Skip to main content

Abstract

The only way a bird can obtain energy is by expending metabolic energy while foraging for food items that contain appropriate amounts and forms of energy. Birds are often specialized to use only certain kinds of food. The implication is that natural selection has shaped the morphological and physiological traits that determine the ability of a bird to obtain and process food. These general considerations, however, have not yet led to a useful predictive theory of avian foraging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

REFERENCES

  • Abrams, P. A. 1991. Life history and the relationship between food availability and foraging effort. Ecology 72:1242–1252.

    Article  Google Scholar 

  • Bell, G. P. 1990. Birds and mammals on an insect diet: a primer on diet composition analysis in relation to ecological energetics. Stud. Avian Biol. 13:416–422.

    Google Scholar 

  • Boag, P. T. and P. R. Grant. 1981. Intense natural selection in a population of Darwin’s Finches (Geospizinae) in the Galápagos. Science 214:82–85.

    Article  PubMed  CAS  Google Scholar 

  • Boag, P. T., and A. J. van Noorwijk. 1987. Quantitative genetics. In Avian Genetics, eds. F. Cooke and P. A. Buckley, pp. 45–78. Academic Press, London.

    Google Scholar 

  • Bowman, R. I. 1961. Morphological differentiation and adaptation in the Galápagos finches. Univ. California Publ. Zool. 58:1–302.

    Google Scholar 

  • Brooks, D. R. and D. A. McLennan. 1991. Phylogeny, Ecology, and Behavior. The University of Chicago Press, Chicago.

    Google Scholar 

  • Bryant, D. M. and K. R. Westerterp. 1980. Energetics of foraging and free existence in birds. In Acta XVII Congressus Internationalis Ornithologici, ed. R. von Nöhring pp. 292–299. Verlag der Deutschen Ornithologen-Gesellschaft, Berlin.

    Google Scholar 

  • Calder, W. A., III. 1984. Size, Function, and Life History. Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Caraco, T. 1980. On foraging time allocation in a stochastic environment. Ecology 61:119–128.

    Article  Google Scholar 

  • Caraco, T. and S. L. Lima. 1985. Foraging juncos: interaction of reward mean and variability. Anim. Behav. 33:216–224.

    Article  Google Scholar 

  • Charnov, E. L. 1976a. Optimal foraging: the attack strategy of a mantid. Am. Nat. 110:141–151.

    Article  Google Scholar 

  • Charnov, E. L. 1976b. Optimal foraging: the marginal value theorem. Theor. Pop. Biol. 9:129–136.

    Article  CAS  Google Scholar 

  • Crow, J. F. 1986. Basic Concepts in Population, Quantitative, and Evolutionary Genetics. W. H. Freeman, New York.

    Google Scholar 

  • Dement, M. W. and P. J. Van Soest. 1985. A nutritional explanation for body size patterns of ruminant and non-ruminant herbivores. Am. Nat. 125:641–672.

    Article  Google Scholar 

  • Dunbrack, R. L. and L. A. Giguere. 1987. Adaptive responses to accelerating costs of movement: a bioenergetic basis for the type-Ill functional response. Am. Nat. 130:147–160.

    Article  Google Scholar 

  • Dunning, J. B., Jr. 1986. Shrub-steppe bird assemblages revisited: implications for community theory. Am. Nat. 128:82–98.

    Article  Google Scholar 

  • Dunning, J. B. 1990. Meeting the assumptions of foraging models: an example using tests of avian patch choice. Stud. Avian Biol. 13:462–470.

    Google Scholar 

  • Faaborg, J. 1988. Ornithology: an Ecological Approach. Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Falconer, D. S. 1989. Introduction to Quantitative Genetics, 2nd ed, Longman, New York.

    Google Scholar 

  • Felsenstein, J. 1985. Phylogenies and the comparative method. Am. Nat. 125:1–15.

    Article  Google Scholar 

  • Gass, C. L. and W. M. Roberts. 1992. The problem of temporal scale in optimization: three contrasting views of hummingbird visits to flowers. Am. Nat. 140:829–853.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, D. L. 1990. Energetics of activity and free living in birds. Stud. Avian Biol. 13:423–426.

    Google Scholar 

  • Goudie, R. I. and J. F. Piatt. 1991. Body size and foraging behavior in birds. In Acta XX Congressus Internationalis Ornithologici, ed. B. B. Bell et al., pp. 811–816. New Zealand Ornithological Congress Trust Board, Wellington, N.Z.

    Google Scholar 

  • Gould, S. J. and R. C. Lewontin. 1979. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist program. Proc. Royal Soc. London (B) 205:581–598.

    Article  CAS  Google Scholar 

  • Grant, P. R. 1986. Ecology and Evolution of Darwin’s Finches. The University of Chicago Press, Chicago.

    Google Scholar 

  • Gray, R. D. 1987. Faith and foraging: a critique of the “paradigm argument from design”. In Foraging Behavior, eds. A. C. Kamil, J. R. Krebs and H. R. Pulliam, pp. 69–140. Plenum Press, New York.

    Google Scholar 

  • Grazal, A., S. D. Strahl, R. Parra, M. G. Dominguez, and A. Neher. 1989. Foregut fermentation in the Hoatzin, a neotropical leaf-eating bird. Science 245:1236–1238.

    Article  Google Scholar 

  • Greenberg, R. 1990. Ecological plasticity, neophobia, and resource use in birds. Stud. Avian Biol. 13:431–437.

    Google Scholar 

  • Grubb, T. C., and L. Greenwald. 1982. Sparrows and a brushpile: foraging responses to different combinations of predation risk and energy cost. Anim. Behav. 30:637–640.

    Article  Google Scholar 

  • Harvey, P. H. and M. D. Pagel. 1991. The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford.

    Google Scholar 

  • Helfman, G. S. 1990. Mode selection and mode switching in foraging animals. Adv. Stud. Behav. 19:249–298.

    Article  Google Scholar 

  • Karasov, W. H. 1990. Digestion in birds: chemical and physiological determinants and ecological implications. Stud. Avian Biol. 13:391–415.

    Google Scholar 

  • Kaspari, M. 1990. Prey preparation and the determinants of handling time. Anim. Behav. 40:118–126.

    Article  Google Scholar 

  • Kooyman, G. L., Y. Cherel, Y. Le Maho, J. P. Croxall, P H. Thorson, V Ridoux, and C. A. Kooyman. 1992. Diving behavior and energetics during foraging cycles in king pen-guins. Ecol. Monogr. 62:143–163.

    Article  Google Scholar 

  • Krebs, J. R., D. W. Stephens, and W. J. Sutherland. 1983. Perspectives in optimal foraging. In Perspectives in Ornithology, eds. A. H. Brush and G. A. Clark, Jr., pp. 165–216. Cambridge University Press, New York.

    Chapter  Google Scholar 

  • Lemon, W. C. 1991. Fitness consequences of foraging behaviour in the zebra finch. Nature 352:153–155.

    Article  Google Scholar 

  • Lewontin, R. C. 1979. Fitness, survival, and optimality. In Analysis of Ecological Systems, eds. D. J. Horn, R. D. Mitchell, and G. R. Stairs, pp. 3–21. Ohio State University Press, Columbus, Ohio.

    Google Scholar 

  • Lima, S. L. 1985. Maximizing feeding efficiency and minimizing time exposed to predators: a trade-off in the black-capped chickadee. Oecologia 66:60–67.

    Article  Google Scholar 

  • Lima, S. L. 1987. Initiation and termination of daily feeding in dark-eyed juncos: influences of predation risk and energy reserves. Oikos 53:3–11.

    Article  Google Scholar 

  • Lotka, A. J. 1922a. A contribution to the energetics of evolution. Proc. Nat. Acad. Sci. (USA) 8:147–150.

    Article  CAS  Google Scholar 

  • Lotka, A. J. 1922b. Natural selection as a physical principle. Proc. Nat. Acad. Sci. (USA) 8:151–153.

    Article  CAS  Google Scholar 

  • Lotka, A. J. 1925. Principles of Physical Biology. Williams and Wilkins, Baltimore.

    Google Scholar 

  • Ludwig, D. and L. Rowe. 1990. Life-history strategies for energy gain and predator avoidance under time constraints. Am. Nat. 135:686–707.

    Article  Google Scholar 

  • Mangel, M. and C. W. Clark. 1986. Towards a unified foraging theory. Ecology 67:1127–1138.

    Article  Google Scholar 

  • Maurer, B. A. 1980. Avian Foraging and Habitat Structure in an Eastern Deciduous Forest in West Virginia. MS thesis, West Virginia University, Morgantown.

    Google Scholar 

  • Maurer, B. A. 1990. Extensions of optimal foraging theory for insectivorous birds: implications for community structure. Stud. Avian Biol. 13:455–461.

    Google Scholar 

  • Maurer, B. A. and J. H. Brown. 1988. Distribution of biomass and energy use among species of North American terrestrial birds. Ecology 69:1923–1932.

    Article  Google Scholar 

  • Maurer, B. A. and R. C. Whitmore. 1981. Foraging of five bird species in two forests with different vegetation structure. Wilson Bull 93:478–490.

    Google Scholar 

  • Maynard Smith, J. 1978. Optimization theory in evolution. Ann. Rev. Ecol. Syst. 9:31–56.

    Article  Google Scholar 

  • Maynard Smith, J. 1982. Evolution and the Theory of Games. Cambridge University Press, Cambridge.

    Google Scholar 

  • McNamara, J. M. and A. I. Houston. 1986. The common currency for behavioral decisions. Am. Nat. 127:358–378.

    Article  Google Scholar 

  • Mitchell, W. A. and T. J. Valone. 1990. The optimization research program: studying adaptations by their function. Q. Rev. Biol. 65:43–52.

    Article  Google Scholar 

  • Morse, D. H. 1971. The insectivorous bird as an adaptive strategy. Ann. Rev. Ecol. Syst. 2:177–200.

    Article  Google Scholar 

  • Myers, J. P. 1983. Commentary. In Perspectives in Ornithology, eds. A. H. Brush and G. A. Clark, Jr., pp. 216–221. Cambridge University Press, New York.

    Google Scholar 

  • Nagy, K. A. 1987. Field metabolic rate and food requirement scaling in mammals and birds. Ecol. Monogr. 57:111–128.

    Article  Google Scholar 

  • Nagy, K. A. and B. S. Obst. 1991. Body size effects on field energy requirements of birds: what determines their field metabolic rates? In Acta XX Congressus Internationalis Ornithologici, ed. B. B. Bell et al., pp. 793–799. New Zealand Ornithological Congress Trust Board, Wellington, N.Z.

    Google Scholar 

  • Nonacs, P. and L. M. Dill. 1993. Is satisficing an alternative to optimal foraging theory? Oikos 67:371–375.

    Article  Google Scholar 

  • Orians, G. H. and N. E. Pearson. 1979. On the theory of central place foraging. In Analysis of Ecological Systems, eds. D. J. Horn, R. D. Mitchell, and G. R. Stairs, pp. 155–177. Ohio State University Press, Columbus.

    Google Scholar 

  • Orr, H. A. and J. A. Coyne. 1992. The genetics of adaptation: a reassessment. Am. Nat. 140:725–742.

    Article  PubMed  CAS  Google Scholar 

  • Osterhaus, O. B. 1962. Adaptive modifications in the leg structure of some North American warblers. Am. Midl Nat. 68:474–486.

    Article  Google Scholar 

  • Parker, G. A. and J. Maynard Smith. 1990. Optimality theory in evolutionary biology. Nature 348:27–33.

    Article  Google Scholar 

  • Pennycuick, C. J. 1975. Mechanics of flight. In Avian Biology, vol. 5, eds. D. S. Farner and J. R. King, pp. 5–17. Academic Press, New York.

    Google Scholar 

  • Peters, R. H. 1983. The Ecological Implications of Body Size. Cambridge University Press, Cambridge.

    Google Scholar 

  • Pierotti, R., and C. A. Annett. 1991. Diet choice in the herring gull: constraints imposed by reproductive and ecological factors. Ecology 72:319–328.

    Article  Google Scholar 

  • Price, T., M. Kirkpatrick, and S. J. Arnold. 1988. Directional selection and the evolution of breeding date in birds. Science 240:798–799.

    Article  PubMed  CAS  Google Scholar 

  • Pulliam, H. R. 1974. On the theory of optimal diets. Am. Nat. 108:59–75.

    Article  Google Scholar 

  • Pulliam, H. R. 1975. Diet optimization with nutrient constraints. Am. Nat. 109:765–768.

    Article  Google Scholar 

  • Pulliam, H. R. 1980. Do chipping sparrows forage optimally? Ardea 68:75–82.

    Google Scholar 

  • Pyke, G. H. 1984. Optimal foraging theory: a critical review. Ann. Rev. Ecol Syst. 15:523–575.

    Article  Google Scholar 

  • Pyke, G. H., H. R. Pulliam, and E. L. Charnov. 1977. Optimal foraging: a selective review of theory and tests. Q. Rev. Biol 52:137–154.

    Article  Google Scholar 

  • Raphael, M. G. and B. A. Maurer. 1990. Biological considerations for study design. Stud. Avian Biol 13:123–125.

    Google Scholar 

  • Remsen, J. V., Jr. and S. K. Robinson. 1990. A classification scheme for foraging behavior of birds in terrestrial habitats. Stud. Avian Biol 13:144–160.

    Google Scholar 

  • Richman, A. D. and T. Price. 1992. Evolution of ecological differences in the Old World leaf warblers. Nature 355:817–821.

    Article  PubMed  CAS  Google Scholar 

  • Robbins, C. T. 1983. Wildlife Feeding and Nutrition. Academic Press, New York.

    Google Scholar 

  • Rudolph, S. G. 1982. Foraging strategies of American kestrels during the breeding season. Ecology 63:1268–1276.

    Article  Google Scholar 

  • Schoener, T. W. 1971. Theory of feeding strategies. Ann. Rev. Ecol. Syst. 2:369–404.

    Article  Google Scholar 

  • Schoener, T. W. 1987. A brief history of optimal foraging theory. In Foraging Behavior eds. A. C. Kamil, J. R. Krebs, and H. R. Pulliam, pp. 5–67. Plenum Press, New York.

    Google Scholar 

  • Sherry, T. W. 1990. When are birds dietarily specialized? Distinguishing ecological from evolutionary approaches. Stud. Avian Biol. 13:337–353.

    Google Scholar 

  • Speakman, J. R. 1987. Apparent absorption efficiencies for redshank (Tringa totanus L.) and oystercatcher (Haematopus ostralegus L.): implications for the predictions of optimal foraging models. Am. Nat. 130:677–691.

    Article  Google Scholar 

  • Stalmaster, M. V and J. A. Gessaman. 1984. Ecological energetics and foraging behavior of overwintering bald eagles. Ecol Monogr. 54:407–428.

    Article  Google Scholar 

  • Stearns, S. C. 1992. The Evolution of Life Histories. Oxford University Press, Oxford.

    Google Scholar 

  • Stephens, D. W. 1990. Foraging theory: up, down, and sideways. Stud. Avian Biol. 13:444–454.

    Google Scholar 

  • Stephens, D. W. and E. L. Charnov. 1982. Optimal foraging: some simple stochastic models. Behav. Ecol Sociobiology 10:251–263.

    Article  Google Scholar 

  • Stephens, D. W. and J. R. Krebs. 1986. Foraging Theory. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Walsberg, G. E. 1983. Avian ecological energetics. In Avian Biology, vol. 7, eds. D. S. Farner, J. R. King, and K. C. Parkes, pp. 161–220. Academic Press, New York.

    Google Scholar 

  • Ward, D. 1992. The role of satisficing in foraging theory. Oikos 49:188–125.

    Google Scholar 

  • Ward, D. 1993. Foraging theory, like all other fields of science, needs multiple working hypotheses. Oikos 67:376–378.

    Article  Google Scholar 

  • Watt, W. B. 1985. Bioenergetics and evolutionary genetics: opportunities for a new synthesis. Am. Nat. 125:118–143.

    Article  CAS  Google Scholar 

  • Wiens, J. A. 1976. Population responses to patchy environments. Ann. Rev. Ecol Syst. 7:81–120.

    Article  Google Scholar 

  • Yang, S. Y. and J. L. Patterson, 1981. Genie variability and differentiation in the Galápagos finches. Auk 98:230–242.

    Google Scholar 

  • Valone, T. J., and S. L. Lima. 1987. Carrying food items to cover for consumption: the behavior of ten bird species under the risk of predation. Oecologia 71:286–294.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Chapman & Hall

About this chapter

Cite this chapter

Maurer, B.A. (1996). Energetics of Avian Foraging. In: Carey, C. (eds) Avian Energetics and Nutritional Ecology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0425-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0425-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8046-7

  • Online ISBN: 978-1-4613-0425-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics