Skip to main content

Everything You always wanted to Know about the Average Consensus, and More

  • Chapter
Phylogenetic Supertrees

Part of the book series: Computational Biology ((COBO,volume 4))

Abstract

The average consensus procedure is a method that takes as input a profile of weighted trees and returns a solution that best fits the consensus profile. As an optimization-based approach, it represents one of the few methods available to build consensus trees and supertrees while taking branch lengths into account. The average consensus procedure has been used to address a variety of questions in both the consensus and supertree settings. We present a review of those applications as well as extensions of average consensus trees. The results of new simulations designed to assess the accuracy of average supertrees are also presented and discussed. Finally, we provide recommendations about average consensus trees and suggest future questions to address.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bandelt, H. J. and Dress, A. W. 1992. Split decomposition: a new and useful approach to phylogenetic analysis of distance data. Molecular Phylogenetics and Evolution 1:242–252.

    Article  PubMed  CAS  Google Scholar 

  • Barker, G. M. 2002. Phylogenetic diversity: a quantitative framework for measurement of priority and achievement in biodiversity conservation. Biological Journal of the Linnean Society 76:165–194.

    Article  Google Scholar 

  • Barrett, M., Donoghue, M. J., and Sober, E. 1991. Against consensus. Systematic Zoology 40:486–493.

    Article  Google Scholar 

  • Barthélemy, J. P. and Brucker, F. 2000. Average consensus in numerical taxonomy and some generalizations. In W. Gaul, O. Opitz, and M. Schader (eds), Data Analysis: Scientific Modeling and Practical Application, pp. 95–104. Springer-Verlag, Berlin.

    Google Scholar 

  • Barthélemy, J. P., Leclerc, B., and Monjardet, B. 1986. On the use of ordered sets in problems of comparison and consensus classifications. Journal of Classification 3:187–224.

    Article  Google Scholar 

  • Barthélemy, J.-P. and McMorris, F. R. 1986. The median procedure for n-trees. Journal of Classification 3:329–334.

    Article  Google Scholar 

  • Baum, B. R. 1992. Combining trees as a way of combining data for phylogenetic inference, and the desirability of combining gene trees. Taxon 41:3–10.

    Article  Google Scholar 

  • Baum, B. R. and Ragan, M. A. 1993. Reply to A. G. Rodrigo ’s “A comment on Baum ’s method for combining phylogenetic trees”. Taxon 42:637–640.

    Article  Google Scholar 

  • Bininda-Emonds, O. R. P. 2003. MRP supertree construction in the consensus setting. In M. Janowitz, F.-J. Lapointe, F. R. McMorris, B. Mirkin, and F. S. Roberts (eds), Bioconsensus, pp. 231–242. American Mathematical Society, Providence, Rhode Island.

    Google Scholar 

  • Bininda-Emonds, O. R. P., Gittleman, J. L., and Steel, M. A. 2002. The (super)tree of life: procedures, problems and prospects. Annual Review of Ecology and Systematics 33:265–289.

    Article  Google Scholar 

  • Bininda-Emonds, O. R. P. and Sanderson, M. J. 2001. Assessment of the accuracy of matrix representation with parsimony analysis supertree construction. Systematic Biology 50:565–579.

    Article  PubMed  CAS  Google Scholar 

  • Bleiweiss, R., Kirsch, J. A. W., and Lapointe, F.-J. 1994. DNA-DNA hybridization-based phylogeny of higher nonpasserines: reevaluating a key portion of the avian family tree. Molecular Phylogenetics and Evolution 3:248–255.

    Article  PubMed  CAS  Google Scholar 

  • Brossier, G. 1990. Piecewise hierarchical clustering. Journal of Classification 7:197–216.

    Article  Google Scholar 

  • Bryant, D. 2003. A classification of consensus methods for phylogenetics. In M. Janowitz, F.-J. Lapointe, F. R. McMorris, B. Mirkin, and F. S. Roberts (eds), Bioconsensus, pp. 163–184. American Mathematical Society, Providence, Rhode Island.

    Google Scholar 

  • Buneman, P. 1971. The recovery of trees from measures of dissimilarity. In F. R. Hodson, Kendall, D. G., and Tautu, P. (eds), Mathematics in Archeological and Historical Sciences, pp. 387–395. Edinburgh University Press, Edinburgh.

    Google Scholar 

  • Buneman, P. 1974. A note on the metric properties of trees. Journal of Combinatorial Theory (B) 17:48–50.

    Article  Google Scholar 

  • Campeau-Péloquin, A., Kirsch, J. A. W., Eldridge, M. D. B., and Lapointe, F.-J. 2001. Phylogeny of the rock-wallabies, Petrogale (Marsupialia: Macropodidae) based on DNA/DNA hybridisation. Australian Journal of Zoology 49:463–486.

    Article  Google Scholar 

  • Cavalli-Sforza, L. L. and Edwards, A. W. F. 1967. Phylogenetic analysis: models and estimation procedures. American Journal of Human Genetics 19:233–257.

    PubMed  CAS  Google Scholar 

  • Colless, D. H. 1980. Congruence between morphometric and allozyme data for Menidia species: a reappraisal. Systematic Zoology 29:288–299.

    Article  Google Scholar 

  • Cucumel, G. 1990. Construction d’une hiérarchie consensus à l’aide d’une ultramétrique centrale. In Recueil des Textes des Présentations du Colloque sur les Méthodes et Domaines d ’Application de la Statistique 1990, pp. 235–243. Bureau de la Statistique du Québec, Québec.

    Google Scholar 

  • De Queiroz, A., Donoghue, M. J., and Kim, J. 1995. Separate versus combined analysis of phylogenetic evidence. Annual Review of Ecology and Systematics 26:657–681.

    Article  Google Scholar 

  • De Soete, G. 1983. A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626.

    Article  Google Scholar 

  • De Soete, G. 1984a. Ultrametric tree representations of incomplete dissimilarity data. Journal of Classification 1:235–242.

    Article  Google Scholar 

  • De Soete, G. 1984b. Additive-tree representations of incomplete dissimilarity data. Quality and Quantity 18:387–393.

    Article  Google Scholar 

  • Dress, A., Huson, D., and Moulton, V. 1996. Analyzing and visualizing sequence and distance data using Splits Tree. Discrete Applied Mathematics 71:95–109.

    Article  Google Scholar 

  • Faith, D. P. 1992. Conservation evaluation and phylogenetic diversity. Biological Conservation 61:1–10.

    Article  Google Scholar 

  • Farris, J. S., Källersjö, A. G., Kluge, A. G., and Bult, C. 1995. Testing significance of incongruence. Cladistics 10:315–319.

    Article  Google Scholar 

  • Fitch, W. M. and Margoliash, E. 1967. Construction of phylogenetic trees. Science 155:279–284.

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein, J. 1985. Phylogenies and the comparative method. The American Naturalist 125:1–15.

    Article  Google Scholar 

  • Gittleman, J. L., Jones, K. E., and Price, S. A. 2004. Supertrees: using complete phylogenies in comparative biology. In O. R. P. Bininda-Emonds (ed.), Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 439–460. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Goloboff, P. A. and Pol, D. 2002. Semi-strict supertrees. Cladistics 18:514–525.

    Google Scholar 

  • Gordon, A. D. 1986. Consensus supertrees: the synthesis of rooted trees containing overlapping sets of labeled leaves. Journal of Classification 3:335–348.

    Article  Google Scholar 

  • Guénoche, A. and Grandcolas, S. 1999. Approximations par arbre d’une distance partielle. Mathématique, Informatique et Sciences Humaines 146:51–64.

    Google Scholar 

  • Hartigan, J. A. 1967. Representation of similarity matrices by trees. Journal of the American Statistical Association 62:1140–1158.

    Article  Google Scholar 

  • Hein, J. 1989. A tree reconstruction method that is economical in the number of pairwise comparison used. Molecular Biology and Evolution 6:669–684.

    PubMed  CAS  Google Scholar 

  • Hendy, M. D. and Penny, D. 1993. Spectral analysis of phylogenetic data. Journal of Classification 10:5–24.

    Article  Google Scholar 

  • Huelsenbeck, J. P., Bull, J. J., and Cunningham, C. W. 1996. Combining data in phylogenetic analysis. Trends in Ecology and Evolution 11:152–158.

    Article  PubMed  CAS  Google Scholar 

  • Huson, D. H. 1998. Splits Tree: analyzing and visualizing evolutionary data. Bioinformatics 14:68–73

    Article  PubMed  CAS  Google Scholar 

  • Johnson, C. N. 1998. Species extinction and the relationship between distribution and abundance. Nature 394:272–274.

    Article  CAS  Google Scholar 

  • Jukes, T. H. and Cantor, C. R. 1969. Evolution of protein molecules. In H. N Munro (ed.), Mammalian Protein Metabolism, pp. 21–132. Academic Press, New York.

    Google Scholar 

  • Kirsch, J. A. W., Lapointe, F.-J., and Foeste, A. 1995. Resolution of portions of the kangaroo phylogeny (Marsupialia: Macropodidae) using DNA hybridization. Biological Journal of the Linnean Society 55:309–328.

    Article  Google Scholar 

  • Kirsch, J. A. W., Lapointe, F.-J., and Springer, M. S. 1997. DNA-hybridisation studies of marsupials and their implications for metatherian classification. Australian Journal of Zoology 45:211–280.

    Article  CAS  Google Scholar 

  • Kluge, A. G. 1989. A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Systematic Biology 38:7–25.

    Article  Google Scholar 

  • Kumar, S. 1996. A stepwise algorithm for finding minimum evolution trees. Molecular Biology and Evolution 13:584–593.

    Article  PubMed  CAS  Google Scholar 

  • Landry, P.-A. and Lapointe, F.-J. 1997. Estimation of missing distances in path-length matrices: problems and solutions. In B. Mirkin, F. R. McMorris, F. S. Roberts, and A. Rzhetsky (eds), Mathematical Hierarchies and Biology, pp. 209–218. American Mathematical Society, Providence, Rhode Island.

    Google Scholar 

  • Landry, P.-A., Lapointe, F.-J., and Kirsch, J. A. W. 1996. Estimating phylogenies from lacunose distance matrices: additive is superior to ultrametric estimation. Molecular Biology and Evolution 13:818–823.

    Article  CAS  Google Scholar 

  • Lanyon, S. 1985. Detecting internal inconsistencies in distance data. Systematic Zoology 34:397–403.

    Article  Google Scholar 

  • Lanyon, S. 1993. Phylogenetic frameworks: towards a firmer foundation for the comparative approach. Biological Journal of the Linnean Society 49:45–61.

    Article  Google Scholar 

  • Lapointe, F.-J. 1998a. How to validate phylogenetic trees? A stepwise procedure. In C. Hayashi, H. H. Bock, K. Yajima, Y. Tanaka, N. Oshumi, and Y. Baba (eds), Data Science, Classification, and Related Methods: Studies in Classification, Data Analysis, and Knowledge Optimization, pp. 71–88. Springer-Verlag, Tokyo.

    Google Scholar 

  • Lapointe, F.-J. 1998b. For consensus (with branch lengths). In A. Rizzi, M. Vichi, and H.-H. Bock (eds), Advances in Data Science and Classification, pp. 73–80. Springer-Verlag, Heidelberg.

    Chapter  Google Scholar 

  • Lapointe, F.-J. and Cucumel, G. 1991. Le super-dendrogramme ou la combinaison de matrices ultramétriques partiellement disjointes. In Recueil des Textes des Présentations du Colloque sur les Méthodes et Domaines d ’Application de la Statistique 1991, pp. 145–151. Bureau de la Statistique du Québec, Québec.

    Google Scholar 

  • Lapointe, F.-J. and Cucumel, G. 1997. The average consensus procedure: combination of weighted trees containing identical or overlapping sets of objects. Systematic Biology 46:306–312.

    Article  Google Scholar 

  • Lapointe, F.-J. and Kirsch, J. A. W. 1995. Estimating phylogenies from lacunose distance matrices, with special reference to DNA hybridization data. Molecular Biology and Evolution 12:266–284.

    CAS  Google Scholar 

  • Lapointe, F.-J. and Kirsch, J. A. W. 2001. Construction and verification of a large phylogeny of marsupials. Australian Mammalogy 23:9–22.

    Article  Google Scholar 

  • Lapointe, F.-J., Kirsch, J. A. W., and Bleiweiss, R. 1994. Jackknifing of weighted trees: validation of phylogenies reconstructed from distances matrices. Molecular Phylogenetics and Evolution 3:256–267.

    Article  PubMed  CAS  Google Scholar 

  • Lapointe, F.-J., Kirsch, J. A. W., and Hutcheon, J. M. 1999. Total evidence, consensus, and bat phylogeny: a distance based approach. Molecular Phylogenetics and Evolution 11:55–66.

    Article  PubMed  CAS  Google Scholar 

  • Lapointe, F.-J. and Landry, P.-A. 2001. A fast procedure for estimating missing distances in incomplete matrices prior to phylogenetic analysis. In N. El-Mabrouk, T. Lengauer, and D. Sankoff (eds), Currents in Computational Molecular Biology, pp. 189–190. Publications CRM, Montréal.

    Google Scholar 

  • Lapointe, F.-J. and Legendre, P. 1992. A statistical framework to test the consensus among additive trees (cladograms). Systematic Biology 41:158–171.

    Google Scholar 

  • Lapointe, F.-J., Wilkinson, M., and Bryant, D. 2003. Matrix representations with parsimony or with distances: two sides of the same coin? Systematic Biology 52:865–868.

    PubMed  Google Scholar 

  • Lecointre, G. H., Philippe, H., Vân Lê, H. L., and Le Guyader, H. 1993. Species sampling has a major impact on phylogenetic inference. Molecular Phylogenetics and Evolution 2:205–224.

    Article  PubMed  CAS  Google Scholar 

  • Lefkovitch, L. P. 1985. Euclidean consensus dendrograms and other classification structures. Mathematical Biosciences 74:1–15.

    Article  Google Scholar 

  • Levasseur, C., Landry, P.-A., and Lapointe, F.-J. 2000. Estimating trees from incomplete distance matrices: a comparison of two methods. In H. A. L. Kiers, J.-P. Rasson, P. J. F. Groenen, and M. Schader (eds), Data Analysis, Classification, and Related Methods, pp. 149–154. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Levasseur, C., Landry, P.-A., Makarenkov, V., Kirsch, J. A. W., and Lapointe, F.-J. 2003. Incomplete distance matrices, supertrees and bat phylogeny. Molecular Phylogenetics and Evolution 27:239–246.

    Article  PubMed  Google Scholar 

  • Levasseur, C. and Lapointe, F.-J. 2001. War and peace in phylogenetics: a rejoinder on total evidence and consensus. Systematic Biology 50:881–891.

    Article  PubMed  CAS  Google Scholar 

  • Levasseur, C. and Lapointe, F.-J. 2002. A family of average consensus methods for weighted trees. In K. Jajuga, A. Sokolowski, and H.-H. Bock (eds), Classification, Clustering and Data Analysis: Recent Advances and Applications, pp. 365–369. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Levasseur, C. and Lapointe, F.-J. 2003. Increasing phylogenetic accuracy with global congruence. In M. Janowitz, F.-J. Lapointe, F. R. McMorris, B. Mirkin, and F. S. Roberts (eds), Bioconsensus, pp. 221–230. American Mathematical Society, Providence, Rhode Island.

    Google Scholar 

  • Losos, J. B. 1994. An approach to the analysis of comparative data when a phylogeny is unavailable or incomplete. Systematic Biology 43:117–123.

    Google Scholar 

  • Makarenkov, V. 2002. Comparison of four methods for inferring additive trees from incomplete dissimilarity matrices. In K. Jajuga, A. Sokolowski, and H.-H. Bock (eds), Classification, Clustering and Data Analysis: Recent Advances and Applications, pp. 371–378. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Makarenkov, V. and Leclerc, B. 1999. The fitting of a tree metric according to a weighted least-squares criterion. Journal of Classification 16:3–26.

    Article  Google Scholar 

  • Margush, T. and McMorris, F. R. 1981. Consensus n-trees. Bulletin of Mathematical Biology 43:239–244.

    Google Scholar 

  • McMorris, F. R. 1985. Axioms for consensus functions on undirected phylogenetic trees. Mathematical Biosciences 74:17–21.

    Article  Google Scholar 

  • Mirkin, B. and Roberts, F. S. 1993. Consensus functions and patterns in molecular sequences. Bulletin of Mathematical Biology 55:695–713.

    PubMed  CAS  Google Scholar 

  • Rambaut, A. and Grassly, N. C. 1997. Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Computer Applications in the Biosciences 13:235–238.

    PubMed  CAS  Google Scholar 

  • Ragan, M. A. 1992. Phylogenetic inference based on matrix representations of trees. Molecular Phylogenetics and Evolution 1:53–58.

    Article  PubMed  CAS  Google Scholar 

  • Semple, C. and Steel, M. 2000. A supertree method for rooted trees. Discrete Applied Mathematics 105:147–158.

    Article  Google Scholar 

  • Smith, T. J. 2001. Constructing ultrametric and additive trees based on the L-1 norm. Journal of Classification 18:185–207.

    Google Scholar 

  • Sokal, R. R. and Rohlf, F. J. 1981. Taxonomic congruence in the Leptopodomorpha reexamined. Systematic Zoology 30:309–325.

    Article  Google Scholar 

  • Stinebrickner, R. 1984. An extension of intersection methods from trees to dendrograms. Systematic Zoology 33:381–386.

    Article  Google Scholar 

  • Strimmer, K. and Von Haeseler, A. 1996. Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Molecular Biology and Evolution 13:964–969.

    Article  CAS  Google Scholar 

  • Swofford, D. L. 2002. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Vichi, M. 1993. Un algoritmo dei minimi quadrati per interpolare un insieme di classificazioni gerarchiche con una classificazione consenso. Metron 51:139–163.

    Google Scholar 

  • Wilkinson, M., Lapointe, F.-J., and Gower, D. J. 2003. Branch lengths and support. Systematic Biology 52:127–130.

    Article  PubMed  Google Scholar 

  • Wilkinson, M., Thorley, J. L., Littlewood, D. T. J., and Bray, R. A. 2001. Towards a phylogenetic supertree of Platyhelminthes? In D. T. J. Littlewood, and R. A. Bray (eds), Interrelationships of the Platyhelminthes, pp. 292–301. Taylor and Francis, London.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lapointe, FJ., Levasseur, C. (2004). Everything You always wanted to Know about the Average Consensus, and More. In: Bininda-Emonds, O.R.P. (eds) Phylogenetic Supertrees. Computational Biology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2330-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2330-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2329-3

  • Online ISBN: 978-1-4020-2330-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics