford, D.L.: PAUP*, Phylogenetic analysis using parsimony (*and other methods), Sinauer Associates: Sunderland, Massachusetts (1998)

    Google Scholar 

  36. Brown, J.R., et al.: Universal trees based on large combined protein sequence data sets. Nat. Genet. 28, 281–285 (2001)

    Article  Google Scholar 

  37. Nelson, K.E., et al.: Status of genome projects for nonpathogenic bacteria and archaea. Nature Biotechnology 18(10), 1049–1054 (2000)

    Article  Google Scholar 

  38. Marcus, J.M., McCune, A.R.: Ontogeny and phylogeny in the northern swordtail clade of Xiphophorus. Syst. Biol. 48(3), 491–522 (1999)

    Article  Google Scholar 

  39. Rees, H., Jones, R.N.: The origin of the wide species variation in nuclear DNA content. Int. Rev. Cytol. 32, 53–92 (1972)

    Article  Google Scholar 

  40. Sparrow, A.H., Price, H.J., Underbrink, A.G.: A survey of DNA content per cell and per chromosome of prokaryotic and eukaryotic organisms: some evolutionary considerations. Brookhaven Symp. Biol. 23, 451–494 (1972)

    Google Scholar 

  41. Changizi, M.A.: Universal Scaling Laws for Hierarchical Complexity in Languages, Organisms, Behaviors and other Combinatorial Systems. J. Theor. Biol. 211, 277–295 (2001)

    Article  Google Scholar 

  42. Hedges, S.B., et al.: A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol. Biol. 4, 2 (2004), doi:10.1186/1471-2148-4-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marcus, J.M. (2005). A Partial Solution to the C-Value Paradox. In: McLysaght, A., Huson, D.H. (eds) Comparative Genomics. RCG 2005. Lecture Notes in Computer Science(), vol 3678. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11554714_9

Download citation

  • DOI: https://doi.org/10.1007/11554714_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28932-6

  • Online ISBN: 978-3-540-31814-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics