Skip to main content

A Neutrality Test for Continuous Characters Based on Levels of Intraspecific Variation and Interspecific Divergence

  • Chapter
Non-Neutral Evolution

Abstract

One of the most powerful approaches for inferring the action of evolutionary forces is the comparison of intraspecific nucleotide polymorphism to the divergence between species in DNA sequences. The infinite sites model of neutral molecular evolution provides a well-described null hypothesis for expected levels of polymorphism and divergence and the Hudson-Kreitman-Aguadé test is one formal statistical test for departure from this null hypothesis. In this paper the predictions of the neutral model for continuous characters are examined as are some data on intraspecific variation and interspecific divergence of metabolic characters. These traits are being examined because of the likely simplicity of the molecular basis for their variation. Predictions of within-population variance and between-population divergence for quantitative characters have been derived by several investigators and here these results are brought together in the context of testing the null hypothesis of neutrality. Data on variation in enzyme activities provide clear departures from the neutral model. Some limitations of the approach are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. G. Clark, and L. E. Keith. (1988). Variation among extracted lines ofDrosophila melanogasterin triacylglycerol and carbohydrate storage.Genetics119, 595.

    PubMed  CAS  Google Scholar 

  2. A. G. Clark and L. E. Keith. (1989). Rapid enzyme kinetic assays of individualDrosophilaand comparisons of field-caughtD. melanogasterandD. simulans. Biochem. Genet.27, 263–277.

    Article  CAS  Google Scholar 

  3. A. G. Clark and L. Wang. (1993). Comparative evolutionary analysis of metabolism in nineDrosophilaspecies.Evolution in press.

    Google Scholar 

  4. G. A. Clayton and A. Robertson. (1955). Mutation and quantitative variation.Am. Nat.89, 151–158.

    Article  Google Scholar 

  5. J. Felsenstein. (1985). Phylogenies and the comparative method.Am. Nat.125, 115.

    Article  Google Scholar 

  6. J. Felsenstein. (1988). Phylogenies and quantitative characters.Ann. Rev. Ecol. Syst.19, 445–471.

    Article  Google Scholar 

  7. P. H. Harvey and M. D. Pagel. (1991).The Comparative Method in Evolutionary Biology.Oxford University Press, Oxford.

    Google Scholar 

  8. R. R. Hudson, M. Kreitman and M. Aguadé. (1987). A test of neutral molecular evolution based on nucleotide dataGenetics116, 153–159.

    PubMed  CAS  Google Scholar 

  9. R. B. Huey and A. F. Bennett. (1987). Phylogenetic studies of coadaptation: Preferred temperatures versus optimal performance temperatures of lizards.Evolution41,1098–1115.

    Article  Google Scholar 

  10. A. G. Kluge and W. C. Kerfoot. (1973). The predictability and regularity of character divergence.Am. Nat.107, 426–112.

    Article  Google Scholar 

  11. R. Lande. (1976). Natural selection and random genetic drift in phenotypic evolution.Evolution30, 314–334.

    Article  Google Scholar 

  12. R. Lande. (1980). The genetic covariance between characters maintained by pleiotropic mutations.Genetics94, 203–215.

    PubMed  CAS  Google Scholar 

  13. C. C. Laurie-Ahlberg, G. Maroni, G. C. Bewley, J. C. Lucchesi, and B. S. Weir. (1980). Quantitative genetic variation of enzyme activities in natural populations of Drosophila melanogaster.Proc. Natl. Acad. Sci. USA77, 107–1077.

    Article  Google Scholar 

  14. M. Lynch and W. G. Hill. (1986). Phenotypic evolution by neutral mutation. Evolution 40, 915–935.

    Article  Google Scholar 

  15. J. H. McDonald and M. Kreitman. (1991). Adaptive protein evolution at theAdhlocus inDrosophila. Nature351, 652–654.

    CAS  Google Scholar 

  16. D. F. Morrison. (1976).Multivariate Statistical MethodsSecond edition, McGraw-Hill, New York, pp. 252–253.

    Google Scholar 

  17. R. Sokal. (1976). The Kluge-Kerfoot phenomenon reexamined.Am. Nat.110, 1077–1091.

    Article  Google Scholar 

  18. A. N. Wilton, C. C. Laurie-Ahlberg, T. H. Emigh, and J. W. Curtsinger. (1982). Naturally occurring enzyme activity variation inDrosophila melanogaster.II. Relationship among enzymes.Genetics102, 207–221.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Clark, A.G. (1994). A Neutrality Test for Continuous Characters Based on Levels of Intraspecific Variation and Interspecific Divergence. In: Golding, B. (eds) Non-Neutral Evolution. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2383-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2383-3_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-05391-7

  • Online ISBN: 978-1-4615-2383-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics