Skip to main content

A Comparison of Senescence in Mouse and Human Cells

  • Chapter
  • First Online:
Cellular Senescence and Tumor Suppression

Abstract

Senescence is observed in both human and mouse cells, however, there are fundamental differences in how senescence is controlled between the two species. Human fibroblasts undergo replicative senescence as a result of telomere shortening. In contrast, mouse fibroblasts do not senesce when grown at a physiological oxygen concentration. In atmospheric oxygen, mouse cells enter a state that resembles senescence, but is independent of telomere shortening. In this chapter, we will discuss the characteristics of both human and mouse cellular senescence, and the differences in the signaling pathways that mediate senescence in these species. We will also discuss the studies of senescence in species beyond human and mouse. It is important to note that mice are not representative of all rodents, as some rodent species display telomere-mediated senescence. We will also discuss the evolution of replicative senescence and the data suggesting that telomere-mediated senescence evolves in large-bodied species to mitigate an increased risk of cancer conferred by the greater number of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D, Barrett JC (1996) Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci USA 93:13742–13747

    CAS  PubMed  Google Scholar 

  • Argyle D, Ellsmore V, Gault EA, Munro AF, Nasir L (2003) Equine telomeres and telomerase in cellular immortalisation and ageing. Mech Ageing Dev 124:759–764

    CAS  PubMed  Google Scholar 

  • Austad SN (2005) Diverse aging rates in metazoans: targets for functional genomics. Mech Ageing Dev 126:43–49

    CAS  PubMed  Google Scholar 

  • Balin AK, Goodman DB, Rasmussen H, Cristofalo VJ (1977) The effect of oxygen and vitamin E on the lifespan of human diploid cells in vitro. J Cell Biol 74:58–67

    CAS  PubMed  Google Scholar 

  • Beausejour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P, Campisi J (2003) Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 22, 4212–4222

    Google Scholar 

  • Bekaert S, Derradji H, Baatout S (2004) Telomere biology in mammalian germ cells and during development. Dev Biol 274:15–30

    CAS  PubMed  Google Scholar 

  • Ben-Porath I, Weinberg RA (2005) The signals and pathways activating cellular senescence. Int J Biochem Cell Biol 37:961–976

    CAS  PubMed  Google Scholar 

  • Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA, Greider CW (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91:25–34

    CAS  PubMed  Google Scholar 

  • Bondar AG, Ouellette M, Frolkis M, Holt SE, Chiu C-P, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase intonormal human cells. Science 279:349–352

    Google Scholar 

  • Brackertz M, Kubbies M, Feige A, Salk D (1983) Decreased oxygen supply enhances growth in culture of human mid-trimester amniotic fluid cells. Hum Genet 64:334–338

    CAS  PubMed  Google Scholar 

  • Bradley TR, Hodgson GS, Rosendaal M (1978) The effect of oxygen tension on haemopoietic and fibroblast cell proliferation in vitro. J Cell Physiol 97:517–522

    CAS  PubMed  Google Scholar 

  • Braig M, Schmitt CA (2006) Oncogene-induced senescence: putting the brakes on tumor development. Cancer Res 66:2881–2884

    CAS  PubMed  Google Scholar 

  • Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B, Stein H, Dorken B, Jenuwein T, Schmitt CA (2005) Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436:660–665

    CAS  PubMed  Google Scholar 

  • Brookes S, Rowe J, Gutierrez Del Arroyo A, Bond J, Peters G (2004) Contribution of p16(INK4a) to replicative senescence of human fibroblasts. Exp Cell Res 298:549–559

    CAS  PubMed  Google Scholar 

  • Brown JP, Wei W, Sedivy JM (1997) Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277:831–834

    CAS  PubMed  Google Scholar 

  • Brummendorf TH, Mak J, Sabo KM, Baerlocher GM, Dietz K, Abkowitz JL, Lansdorp PM (2002) Longitudinal studies of telomere length in feline blood cells: implications for hematopoietic stem cell turnover in vivo. Exp Hematol 30:1147–1152

    PubMed  Google Scholar 

  • Buffenstein R, Jarvis JU (2002) The naked mole rat – a new record for the oldest living rodent. Sci Aging Knowledge Environ 21:pe7

    Google Scholar 

  • Cadile CD, Kitchell BE, Biller BJ, Hetler ER, Balkin RG (2001) Telomerase activity as a marker for malignancy in feline tissues. Am J Vet Res 62:1578–1581

    CAS  PubMed  Google Scholar 

  • Campisi J (2001) Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol 11:S27–S31

    CAS  PubMed  Google Scholar 

  • Chadeneau C, Siegel P, Harley CB, Muller WJ, Bacchetti S (1995) Telomerase activity in normal and malignant murine tissues. Oncogene 11:893–898

    CAS  PubMed  Google Scholar 

  • Chan SR, Blackburn EH (2004) Telomeres and telomerase. Philos Trans R Soc Lond B Biol Sci 359:109–121

    CAS  PubMed  Google Scholar 

  • Chen QM, Bartholomew JC, Campisi J, Acosta M, Reagan JD, Ames BN (1998) Molecular analysis of H2O2-induced senescent-like growth arrest in normal human fibroblasts: p53 and Rb control G1 arrest but not cell replication. Biochem J 332:43–50

    CAS  PubMed  Google Scholar 

  • Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, Koutcher JA, Scher HI, Ludwig T, Gerald W, Cordon-Cardo C, Pandolfi PP (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436:725–730

    CAS  PubMed  Google Scholar 

  • Choudhury AR, Ju Z, Djojosubroto MW, Schienke A, Lechel A, Schaetzlein S, Jiang H, Stepczynska A, Wang C, Buer J, Lee HW, von Zglinicki T, Ganser A, Schirmacher P, Nakauchi H, Rudolph KL (2007) Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat Genet 39:99–105

    CAS  PubMed  Google Scholar 

  • Colitz CM, Davidson MG, Mc GM (1999) Telomerase activity in lens epithelial cells of normal and cataractous lenses. Exp Eye Res 69:641–649

    CAS  PubMed  Google Scholar 

  • Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M, Benguria A, Zaballos A, Flores JM, Barbacid M, Beach D, Serrano M (2005) Tumour biology: senescence in premalignant tumours. Nature 436:642

    CAS  PubMed  Google Scholar 

  • Cosme-Blanco W, Shen MF, Lazar AJ, Pathak S, Lozano G, Multani AS, Chang S (2007) Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53-dependent cellular senescence. EMBO Rep 8:497–503

    CAS  PubMed  Google Scholar 

  • Courtois-Cox S, Genther Williams SM, Reczek EE, Johnson BW, McGillicuddy LT, Johannessen CM, Hollstein PE, MacCollin M, Cichowski K (2006) A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell 10:459–472

    CAS  PubMed  Google Scholar 

  • Cui W, Aslam S, Fletcher J, Wylie D, Clinton M, Clark AJ (2002) Stabilization of telomere length and karyotypic stability are directly correlated with the level of hTERT gene expression in primary fibroblasts. J Biol Chem 277:38531–38539

    CAS  PubMed  Google Scholar 

  • d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP, Jackson SP (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–198

    PubMed  Google Scholar 

  • Dai CY, Furth EE, Mick R, Koh J, Takayama T, Niitsu Y, Enders GH (2000) p16(INK4a) expression begins early in human colon neoplasia and correlates inversely with markers of cell proliferation. Gastroenterology 119:929–942

    CAS  PubMed  Google Scholar 

  • Dannenberg JH, van Rossum A, Schuijff L, Te Riele H (2000) Ablation of the retinoblastoma gene family deregulates G(1) control causing immortalization and increased cell turnover under growth-restricting conditions. Genes Dev 14:3051–3064

    CAS  PubMed  Google Scholar 

  • Davis T, Skinner JW, Faragher RG, Jones CJ, Kipling D (2005) Replicative senescence in sheep fibroblasts is a p53 dependent process. Exp Gerontol 40:17–26

    CAS  PubMed  Google Scholar 

  • de Magalhaes JP, Costa J, Toussaint O (2005) HAGR: The human ageing genomic resources. Nucleic Acids Res 33:D537–D543

    PubMed  Google Scholar 

  • Di Leonardo A, Linke SP, Clarkin K, Wahl GM (1994) DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev 8:2540–2551

    PubMed  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O, Peacocke M, Campisi J (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367

    CAS  PubMed  Google Scholar 

  • Dirac AM, Bernards R (2003) Reversal of senescence in mouse fibroblasts through lentiviral suppression of p53. J Biol Chem 278:11731–11734

    CAS  PubMed  Google Scholar 

  • Dumont P, Burton M, Chen QM, Gonos ES, Frippiat C, Mazarati JB, Eliaers F, Remacle J, Toussaint O (2000) Induction of replicative senescence biomarkers by sublethal oxidative stresses in normal human fibroblast. Free Radic Biol Med 28:361–373

    CAS  PubMed  Google Scholar 

  • Feldser DM, Greider CW (2007) Short telomeres limit tumor progression in vivo by inducing senescence. Cancer Cell 11:461–469

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Google Scholar 

  • Feng YR, Norwood D, Shibata R, Gee D, Xiao X, Martin M, Zeichner SL, Dimitrov DS (1998) Telomere dynamics in HIV-1 infected and uninfected chimpanzees measured by an improved method based on high-resolution two-dimensional calibration of DNA sizes. J Med Primatol 27:258–265

    CAS  PubMed  Google Scholar 

  • Forsyth NR, Wright WE, Shay JW (2002) Telomerase and differentiation in multicellular organisms: turn it off, turn it on, and turn it off again. Differentiation 69:188–197

    CAS  PubMed  Google Scholar 

  • Forsyth NR, Elder FF, Shay JW, Wright WE (2005) Lagomorphs (rabbits, pikas and hares) do not use telomere-directed replicative aging in vitro. Mech Ageing Dev 126:685–691

    CAS  PubMed  Google Scholar 

  • Foster SA, Wong DJ, Barrett MT, Galloway DA (1998) Inactivation of p16 in human mammary epithelial cells by CpG island methylation. Mol Cell Biol 18:1793–1801

    CAS  PubMed  Google Scholar 

  • Fradiani PA, Ascenzioni F, Lavitrano M, Donini P (2004) Telomeres and telomerase activity in pig tissues. Biochimie 86:7–12

    CAS  PubMed  Google Scholar 

  • Gardner JP, Kimura M, Chai W, Durrani JF, Tchakmakjian L, Cao X, Lu X, Li G, Peppas AP, Skurnick J, Wright WE, Shay JW, Aviv A (2007) Telomere dynamics in macaques and humans. J Gerontol A Biol Sci Med Sci 62:367–374

    PubMed  Google Scholar 

  • Graham J (1983) Cancer and evolution: synthesis. J Theor Biol 101:657–659

    CAS  PubMed  Google Scholar 

  • Gray-Schopfer VC, Cheong SC, Chong H, Chow J, Moss T, Abdel-Malek ZA, Marais R, Wynford-Thomas D, Bennett DC (2006) Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br J Cancer 95:496–505

    CAS  PubMed  Google Scholar 

  • Ha L, Ichikawa T, Anver M, Dickins R, Lowe S, Sharpless NE, Krimpenfort P, Depinho RA, Bennett DC, Sviderskaya EV, Merlino G (2007) ARF functions as a melanoma tumor suppressor by inducing p53-independent senescence. Proc Natl Acad Sci USA 104:10968–10973

    CAS  PubMed  Google Scholar 

  • Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460

    CAS  PubMed  Google Scholar 

  • Hartmann N, Scherthan H (2005) Characterization of the telomere complex, TERF1 and TERF2 genes in muntjac species with fusion karyotypes. Exp Cell Res 306:64–74

    CAS  PubMed  Google Scholar 

  • Harvey DM, Levine AJ (1991) p53 alteration is a common event in the spontaneous immortalization of primary BALB/c murine embryo fibroblasts. Genes Dev 5:2375–2385

    CAS  PubMed  Google Scholar 

  • Harvey M, Sands AT, Weiss RS, Hegi ME, Wiseman RW, Pantazis P, Giovanella BC, Tainsky MA, Bradley A, Donehower LA (1993) In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice. Oncogene 8:2457–2467

    CAS  PubMed  Google Scholar 

  • Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636

    CAS  PubMed  Google Scholar 

  • Hayflick L (1974) The longevity of cultured human cells. J Am Geriatr Soc 22:1–12

    CAS  PubMed  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid strains. Exp Cell Res 25:585–621

    Google Scholar 

  • Hemann MT, Greider CW (2000) Wild-derived inbred mouse strains have short telomeres. Nucleic Acids Res 28:4474–4478

    CAS  PubMed  Google Scholar 

  • Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM (2004) Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell 14:501–513

    CAS  PubMed  Google Scholar 

  • Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM (2006) Cellular senescence in aging primates. Science 311:1257

    CAS  Google Scholar 

  • Hornsby PJ, Aldern KA, Harris SE (1986) Clonal variation in response to adrenocorticotropin in cultured bovine adrenocortical cells: relationship to senescence. J Cell Physiol 129:395–402

    CAS  PubMed  Google Scholar 

  • Itahana K, Zou Y, Itahana Y, Martinez JL, Beausejour C, Jacobs JJ, Van Lohuizen M, Band V, Campisi J, Dimri GP (2003) Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol Cell Biol 23:389–401

    CAS  PubMed  Google Scholar 

  • Jeon HY, Hyun SH, Lee GS, Kim HS, Kim S, Jeong YW, Kang SK, Lee BC, Han JY, Ahn C, Hwang WS (2005) The analysis of telomere length and telomerase activity in cloned pigs and cows. Mol Reprod Dev 71:315–320

    CAS  PubMed  Google Scholar 

  • Jeyapalan JC, Sedivy JM (2008) Cellular senescence and organismal aging. Mech Ageing Dev 129:467–474

    CAS  PubMed  Google Scholar 

  • Jeyapalan JC, Ferreira M, Sedivy JM, Herbig U (2007) Accumulation of senescent cells in mitotic tissue of aging primates. Mech Ageing Dev 128:36–44

    CAS  PubMed  Google Scholar 

  • Kakuo S, Asaoka K, Ide T (1999) Human is a unique species among primates in terms of telomere length. Biochem Biophys Res Commun 263:308–314

    CAS  PubMed  Google Scholar 

  • Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA, Grosveld G, Sherr CJ (1997) Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91:649–659

    CAS  PubMed  Google Scholar 

  • Kim WY, Sharpless NE (2006) The regulation of INK4/ARF in cancer and aging. Cell 127:265–275

    CAS  PubMed  Google Scholar 

  • Kipling D, Cooke HJ (1990) Hypervariable ultra-long telomeres in mice. Nature 347:400–402

    CAS  PubMed  Google Scholar 

  • Kiyono T, Foster SA, Koop JI, McDougall JK, Galloway DA, Klingelhutz AJ (1998) Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396:84–88

    CAS  PubMed  Google Scholar 

  • Kodama S, Mori I, Roy K, Yang Z, Suzuki K, Watanabe M (2001) Culture condition-dependent senescence-like growth arrest and immortalization in rodent embryo cells. Radiat Res 155:254–262

    CAS  PubMed  Google Scholar 

  • Kozik A, Bradbury EM, Zalensky A (1998) Increased telomere size in sperm cells of mammals with long terminal (TTAGGG)n arrays. Mol Reprod Dev 51:98–104

    CAS  PubMed  Google Scholar 

  • Lee WW, Nam KH, Terao K, Yoshikawa Y (2002) Age-related telomere length dynamics in peripheral blood mononuclear cells of healthy cynomolgus monkeys measured by Flow FISH. Immunology 105:458–465

    CAS  PubMed  Google Scholar 

  • Leri A, Barlucchi L, Limana F, Deptala A, Darzynkiewicz Z, Hintze TH, Kajstura J, Nadal-Ginard B, Anversa P (2001) Telomerase expression and activity are coupled with myocyte proliferation and preservation of telomeric length in the failing heart. Proc Natl Acad Sci USA 98:8626–8631

    CAS  PubMed  Google Scholar 

  • Leroi AM, Koufopanou V, Burt A (2003) Cancer selection. Nat Rev Cancer 3:226–231

    CAS  PubMed  Google Scholar 

  • Lipman R, Galecki A, Burke DT, Miller RA (2004) Genetic loci that influence cause of death in a heterogeneous mouse stock. J Gerontol A Biol Sci Med Sci 59:977–983

    PubMed  Google Scholar 

  • Liu Y, Snow BE, Hande MP, Yeung D, Erdmann NJ, Wakeham A, Itie A, Siderovski DP, Lansdorp PM, Robinson MO, Harrington L (2000) The telomerase reverse transcriptase is limiting and necessary for telomerase function in vivo. Curr Biol 10:1459–1462

    CAS  PubMed  Google Scholar 

  • Lowe SW, Sherr CJ (2003) Tumor suppression by Ink4a-Arf: progress and puzzles. Curr Opin Genet Dev 13:77–83

    CAS  PubMed  Google Scholar 

  • McConnell BB, Starborg M, Brookes S, Peters G (1998) Inhibitors of cyclin-dependent kinases induce features of replicative senescence in early passage human diploid fibroblasts. Curr Biol 8:351–354

    CAS  PubMed  Google Scholar 

  • McKevitt TP, Nasir L, Devlin P, Argyle DJ (2002) Telomere lengths in dogs decrease with increasing donor age. J Nutr 132:1604S–1606S

    CAS  PubMed  Google Scholar 

  • McKevitt TP, Nasir L, Wallis CV, Argyle DJ (2003) A cohort study of telomere and telomerase biology in cats. Am J Vet Res 64:1496–1499

    CAS  PubMed  Google Scholar 

  • Medrano EE, Im S, Yang F, Abdel-Malek ZA (1995) Ultraviolet B light induces G1 arrest in human melanocytes by prolonged inhibition of retinoblastoma protein phosphorylation associated with long-term expression of the p21Waf-1/SDI-1/Cip-1 protein. Cancer Res 55:4047–4052

    CAS  PubMed  Google Scholar 

  • Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM, Majoor DM, Shay JW, Mooi WJ, Peeper DS (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436:720–724

    CAS  PubMed  Google Scholar 

  • Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, Meyne J, Ratliff RL, Wu JR (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 85:6622–6626

    CAS  PubMed  Google Scholar 

  • Narita M, Nunez S, Heard E, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113:703–716

    CAS  PubMed  Google Scholar 

  • Nasir L (2007) Telomeres and telomerase: Biological and clinical importance in dogs. Vet J 2008 Feb; 175(2):155–163

    Google Scholar 

  • Nasir L, Devlin P, McKevitt T, Rutteman G, Argyle DJ (2001) Telomere lengths and telomerase activity in dog tissues: a potential model system to study human telomere and telomerase biology. Neoplasia 3:351–359

    CAS  PubMed  Google Scholar 

  • Noda A, Ning Y, Venable SF, Pereira-Smith OM, Smith JR (1994) Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 211:90–98

    CAS  PubMed  Google Scholar 

  • Nowak R (1999) Walker’s mammals of the world. John Hopkins University Press, Baltimore

    Google Scholar 

  • Nunney L (1999) Lineage selection and the evolution of multistage carcinogenesis. Proc Biol Sci 266:493–498

    CAS  PubMed  Google Scholar 

  • Oh CWBE, Kim JS, Janigro D, Mayberg MR (2001) Induction of a senescence-like phenotype in bovine aortic endothelial cells by ionizing radiation. Radiat Res 156:232–240

    CAS  PubMed  Google Scholar 

  • Oh HY, Jin X, Kim JG, Oh MJ, Pian X, Kim JM, Yoon MS, Son CI, Lee YS, Hong KC, Kim H, Choi YJ, Whang KY (2007) Characteristics of primary and immortalized fibroblast cells derived from the miniature and domestic pigs. BMC Cell Biol 8:20

    PubMed  Google Scholar 

  • Olovnikov AM (1973) A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 41:181–190

    CAS  PubMed  Google Scholar 

  • Palmero I, McConnell B, Parry D, Brookes S, Hara E, Bates S, Jat P, Peters G (1997) Accumulation of p16INK4a in mouse fibroblasts as a function of replicative senescence and not of retinoblastoma gene status. Oncogene 15:495–503

    CAS  PubMed  Google Scholar 

  • Pantoja C, Serrano M (1999) Murine fibroblasts lacking p21 undergo senescence and are resistant to transformation by oncogenic Ras. Oncogene 18:4974–4982

    CAS  PubMed  Google Scholar 

  • Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J (2003) Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 5:741–747

    CAS  PubMed  Google Scholar 

  • Pathak S, Multani AS, McConkey DJ, Imam AS, Amoss MS Jr (2000) Spontaneous regression of cutaneous melanoma in sinclair swine is associated with defective telomerase activity and extensive telomere erosion. Int J Oncol 17:1219–1224

    CAS  PubMed  Google Scholar 

  • Promislow DE (1994) DNA repair and the evolution of longevity: a critical analysis. J Theor Biol 170:291–300

    CAS  PubMed  Google Scholar 

  • Prowse KR, Greider CW (1995) Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proc Natl Acad Sci USA 92:4818–4822

    CAS  PubMed  Google Scholar 

  • Randle DH, Zindy F, Sherr CJ, Roussel MF (2001) Differential effects of p19(Arf) and p16(Ink4a) loss on senescence of murine bone marrow-derived preB cells and macrophages. Proc Natl Acad Sci USA 98:9654–9659

    CAS  PubMed  Google Scholar 

  • Rheinwald JG, Hahn WC, Ramsey MR, Wu JY, Guo Z, Tsao H, De Luca M, Catricala C, O’Toole KM (2002) A two-stage, p16(INK4A)- and p53-dependent keratinocyte senescence mechanism that limits replicative potential independent of telomere status. Mol Cell Biol 22:5157–5172

    CAS  PubMed  Google Scholar 

  • Richards M, Fong CY, Chan WK, Wong PC, Bongso A (2002) Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol 20:933–936

    CAS  PubMed  Google Scholar 

  • Rittling SR (1996) Clonal nature of spontaneously immortalized 3T3 cells. Exp Cell Res 229:7–13

    CAS  PubMed  Google Scholar 

  • Robles SJ, Adami GR (1998) Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene 16:1113–1123

    CAS  PubMed  Google Scholar 

  • Rocco JW, Sidransky D (2001) p16(MTS-1/CDKN2/INK4a) in cancer progression. Exp Cell Res 264:42–55

    CAS  PubMed  Google Scholar 

  • Rohme D (1981) Evidence for a relationship between longevity of mammalian species and life spans of normal fibroblasts in vitro and erythrocytes in vivo. Proc Natl Acad Sci USA 78:5009–5013

    CAS  PubMed  Google Scholar 

  • Romanov SR, Kozakiewicz BK, Holst CR, Stampfer MR, Haupt LM, Tlsty TD (2001) Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature 409:633–637

    CAS  PubMed  Google Scholar 

  • Sage J, Mulligan GJ, Attardi LD, Miller A, Chen S, Williams B, Theodorou E, Jacks T (2000) Targeted disruption of the three Rb-related genes leads to loss of G(1) control and immortalization. Genes Dev 14:3037–3050

    CAS  PubMed  Google Scholar 

  • Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM, Lowe SW (2002) A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109:335–346

    CAS  PubMed  Google Scholar 

  • Sedivy JM (2007) Telomeres limit cancer growth by inducing senescence: long-sought in vivo evidence obtained. Cancer Cell 11:389–391

    CAS  PubMed  Google Scholar 

  • Seluanov A, Chen Z, Hine C, Sasahara TH, Ribeiro AA, Catania KC, Presgraves DC, Gorbunova V (2007) Telomerase activity coevolves with body mass not lifespan. Aging Cell 6:45–52

    CAS  PubMed  Google Scholar 

  • Seluanov A, Hine C, Bozzella M, Hall A, Sasahara TH, Ribeiro AA, Catania KC, Presgraves DC, Gorbunova V (2008) Distinct tumor suppressor mechanisms evolve in rodent species that differ in size and lifespan. Aging Cell 7(6), 813–823

    Google Scholar 

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602

    CAS  PubMed  Google Scholar 

  • Sharpless NE, Bardeesy N, Lee KH, Carrasco D, Castrillon DH, Aguirre AJ, Wu EA, Horner JW, DePinho RA (2001) Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413:86–91

    CAS  PubMed  Google Scholar 

  • Sharpless NE, Ramsey MR, Balasubramanian P, Castrillon DH, DePinho RA (2004) The differential impact of p16(INK4a) or p19(ARF) deficiency on cell growth and tumorigenesis. Oncogene 23:379–385

    CAS  PubMed  Google Scholar 

  • Shay JW, Wright WE (2000) Hayflick, his limit, and cellular ageing. Nat Rev Mol Cell Biol 1:72–76

    CAS  PubMed  Google Scholar 

  • Shay JW, Pereira-Smith OM, Wright WE (1991) A role for both RB and p53 in the regulation of human cellular senescence. Exp Cell Res 196:33–39

    CAS  PubMed  Google Scholar 

  • Sherr CJ, DePinho RA (2000) Cellular senescence: mitotic clock or culture shock? Cell 102:407–410

    CAS  PubMed  Google Scholar 

  • Sherr CJ, McCormick F (2002) The RB and p53 pathways in cancer. Cancer Cell 2:103–112

    CAS  PubMed  Google Scholar 

  • Shibata R, Feng YR, Gee D, Norwood D, Xiao X, Zeichner SL, Martin MA, Dimitrov DS (1999) Telomere dynamics in monkeys: increased cell turnover in macaques infected with chimeric simian-human immunodeficiency viruses. J Med Primatol 28:1–10

    CAS  PubMed  Google Scholar 

  • Smogorzewska A, de Lange T (2002) Different telomere damage signaling pathways in human and mouse cells. EMBO J 21:4338–4348

    CAS  PubMed  Google Scholar 

  • Steinert S, White DM, Zou Y, Shay JW, Wright WE (2002) Telomere biology and cellular aging in nonhuman primate cells. Exp Cell Res 272:146–152

    CAS  PubMed  Google Scholar 

  • Tahara H, Sato E, Noda A, Ide T (1995) Increase in expression level of p21sdi1/cip1/waf1 with increasing division age in both normal and SV40-transformed human fibroblasts. Oncogene 11:1125–1132

    CAS  PubMed  Google Scholar 

  • Thomas M, Yang L, Hornsby PJ (2000) Formation of functional tissue from transplanted adrenocortical cells expressing telomerase reverse transcriptase. Nat Biotechnol 18:39–42

    CAS  PubMed  Google Scholar 

  • Todaro GJ, Green H (1963) Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol 17:299–313

    CAS  PubMed  Google Scholar 

  • Toussaint O, Medrano EE, von Zglinicki T (2000) Cellular and molecular mechanisms of stress-indused premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol 35:927–945

    CAS  PubMed  Google Scholar 

  • Toussaint O, Dumont P, Remacle J, Dierick JF, Pascal T, Frippiat C, Magalhaes JP, Zdanov S, Chainiaux F (2002) Stress-induced premature senescence or stress-induced senescence-like phenotype: one in vivo reality, two possible definitions? ScientificWorld J 2:230–247

    CAS  Google Scholar 

  • von Zglinicki TSG, Docke W, Lotze C (1995) Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp Cell Res 220:186–193

    Google Scholar 

  • Wadhwa R, Sugihara T, Hasan MK, Taira K, Reddel RR, Kaul SC (2002) A major functional difference between the mouse and human ARF tumor suppressor proteins. J Biol Chem 277:36665–36670

    CAS  PubMed  Google Scholar 

  • Wahl GM, Carr AM (2001) The evolution of diverse biological responses to DNA damage: insights from yeast and p53. Nat Cell Biol 3:E277–E286

    CAS  PubMed  Google Scholar 

  • Wei W, Hemmer RM, Sedivy JM (2001) Role of p14(ARF) in replicative and induced senescence of human fibroblasts. Mol Cell Biol 21:6748–6757

    CAS  PubMed  Google Scholar 

  • Wei W, Herbig U, Wei S, Dutriaux A, Sedivy JM (2003) Loss of retinoblastoma but not p16 function allows bypass of replicative senescence in human fibroblasts. EMBO Rep 4:1061–1066

    CAS  PubMed  Google Scholar 

  • Weigl R (2005) Longevity of mammals in captivity; from the living collections of the world. Schweizerbart, Stuttgart

    Google Scholar 

  • Wong SC, Ong LL, Er CP, Gao S, Yu H, So JB (2003) Cloning of rat telomerase catalytic subunit functional domains, reconstitution of telomerase activity and enzymatic profile of pig and chicken tissues. Life Sci 73:2749–2760

    CAS  PubMed  Google Scholar 

  • Wright W, Shay J (2000) Telomere dynamics in cancer progression and prevention: fundamental differences in human and mouse telomere biology. Nature Med 6:849–851

    CAS  PubMed  Google Scholar 

  • Yazawa M, Okuda M, Setoguchi A, Nishimura R, Sasaki N, Hasegawa A, Watari T, Tsujimoto H (1999) Measurement of telomerase activity in dog tumors. J Vet Med Sci 61:1125–1129

    CAS  PubMed  Google Scholar 

  • Yazawa M, Okuda M, Uyama R, Nakagawa T, Kanaya N, Nishimura R, Sasaki N, Masuda K, Ohno K, Tsujimoto H (2003) Molecular cloning of the feline telomerase reverse transcriptase (TERT) gene and its expression in cell lines and normal tissues. J Vet Med Sci 65:573–577

    CAS  PubMed  Google Scholar 

  • Zhu J, Woods D, McMahon M, Bishop JM (1998) Senescence of human fibroblasts induced by oncogenic. Raf Genes Dev 12:2997–3007

    CAS  Google Scholar 

  • Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL, Sherr CJ, Roussel MF (1998) Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 12:2424–2433

    CAS  PubMed  Google Scholar 

  • Zou Y, Yi X, Wright WE, Shay JW (2002) Human telomerase can immortalize Indian muntjac cells. Exp Cell Res 281:63–76

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Michael Bozzella for comments on the manuscript. The work in authors’ laboratory is supported by grants from US National Institute of Aging, and the Ellison Medical Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Gorbunova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gorbunova, V., Seluanov, A. (2010). A Comparison of Senescence in Mouse and Human Cells. In: Adams, P., Sedivy, J. (eds) Cellular Senescence and Tumor Suppression. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1075-2_7

Download citation

Publish with us

Policies and ethics