Skip to main content

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 28))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberch P, Gould SJ, Oster G, Wake DB (1979) Size and shape in ontogeny and phylogeny. Paleobiology 5:296–317.

    Google Scholar 

  • AmphibiaWeb (2005) Information on amphibian biology and conservation. Available: http://amphibiaweb.org. (Accessed: 2005).

    Google Scholar 

  • Anderson JS (2001) The phylogenetic trunk: Maximum inclusion of taxa with missing data in an analysis of the Lepospondyli (Vertebrata, Tetrapoda). Syst Biol 50:170–193.

    CAS  PubMed  Google Scholar 

  • Austin JD, Lougheed SC, Tanner K, Chek AA, Bogart JP, Boag PT (2002) A molecular perspective on the evolutionary affinities of an enigmatic neotropical frog,Allophryne Ruthveni. Zool J Linn Soc Lond 134:335–346.

    Google Scholar 

  • Báez AM (1996) The fossil record of the Pipidae. In: Tinsley RC, Kobel HR(eds) The Biology ofXenopus. Oxford: Clarendon, pp. 329–347.

    Google Scholar 

  • Báez AM, Basso NG (1996) The earliest known frogs of the Jurassic of South America: Review and cladistic appraisal of their relationships. Münchner Geowiss Abh (a) 30:131–158.

    Google Scholar 

  • Báez AM, Trueb L (1997) Redescription of the PaleogeneShelania pascuali from Patagonia and its bearing on the relationships of fossil and Recent pipoid frogs. Sci Pap Mus Nat Hist Univ Kans 4:1–41.

    Google Scholar 

  • Basso N, Cannatella DC (2001) The phylogeny of leptodactylid frogs based on 12S and 16S mtDNA. Abstract, SSAR-HL meetings, Indianapolis, Indiana, July (2001).

    Google Scholar 

  • Basso N, Hillis DM, Cannatella DC (2006) Phylogeny of the frog family “Leptodactylidae” based on 12S and 16S mtDNA (Anura: Neobatrachia). Mol Phylogenet Evol. In Press.

    Google Scholar 

  • Biju SD, Bossuyt F (2003) New frog family from India reveals an ancient biogeographical link with the Seychelles. Nature 425:711–714.

    CAS  PubMed  Google Scholar 

  • Blair WF (1958) Mating call in the speciation of anuran amphibians. Am Nat 92:27–51.

    Google Scholar 

  • Blommers-Schlösser RMA (1993) Systematic relationships of the Mantellinae Laurent (1946) (Anura Ranoidea). Ethol Ecol Evol 5:199–218.

    Google Scholar 

  • Bolt JR (1977) Dissorophoid relationships and ontogeny, and the origin of the Lissamphibia. J Paleontol 51:235–249.

    Google Scholar 

  • Bolt JR (1991) Lissamphibian origins. In: Schultze H-P, Trueb L(eds) Origins of the Higher Groups of Tetrapods.Ithaca, NY: Cornell University Press, pp. 194–222.

    Google Scholar 

  • Brainerd EL, Ditelberg JS, Bramble D (1993) Lung ventilation in salamanders and the evolution of vertebrate air-breathing mechanisms. Biol J Linn Soc 49:163–183.

    Google Scholar 

  • Cannatella DC (1985) Aphylogeny of primitive frogs (Archaeobatrachians).(Doctoral dissertation) Lawrence: University of Kansas.

    Google Scholar 

  • Cannatella DC (1999) Architecture: Cranial and axial musculoskeleton. In: McDiarmid RW, Altig R (eds) Tadpoles The Biology of Anuran Larvae.Chicago: The University of Chicago Press, pp. 52–91.

    Google Scholar 

  • Cannatella DC, de Sá RO (1993) Xenopus laevis as a model organism. Syst Biol 42:476–507.

    Google Scholar 

  • Cannatella DC, Hillis DM (1993) Amphibian phylogeny: Phylogenetic analysis of morphology and molecules. Herp Monogr 7:1–7.

    Google Scholar 

  • Cannatella DC, Hillis DM, Chippindale PT, Weigt L, Rand AS, Ryan MJ (1998) Phylogeny of frogs of thePhysalaemus pustulosus species group, with an examination of data incongruence. Syst Biol 47:311–335.

    CAS  PubMed  Google Scholar 

  • Cannatella DC, Trueb L (1988) Evolution of pipoid frogs: Intergeneric relationships of the aquatic frog family Pipidae (Anura). Zool J Linn Soc Lond 94:1–38.

    Google Scholar 

  • Carroll RL (2000a)Eocaecilia and the origin of caecilians. In: Heatwole H, Carroll RLeds Amphibian Biology Volume 4._Chipping Norton, UK: Surrey Beatty, pp.1402–1411.

    Google Scholar 

  • Carroll RL (2000b)The lissamphibian enigma. In: Heatwole H, Carroll RLeds Amphibian Biology Volume 4._Chipping Norton: Surrey Beatty, pp. 1270–1273.

    Google Scholar 

  • Carroll RL, Currie PJ (1975) Microsaurs as possible apodan ancestors. Zool J Linn Soc Lond 57:229–247.

    Google Scholar 

  • Carroll RL, Kuntz A, Albright K (1999) Vertebral development and amphibian evolution. Evol Dev 1:36–48.

    CAS  PubMed  Google Scholar 

  • Channing A (1989) A re-evaluation of the phylogeny of Old World treefrogs. S Afr J Sci 24:116–131.

    Google Scholar 

  • Chippindale PT, Bonett RM, Baldwin AS, Wiens JJ (2004) Phylogenetic evidence for a major reversal of life-history evolution in plethodontid salamanders. Evolution 58:2809–2822.

    CAS  PubMed  Google Scholar 

  • Coates MI, Ruta M, Milner AR (2000) Early tetrapod evolution. Trends Ecol Evol 15:327–328.

    PubMed  Google Scholar 

  • Cocroft RB (1994) A cladistic analysis of chorus frog phylogeny (Hylidae:Pseudacris). Herpetologica 50:420–437.

    Google Scholar 

  • Cocroft RB, Ryan MJ (1995) Patterns of advertisement call evolution in toads and chorus frogs. Anim Behav 49:283–303.

    Google Scholar 

  • da Silva HR (1998) Phylogenetic relationships of the family Hylidae with emphasis on the relationships within the subfamily Hylinae (Amphibia: Anura). (Doctoral dissertation) Lawrence: University of Kansas.

    Google Scholar 

  • Daly JW, Garraffo HM, Jain P, Spande TF, Snelling RR, Jaramillo C, Rand AS (2000) Arthropod-frog connection: Decahydroquinoline and pyrrolizidine alkaloids common to microsympatric myrmicine ants and dendrobatid frogs. J Chem Ecol 26:73–85.

    CAS  Google Scholar 

  • Daly JW, Garraffo HM, Jaramillo C, Rand AS (1994) Dietary source for skin alkaloids of poison frogs (Dendrobatidae)? J Chem Ecol 20:943–955.

    CAS  Google Scholar 

  • Darst CR, Cannatella DC (2004) Novel relationships among hyloid frogs inferred from 12S and 16S mitochondrial DNA sequences. Mol Phylogenet Evol 31:462–475.

    CAS  PubMed  Google Scholar 

  • Darst CR, Menendez-Guerrero PA, Coloma LA, Cannatella DC (2005) Evolution of dietary specialization and chemical defense in poison frogs (Dendrobatidae): A comparative analysis. Am Nat 165:56–69.

    PubMed  Google Scholar 

  • de Queiroz K, Gauthier J (1992) Phylogenetic taxonomy. Ann Rev Ecol Syst 23:449–480.

    Google Scholar 

  • de Sá RO, Hillis DM (1990) Phylogenetic relationships of the pipid frogsXenopus and Silurana: An integration of ribosomal DNA and morphology. Mol Biol Evol 7:365–376.

    PubMed  Google Scholar 

  • Drewes RC (1984) A phylogenetic analysis of the Hyperoliidae (Anura): treefrogs of Africa, Madagascar, and the Seychelles Islands. Occ Pap Calif Acad Sci 139:1–70.

    Google Scholar 

  • Dubois A (1981) Liste des genres et sous-genres nominaux de Ranoidea (Amphibiens Anoures) du monde, avec identification de leurs espéces-types: conséquences nomenclaturales. Monit Zool Ital 15:225–284.

    Google Scholar 

  • Dubois A (1984) La nomenclature supragénérique des amphibiens anoures. Mémoires Museum Nat d’Histoire Naturelle, SerA Z 131:1–64.

    Google Scholar 

  • Duellman WE (ed) (1999) Patterns of Distribution of Amphibians.A Global Perspective. Baltimore: The Johns Hopkins University Press.

    Google Scholar 

  • Duellman WE (2001) Hylid Frogs of Middle America, Contributions to Herpetology, Volume 18. Society for the Study of Amphibians and Reptiles.

    Google Scholar 

  • Duellman WE (2003) An overview of anuran phylogeny, classification, and reproductive modes. In: Jamieson BGMed Reproductive Biology and Phylogeny of Anura. Enfield, NH: Science, pp. 1–18.

    Google Scholar 

  • Duellman WE, Trueb L (1986) Biology of AmphibiansNew York: McGraw-Hill.

    Google Scholar 

  • Emerson SB, Richards C, Drewes RC, Kjer KM (2000) On the relationships among ranoid frogs: A review of the evidence. Herpetologica 56:209–230.

    Google Scholar 

  • Evans BJ, Kelley DB, Tinsley R, Melnick DJ, Cannatella DC (2004) Amitochondrial DNA phylogeny of clawed frogs: Phylogeography on sub-Saharan Africa and implications for polyploid evolution. Mol Phylogenet Evol 33:197–213.

    CAS  PubMed  Google Scholar 

  • Evans SE, Lally C, Chure DC, Elder A, Maisano JA (2005) A Late Jurassic salamander (Amphibia: Caudata) from the Morrison Formation of North America. Zool J Linn Soc Lond 143:599–616.

    Google Scholar 

  • Evans SE, Milner AR (1996) A metamorphosed salamander from the Early Cretaceous of Las Hoyas, Spain. Phil Trans Royal Soc B 351:627–646.

    Google Scholar 

  • Fabrezi M, Langone JA (2000) Los caracteres morfológicos del controvertido Neobatrachia arborícolaAllophryne ruthveni Gaige, 1926. Cuadernos de Herpetología 14:47–59.

    Google Scholar 

  • Feller AE, Hedges SB (1998) Molecular evidence for the early history of living amphibians. Mol Phylogenet Evol 9:509–516.

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15.

    Google Scholar 

  • Felsenstein J (2004) Inferring phylogenies. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Ford LS (1989) The phylogenetic position of poison-dart frogs (Dendrobatidae): reassessment of the neobatrachian phylogeny with commentary on complex character systems. (Doctoral dissertation) Lawrence: University of Kansas.

    Google Scholar 

  • Ford LS, Cannatella DC (1993) The major clades of frogs. Herp Monogr 7:94–117.

    Google Scholar 

  • Frost DR (ed) (1985) Amphibian species of the world: A taxonomic and geographic reference. Lawrence, KS: Allen Press and the Association of Systematics Collections.

    Google Scholar 

  • Frost DR (2004) Amphibian species of the world: an online reference. Version 3.0 (22_August, 2004). Electronic Database accessible at http://research.amnh.org/ herpetology/amphibia/index.html. American Museum of Natural History, New York.

    Google Scholar 

  • Gadow H (1901) Amphibia. In:Amphibia and Reptiles.London: Macmillan, pp. 3–10.

    Google Scholar 

  • Gans C, Dejongh HJ, Farber J (1969) Bullfrog(Rana catesbeiana) ventilation: How does the frog breathe? Science 163:1223–1225.

    CAS  PubMed  Google Scholar 

  • Gao K-Q, Shubin NH (2001) Late Jurassic salamanders from northern China. Nature 410:574–577.

    CAS  PubMed  Google Scholar 

  • Gao K-Q, Shubin NH (2003) Earliest known crown-group salamanders. Nature 422:424–428.

    CAS  PubMed  Google Scholar 

  • Gao K-Q, Wang Y (2001) Mesozoic anurans from Liaoning province, China, and phylogenetic relationships of archaeobatrachian anuran clades. J Vert Paleontol 21: 460–476.

    Google Scholar 

  • García-París M, Buchholz DR, Parra-Olea G (2003) Phylogenetic relationships of Pelobatoidea re-examined using mtDNA. Mol Phylogenet Evol 28:12–23.

    PubMed  Google Scholar 

  • Gardner JD (2001) Monophyly and affinities of albanerpetontid amphibians (Temnospondyli; Lissamphibia). Zool J Linn Soc Lond 131:309–352.

    Google Scholar 

  • Garland Jr. T, Midford PE, Ives AR (1999) An introduction to phylogenetically based statistical methods, with a new method for confidence intervals on ancestral values. Amer Zool 39:374–388.

    Google Scholar 

  • Glaw F, Köhler J (1998) Amphibian species diversity exceeds that of mammals. Herpetol Rev 29:11–12.

    Google Scholar 

  • Gluesenkamp AG (2001) Developmental mode and adult morphology in bufonid frogs: A comparative analysis of correlated traits. (Doctoral dissertation). Austin, Texas: University of Texas.

    Google Scholar 

  • Good DA, Wake D (1992) Geographic variation and speciation in the Torrent Salamanders of the genusRhyacotriton (Caudata: Rhyacotritonidae). Publ Zool Univ Calif 126:1–91.

    Google Scholar 

  • Graybeal A (1997) Phylogenetic relationships of bufonid frogs and tests of alternate macroevolutionary hypotheses characterizing their radiation. Zool J Linn Soc Lond 119:297–338.

    Google Scholar 

  • Graybeal A, Cannatella DC (1995) A new taxon of Bufonidae from Peru, with descriptions of two new species and a review of the phylogenetic status of supraspecific bufonid taxa. Herpetologica 51:105–131.

    Google Scholar 

  • Green DM, Cannatella DC (1993) Phylogenetic significance of the amphicoelous frogs, Ascaphidae and Leiopelmatidae. Ecol Ethol Evol 5:233–245.

    Google Scholar 

  • Greene HW (1994) Homology and behavioral repertoires. In:Hall BK ed Homology The Hierarchical Basis of Comparative Biology.San Diego: Academic, pp. 370–391.

    Google Scholar 

  • Haas A (1997) The larval hyobranchial apparatus of discoglossoid frogs: its structure and bearing on the systematics of the Anura (Amphibia: Anura). J Zool Syst Evol Res 35:179–197.

    Google Scholar 

  • Haas A (2003) Phylogeny of frogs as inferred from primarily larval characters (Amphibia: Anura). Cladistics 19:23–89.

    Google Scholar 

  • Haeckel E (1866) Generelle Morphologie der Organismen. Berlin.

    Google Scholar 

  • Hanken J (1985) Morphological novelty in the limb skeleton accompanies miniaturization in salamanders. Science 229:871–874.

    CAS  PubMed  Google Scholar 

  • Hanken J (1999) Why are there so many new amphibian species when amphibians are declining? Trends Ecol Evol 14:7–8.

    PubMed  Google Scholar 

  • Harvey PH, Pagel MD (1991) The Comparative Method in Evolutionary Biology. Oxford Series in Ecology and Evolution.Oxford: Oxford University Press.

    Google Scholar 

  • Hay JM, Ruvinsky I, Hedges SB, Maxson LR (1995) Phylogenetic relationships of amphibian families inferred from DNA sequences of mitochondrial 12S and 16S ribosomal RNA genes. Mol Biol Evol 12:928–937.

    CAS  PubMed  Google Scholar 

  • Heatwole H, Carroll RL eds (2000) Paleontology.The evolutionary history of amphibians. Chipping Norton, UK: Surrey Beatty.

    Google Scholar 

  • Hedges SB, Maxson LR (1993) Amolecular perspective on lissamphibian phylogeny. Herp Monogr 7:27–42.

    Google Scholar 

  • Hedges SB, Nussbaum RA, Maxson LR (1993) Caecilian phylogeny and biogeography inferred from mitochondrial DNA sequences of the 12S rRNA and 16S rRNA genes (Amphibia: Gymnophiona). Herp Monogr 7:64–76.

    Google Scholar 

  • Henrici A (1994) Tephrodytes brassicarvalis, new genus and species (Anura: Pelodytidae), from the Arikareean Cabbage Patch beds of Montana, USA, and pelodytid-pelobatid relationships. Ann Carnegie Museum 63:155–183.

    Google Scholar 

  • Heyer WR (1975) A preliminary analysis of the intergeneric relationships of the frog family Leptodactylidae. Smiths Contrib Zool 199:1–55.

    Google Scholar 

  • Heyer WR, Liem DS (1976) Analysis of the intergeneric relationships of the Australian frog family Myobatrachidae. Smiths Contrib Zool 233:1–29.

    Google Scholar 

  • Hillis DM, Wilcox TP (2005) Phylogeny of the New World true frogs. Mol Phylogenet Evol 34:299–314.

    PubMed  Google Scholar 

  • Hoegg S, Vences M, Brinkmann H, Meyer A (2004) Phylogeny and comparative substitution rates of frogs inferred from sequences of three nuclear genes. Mol Biol Evol 21:1188–1200.

    CAS  PubMed  Google Scholar 

  • Jenkins FA, Shubin NH (1998) Prosalirus bitis and the anuran caudopelvic mechanism. J Vert Paleontol 18:495–510.

    Google Scholar 

  • Jenkins FAJ, Walsh DM (1993) An Early Jurassic caecilian with limbs. Nature 365:246–250.

    Google Scholar 

  • Larget B, Simon DL (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol Biol Evol 16:750–759.

    CAS  Google Scholar 

  • Larson A (1991) A molecular perspective on the evolutionary relationships of the salamander families. Evol Biol 25:211–277.

    CAS  Google Scholar 

  • Larson A, Dimmick WW (1993) Phylogenetic relationships of the salamander families: An analysis of congruence among morphological and molecular characters. Herp Monogr 7:77–93.

    Google Scholar 

  • Lathrop A (1997) Taxonomic review of the megophryid frogs (Anura: Pelobatoidea). Asiatic Herpt Res 7:68–79.

    Google Scholar 

  • Laurin M, Reisz RR (1997) A new perspective on tetrapod phylogeny. In: Sumida SS, Martin KLM eds Amniote Origins. Completing the Transition to Land. San Diego: Academic, pp. 9–59.

    Google Scholar 

  • Lee MSY, Jamieson BGM (1992) The ultrastructure of the spermatozoa of three species of myobatrachid frogs (Anura, Amphibia) with phylogenetic considerations. Acta Zool Stockholm 73:213–222.

    Google Scholar 

  • Lescure J, Renous S, Gasc J-P (1986) Proposition d’une nouvelle classification des amphibiens gymnophiones. Mém Soc Zool Fr 1986 43:145–177.

    Google Scholar 

  • Lewis ER, Narins PM (1999) The acoustic periphery of amphibians: anatomy and physiology. In: Fay RR, Popper AN eds Comparative Hearing: Fish and Amphibians. New York: Springer, pp. 101–154.

    Google Scholar 

  • Lewis PO (2001) Phylogenetic systematics turns over a new leaf. Trends Ecol Evol 16:30–37.

    PubMed  Google Scholar 

  • Liem SS (1970) The morphology, systematics, and evolution of the Old World Treefrogs (Rhacophoridae and Hyperoliidae). Fieldiana Zool 57:1–145.

    Google Scholar 

  • Loader SP, Gower DJ, Howell KM, Doggart N, Rödel M-O, Clarke BT, de Sá RO, Cohen BL, Wilkinson M (2004) Phylogenetic relationships of African microhylid frogs inferred from DNA sequences of mitochondrial 12S and 16S rRNA genes. Organisms Divers Evol 4:227–235.

    Google Scholar 

  • Lombard RE (1971) A comparative morphological analysis of the salamander inner ear. (Doctoral dissertation) Chicago: University of Chicago.

    Google Scholar 

  • Lynch JD (1971) Evolutionary relationships, osteology, and zoogeography of leptodactyloid frogs. Misc Publ Mus Nat Hist Univ Kansas 53:531–238.

    Google Scholar 

  • Maglia AM (1998) Phylogenetic relationships of the extant pelobatoid frogs (Anura: Pelobatoidea): Evidence from adult morphology. Scient Pap Nat Hist Mus Univ Kansas 10:1–19.

    Google Scholar 

  • McGowan G, Evans SE (1995) Albanerpetontid amphibians from the Cretaceous of Spain. Nature 373:143–145.

    CAS  Google Scholar 

  • Mendelson I, Joseph R, da Silva HR, Maglia AM (2000) Phylogenetic relationships among marsupial frog genera (Anura: Hylidae: Hemiphractinae) based on evidence from morphology and natural history. Zool J Linn Soc Lond 128:125–148.

    Google Scholar 

  • Milner AR (1988) The relationships and origin of living amphibians. In: Benton MJ ed The Phylogeny and Classification of the Tetrapods 1. Amphibians, Reptiles, Birds. Oxford: Oxford University Press, pp. 59–102.

    Google Scholar 

  • Milner AR (1993) The Paleozoic relatives of lissamphibians. Herp Monogr 7:8–27.

    Google Scholar 

  • Milner AR (2000) Mesozoic and Tertiary Caudata and Albanerpetontidae. In: Heatwole H, Carroll RL eds Amphibian Biology Volume 4. Chipping Norton, UK: Surrey Beatty, pp. 1412–1444.

    Google Scholar 

  • Mueller RL, Macey JR, Jaekel M, Wake DB, Boore JL (2004) Morphological homoplasy, life history evolution, and historical biogeography of plethodontid salamanders inferred from complete mitochondrial genomes. Proc Natl Acad Sci USA 101:13820–13825.

    CAS  PubMed  Google Scholar 

  • Nussbaum RA (1977) Rhinatrematidae: A new family of caecilians (Amphibia: Gymnophiona). Occ Pap Mus Zool Univ Michigan 682:1–30.

    Google Scholar 

  • Nussbaum RA, Wilkinson M (1989) On the classification and phylogeny of caecilians (Amphibia: Gymnophiona), a critical review. Herp Monogr 3:1–42.

    Google Scholar 

  • özeti N, Wake DB (1969) The morphology and evolution of the tongue and associated structures in salamanders and newts (family Salamandridae). Copeia 1969:205–215.

    Google Scholar 

  • Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884.

    CAS  PubMed  Google Scholar 

  • Parsons TS, Williams EE (1962) The teeth of Amphibia and their relation to amphibian phylogeny. J Morph 110:375–383.

    Google Scholar 

  • Parsons TS, Williams EE (1963) The relationships of the modern Amphibia: a reexamination. Q Rev Biol 38:26–53.

    Google Scholar 

  • Pauly GB, Hillis DM, Cannatella DC (2004) The history of a Nearctic colonization: Molecular phylogenetics and biogeography of the Nearctic toads (Bufo). Evolution 58:2517–2535.

    CAS  PubMed  Google Scholar 

  • Púgener LA, Maglia AM, Trueb L (2003) Revisiting the contribution of larval characters to an analysis of phylogenetic relationships of basal anurans. Zool J Linn Soc Lond 139:129–155.

    Google Scholar 

  • Purgue AP (1997) Tympanic sound radiation in the bullfrog Rana catesbeiana. J Comp Physiol A 181:438–445.

    CAS  PubMed  Google Scholar 

  • Rage J-C, Rocek Z (1989) Redescription of Triadobatrachus massinoti (Piveteau, (1936) an anuran amphibian from the early Triassic. Palaeontographica Abt A 206:1–16.

    Google Scholar 

  • Rand AS, Dudley R (1993) Frogs in helium: The anuran vocal sac is not a cavity resonator. Physiol Zool 66:793–806.

    Google Scholar 

  • Reiss JO (1996) Palatal metamorphosis in basal caecilians (Amphibia: Gymnophiona) as evidence for lissamphibian monophyly. J Herp 30:27–39.

    Google Scholar 

  • Richards C, Moore WS (1996) A phylogeny for the African treefrog family Hyperoliidae based on mitochondrial DNA. Mol Phylogenet Evol 5:522–532.

    CAS  PubMed  Google Scholar 

  • Richards CM, Moore WS (1998) Amolecular phylogenetic study of the Old World treefrog family Rhacophoridae. Herp Journal 8:41–46.

    Google Scholar 

  • Rocek Z (2000) Mesozoic anurans. in Amphibian Biology. In: Heatwole H, Carroll RL eds Amphibian Biology Volume 4._Chipping Norton, UK: Surrey Beatty, pp. 1295–1331.

    Google Scholar 

  • Rocek Z, Rage J-C (2000) Proanuran stages (Triadobatrachus, Czatkobatrachus). In: Heatwole H, Carroll RL eds Amphibian Biology Volume 4. Chipping Norton, UK: Surrey Beatty, pp. 1283–1294.

    Google Scholar 

  • Roelants K, Bossuyt F (2005) Archaeobatrachian paraphyly and Pangaean diversification of crown-group frogs. Syst Biol 54:111–126.

    PubMed  Google Scholar 

  • Ruta M, Coates MI, Quicke DLJ (2003) Early tetrapod relationships revisited. Biol Rev Camb Phil Soc 78:251–345.

    Google Scholar 

  • Ruvinsky I, Maxson L (1996) Phylogenetic relationships among bufonoid frogs (Anura:Neobatrachia) inferred from mitochondrial DNA sequences. Mol Phylogenet Evol 5:533–547.

    CAS  PubMed  Google Scholar 

  • Ryan MJ (1986) Neuroanatomy influences speciation rates among anurans. Proc Natl Acad Sci USA 83:1379–1382.

    PubMed  Google Scholar 

  • Ryan MJ (1988) Constraints and patterns in the evolution of anuran acoustic communication. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak Weds The Evolution of the Amphibian Auditory System. New York: Wiley Interscience, pp. 637–677.

    Google Scholar 

  • Ryan MJ, Rand AS (1995) Female responses to ancestral advertisement calls in túngara frogs. Science 269:390–392.

    CAS  Google Scholar 

  • San Mauro D, García-París M, Zardoya R (2004a) Phylogenetic relationships of discoglossid frogs (Amphibia:Anura:Discoglossidae) based on complete mitochondrial genomes and nuclear genes. Gene 343:357–366.

    Google Scholar 

  • San Mauro D, Gower DJ, Oommen OV, Wilkinson M, Zardoya R (2004b) Phylogeny of caecilian amphibians (Gymnophiona) based on complete mitochondrial genomes and nuclear RAG1. Mol Phylogenet Evol 33:413–427.

    Google Scholar 

  • San Mauro D, Vences M, Alcobendas M, Zardoya R, Meyer A (2005) Initial diversification of living amphibians predated the breakup of Pangaea. Am Nat 165:590–599

    Google Scholar 

  • Sanchíz B (1998) Salientia. Encyclopedia of paleoherpetology. Volume 4. München: Verlag Dr. Friedrich Pfeil.

    Google Scholar 

  • Santos JC, Coloma LA, Cannatella DC (2003) Multiple, recurring origins of aposematism and diet specialization in poison frogs. Proc Natl Acad Sci USA 100:12792–12797.

    CAS  PubMed  Google Scholar 

  • Shaffer HB (1984) Evolution in a paedomorphic lineage. I. An electrophoretic analysis of the Mexican ambystomatid salamanders. Evolution 38:1194–1206.

    Google Scholar 

  • Shaffer HB, Clark JM, Kraus F (1991) When molecules and morphology clash: a phylogenetic analysis of the north american ambystomatid salamanders Caudata: Ambystomatidae. Syst Zool 40:284–303.

    Google Scholar 

  • Shubin NH, Jenkins FA (1995) An Early Jurassic jumping frog. Nature 377:49–52.

    CAS  Google Scholar 

  • Sokol OM (1975) The phylogeny of anuran larvae: A new look. Copeia 1975:1–24.

    Google Scholar 

  • Spinar ZV (1972) Tertiary Frogs from Central Europe. The Hague: W. Junk.

    Google Scholar 

  • Starrett PH (1973) Evolutionary patterns in larval morphology. In: Vial JL ed Evolutionary Biology of the Anurans: Contemporary Research on Major Problems. Columbia: University of Missouri Press, pp. 251–271.

    Google Scholar 

  • Taylor EH (1968) The Caecilians of the World. Lawrence: University of Kansas Press.

    Google Scholar 

  • Titus TA, Larson A (1995) A molecular phylogenetic perspective on the evolutionary radiation of the salamander family Salamandridae. Syst Biol 44:125–151.

    Google Scholar 

  • Trueb L (1973) Bones, frogs, and evolution. In: Vial JL ed Evolutionary Biology of the Anurans: Contemporary Research on Major Problems. Columbia: University of Missouri Press, pp. 65–132.

    Google Scholar 

  • Trueb L (1996) Historical constraints and morphological novelties in the evolution of the skeletal system of pipid frogs (Anura: Pipidae). In: Tinsley RC, Kobel HReds The Biology of Xenopus. Oxford: Clarendon, pp. 349–377.

    Google Scholar 

  • Trueb L, Alberch P (1985) Miniaturization and the anuran skull: A case study of heterochrony. In: Duncker H-R, Fleischer Geds Vertebrate Morphology. Stuttgart: Gustav Fischer Verlag, pp. 113–121.

    Google Scholar 

  • Trueb L, Cloutier R (1991a) A phylogenetic investigation of the inter-and intrarelationships of the Lissamphibia (Amphibia: Temnospondyli). In: Schultze H-P, Trueb Leds Origins of the Higher Groups of Tetrapods: Controversy and Consensus. Ithaca, NY: Cornell University Press, pp. 233–313.

    Google Scholar 

  • Trueb L, Cloutier R (1991b) Toward an understanding of the amphibians: two centuries of systematic history. In: Schultze H-P, Trueb Leds Origins of the Higher Groups of Tetrapods: Controversy and Consensus. Ithaca, NY: Cornell University Press, pp. 175–193.

    Google Scholar 

  • van der Meijden A, Vences M, Meyer A (2004) Novel phylogenetic relationships of the enigmatic brevicipitine and scaphiophrynine toads as revealed by sequences from the nuclear Rag-1_gene. Proc R Soc Lond B (Biol Letters Suppl) 271:378–381.

    Google Scholar 

  • Vences M, Glaw F (2003) When molecules claim for taxonomic change: New proposals on the classification of Old World treefrogs. Spixiana 24:85–92.

    Google Scholar 

  • Vences M, Kosuch J, Boistel R, Haddad CF, La Marca E, Lötters S, Veith M (2003) Convergent evolution of aposematic coloration in Neotropical poison frogs: A molecular phylogenetic perspective. Organisms Divers Evol 3:215–226.

    Google Scholar 

  • Wake DB (1966) Comparative osteology and evolution of the lungless salamanders, family Plethodontidae. Mem So Calif Acad Sci 4:1–111.

    Google Scholar 

  • Wake DB, özeti N (1969) Evolutionary relationships in the family Salamandridae. Copeia 1969:124–137.

    Google Scholar 

  • Wake MH (1993) Non-traditional characters in the assessment of caecilian phylogenetic relationships. Herp Monogr 7:42–55.

    Google Scholar 

  • Wake TA, Wake MH, Lesure R (1999) A Mexican archaeological site includes the first Quaternary fossil of caecilians. Quat Res 52:138–140.

    Google Scholar 

  • Wiens JJ, Bonett RM, and Chippindale PT (2005) Ontogeny discomcobulates phylogeny: Paedomorphosis and higher-level salamander relationships. Syst Biol 54: 91–110.

    PubMed  Google Scholar 

  • Wilkinson J, Drewes RC, Tatum OL (2002a) A molecular phylogenetic analysis of the family Rhacophoridae with an emphasis on the Asian and African genera. Mol Phylogenet Evol 24:265–273.

    CAS  PubMed  Google Scholar 

  • Wilkinson M (1989) On the status of Nectocaecilia fasciata Taylor, with a discussion of the phylogeny of the Typhlonectidae (Amphibia: Gymnophiona). Herpetologica 45:23–36.

    Google Scholar 

  • Wilkinson M (1997) Characters, congruence, and quality. A study of neuroanatomical and traditional data in caecilian phylogeny. Biol Rev 72:423–470.

    Google Scholar 

  • Wilkinson M, Nussbaum RA (1996) On the phylogenetic position of the Uraeotyphlidae (Amphibia: Gymnophiona). Copeia 1996:550–562.

    Google Scholar 

  • Wilkinson M, Nussbaum RA (1999) Evolutionary relationships of the lungless caecilian Atretochoana eiselti (Amphibia: Gymnophiona: Typhlonectidae). Zool J Linn Soc Lond 126:191–223.

    Google Scholar 

  • Wilkinson M, Sheps JA, Oommen OV, Cohen BL (2002b) Phylogenetic relationships of Indian caecilians (Amphibia: Gymnophiona) inferred from mitochondrial rRNA Sequences. Mol Phylogenet Evol 23:401–407.

    CAS  PubMed  Google Scholar 

  • Wu S-H (1994) Phylogenetic relationships, higher classification, and historical biogeography of the microhyloid frogs (Lissamphibia: Anura: Brevicipitidae and Microhylidae). (Doctoral dissertation) Ann Arbor: University of Michigan.

    Google Scholar 

  • Zardoya R, Meyer A (2001) On the origin of and phylogenetic relationships among living amphibians. Proc Natl Acad Sci USA 98:7380–7383.

    CAS  PubMed  Google Scholar 

  • Zhang P, Chen YQ, Zhou H, Wang XL, Qu LH (2003) The complete mitochondrial genome of a relic salamander, Ranodon sibiricus (Amphibia: Caudata) and implications for amphibian phylogeny. Mol Phylogenet Evol 28:620–626.

    CAS  PubMed  Google Scholar 

  • Zug GR, Vitt LJ, Caldwell JP (2001) Herpetology. An Introductory Biology of Amphibians and Reptiles. 2nd edition. San Diego: Academic.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cannatella, D.C. (2007). An Integrative Phylogeny of Amphibia. In: Narins, P.M., Feng, A.S., Fay, R.R., Popper, A.N. (eds) Hearing and Sound Communication in Amphibians. Springer Handbook of Auditory Research, vol 28. Springer, New York, NY . https://doi.org/10.1007/978-0-387-47796-1_2

Download citation

Publish with us

Policies and ethics