Skip to main content

Frontier Between Cyclic Peptides and Macrocycles

  • Protocol
  • First Online:
Cyclic Peptide Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2001))

Abstract

This review describes a selection of macrocyclic natural products and structurally modified analogs containing peptidic and non-peptidic elements as structural features that potentially modulate cellular permeability. Examples range from exclusively peptidic structures like cyclosporin A or phepropeptins to compounds with mostly non-peptidic character, such as telomestatin or largazole. Furthermore, semisynthetic approaches and synthesis platforms to generate general and focused libraries of compounds at the interface of cyclic peptides and non-peptidic macrocycles are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629–661

    Article  CAS  PubMed  Google Scholar 

  2. Ganesan A (2008) The impact of natural products upon modern drug discovery. Curr Opin Chem Biol 12:306–317

    Article  CAS  PubMed  Google Scholar 

  3. Obrecht D, Robinson J, Bernardini F, Bisang C, DeMarco S, Moehle K, Gombert F (2009) Recent Progress in the discovery of macrocyclic compounds as potential anti-infective therapeutics. Curr Med Chem 16:42–65

    Article  CAS  PubMed  Google Scholar 

  4. von Nussbaum F, Brands M, Hinzen B, Weigand S, Häbich D (2006) Antibacterial natural products in medicinal chemistry—exodus or revival? Angew Chem Int Ed 45:5072–5129

    Article  CAS  Google Scholar 

  5. Suarez-Jimenez G-M, Burgos-Hernandez A, Ezquerra-Brauer J-M (2012) Bioactive peptides and depsipeptides with anticancer potential: sources from marine animals. Mar Drugs 10:963–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ermert P, Moehle K, Obrecht D (2014) CHAPTER 8. Macrocyclic inhibitors of GPCR’s, integrins and protein–protein interactions. In: Levin J (ed) Drug discovery. Royal Society of Chemistry, Cambridge, pp 283–338

    Google Scholar 

  7. Villar EA, Beglov D, Chennamadhavuni S, Porco JA, Kozakov D, Vajda S, Whitty A (2014) How proteins bind macrocycles. Nat Chem Biol 10:723–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wessjohann LA, Ruijter E, Garcia-Rivera D, Brandt W (2005) What can a chemist learn from nature’s macrocycles?—A brief, conceptual view. Mol Divers 9:171–186

    Article  CAS  PubMed  Google Scholar 

  9. Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, Karlsson A, Al-Lazikani B, Hersey A, Oprea TI, Overington JP (2017) A comprehensive map of molecular drug targets. Nat Rev Drug Discov 16:19–34

    Article  CAS  PubMed  Google Scholar 

  10. Bogan AA, Thorn KS (1998) Anatomy of hot spots in protein interfaces. J Mol Biol 280:1–9

    Article  CAS  PubMed  Google Scholar 

  11. Whitty A, Zhong M, Viarengo L, Beglov D, Hall DR, Vajda S (2016) Quantifying the chameleonic properties of macrocycles and other high-molecular-weight drugs. Drug Discov Today 21:712–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jin L, Harrison SC (2002) Crystal structure of human calcineurin complexed with cyclosporin A and human cyclophilin. Proc Natl Acad Sci 99:13522–13526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Giordanetto F, Kihlberg J (2014) Macrocyclic drugs and clinical candidates: what can medicinal chemists learn from their properties? J Med Chem 57:278–295

    Article  CAS  PubMed  Google Scholar 

  14. Rossi Sebastiano M, Doak BC, Backlund M, Poongavanam V, Over B, Ermondi G, Caron G, Matsson P, Kihlberg J (2018) Impact of dynamically exposed polarity on permeability and solubility of chameleonic drugs beyond the rule of 5. J Med Chem 61:4189–4202

    Article  CAS  PubMed  Google Scholar 

  15. London N, Movshovitz-Attias D, Schueler-Furman O (2010) The structural basis of peptide-protein binding strategies. Structure 18:188–199

    Article  CAS  PubMed  Google Scholar 

  16. Luther A, Moehle K, Chevalier E, Dale G, Obrecht D (2017) Protein epitope mimetic macrocycles as biopharmaceuticals. Curr Opin Chem Biol 38:45–51

    Article  CAS  PubMed  Google Scholar 

  17. Schwochert J, Lao Y, Pye CR, Naylor MR, Desai PV, Gonzalez Valcarcel IC, Barrett JA, Sawada G, Blanco M-J, Lokey RS (2016) Stereochemistry balances cell permeability and solubility in the naturally derived Phepropeptin cyclic peptides. ACS Med Chem Lett 7:757–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hewitt WM, Leung SSF, Pye CR, Ponkey AR, Bednarek M, Jacobson MP, Lokey RS (2015) Cell-permeable cyclic peptides from synthetic libraries inspired by natural products. J Am Chem Soc 137:715–721

    Article  CAS  PubMed  Google Scholar 

  19. Biron E, Chatterjee J, Ovadia O, Langenegger D, Brueggen J, Hoyer D, Schmid HA, Jelinek R, Gilon C, Hoffman A, Kessler H (2008) Improving oral bioavailability of peptides by multiple N-methylation: somatostatin analogues. Angew Chem Int Ed 47:2595–2599

    Article  CAS  Google Scholar 

  20. Alex A, Millan DS, Perez M, Wakenhut F, Whitlock GA (2011) Intramolecular hydrogen bonding to improve membrane permeability and absorption in beyond rule of five chemical space. Med Chem Commun 2:669–674

    Article  CAS  Google Scholar 

  21. Nielsen DS, Hoang HN, Lohman R-J, Diness F, Fairlie DP (2012) Total synthesis, structure, and oral absorption of a thiazole cyclic peptide, sanguinamide A. Org Lett 14:5720–5723

    Article  CAS  PubMed  Google Scholar 

  22. Nielsen DS, Hoang HN, Lohman R-J, Hill TA, Lucke AJ, Craik DJ, Edmonds DJ, Griffith DA, Rotter CJ, Ruggeri RB, Price DA, Liras S, Fairlie DP (2014) Improving on nature: making a cyclic Heptapeptide orally bioavailable. Angew Chem Int Ed 53:12059–12063

    Article  CAS  Google Scholar 

  23. Bockus AT, Schwochert JA, Pye CR, Townsend CE, Sok V, Bednarek MA, Lokey RS (2015) Going out on a limb: delineating the effects of β-branching, N-methylation, and side chain size on the passive permeability, solubility, and flexibility of Sanguinamide a analogues. J Med Chem 58:7409–7418

    Article  CAS  PubMed  Google Scholar 

  24. Ireland CM, Durso AR, Newman RA, Hacker MP (1982) Antineoplastic cyclic peptides from the marine tunicate Lissoclinum patella. J Org Chem 47:1807–1811

    Article  CAS  Google Scholar 

  25. Ahlbach CL, Lexa KW, Bockus AT, Chen V, Crews P, Jacobson MP, Lokey RS (2015) Beyond cyclosporine a: conformation-dependent passive membrane permeabilities of cyclic peptide natural products. Future Med Chem 7:2121–2130

    Article  CAS  PubMed  Google Scholar 

  26. Fu X, Do T, Schmitz FJ, Andrusevich V, Engel MH (1998) New cyclic peptides from the ascidian Lissoclinum patella. J Nat Prod 61:1547–1551

    Article  CAS  PubMed  Google Scholar 

  27. Kanoh K, Matsuo Y, Adachi K, Imagawa H, Nishizawa M, Shizuri Y (2005) Mechercharmycins a and B, cytotoxic substances from marine-derived thermoactinomyces sp. YM3-251. J Antibiot (Tokyo) 58:289–292

    Article  CAS  Google Scholar 

  28. Hernández D, Altuna M, Cuevas C, Aligué R, Albericio F, Álvarez M (2008) Synthesis and antitumor activity of mechercharmycin A analogues. J Med Chem 51:5722–5730

    Article  PubMed  CAS  Google Scholar 

  29. Selva E, Beretta G, Montanini N, Saddler GS, Gastaldo L, Ferrari P, Lorenzetti R, Landini P, Ripamonti F, Goldstein BP, Berti M, Montanaro L, Denaro M (1991) Antibiotic GE2270 a: a novel inhibitor of bacterial protein synthesis. I. Isolation and characterization. J Antibiot (Tokyo) 44:693–701

    Article  CAS  Google Scholar 

  30. Shin-ya K, Wierzba K, Matsuo K, Ohtani T, Yamada Y, Furihata K, Hayakawa Y, Seto H (2001) Telomestatin, a novel telomerase inhibitor from Streptomyces anulatus. J Am Chem Soc 123:1262–1263

    Article  CAS  PubMed  Google Scholar 

  31. Miyazaki T, Pan Y, Joshi K, Purohit D, Hu B, Demir H, Mazumder S, Okabe S, Yamori T, Viapiano M, Shin-ya K, Seimiya H, Nakano I (2012) Telomestatin impairs glioma stem cell survival and growth through the disruption of telomeric G-quadruplex and inhibition of the proto-oncogene, c-Myb. Clin Cancer Res 18:1268–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Doi T, Shibata K, Yoshida M, Takagi M, Tera M, Nagasawa K, Shin-ya K, Takahashi T (2011) (S)-Stereoisomer of telomestatin as a potent G-quadruplex binder and telomerase inhibitor. Org Biomol Chem 9:387–393

    Article  CAS  PubMed  Google Scholar 

  33. Bockus AT, Lexa KW, Pye CR, Kalgutkar AS, Gardner JW, Hund KCR, Hewitt WM, Schwochert JA, Glassey E, Price DA, Mathiowetz AM, Liras S, Jacobson MP, Lokey RS (2015) Probing the physicochemical boundaries of cell permeability and oral bioavailability in lipophilic macrocycles inspired by natural products. J Med Chem 58:4581–4589

    Article  CAS  PubMed  Google Scholar 

  34. Luesch H, Yoshida WY, Moore RE, Paul VJ, Corbett TH (2001) Total structure determination of apratoxin A, a potent novel cytotoxin from the marine cyanobacterium Lyngbya majuscula. J Am Chem Soc 123:5418–5423

    Article  CAS  PubMed  Google Scholar 

  35. Huang K-C, Chen Z, Jiang Y, Akare S, Kolber-Simonds D, Condon K, Agoulnik S, Tendyke K, Shen Y, Wu K-M, Mathieu S, Choi H, Zhu X, Shimizu H, Kotake Y, Gerwick WH, Uenaka T, Woodall-Jappe M, Nomoto K (2016) Apratoxin a shows novel pancreas-targeting activity through the binding of Sec 61. Mol Cancer Ther 15:1208–1216

    Article  CAS  PubMed  Google Scholar 

  36. Liu Y, Law BK, Luesch H (2009) Apratoxin a reversibly inhibits the secretory pathway by preventing Cotranslational translocation. Mol Pharmacol 76:91–104

    Article  CAS  PubMed  Google Scholar 

  37. Paatero AO, Kellosalo J, Dunyak BM, Almaliti J, Gestwicki JE, Gerwick WH, Taunton J, Paavilainen VO (2016) Apratoxin kills cells by direct blockade of the Sec61 protein translocation channel. Cell Chem Biol 23:561–566

    Article  CAS  PubMed  Google Scholar 

  38. Inman W, Crews P (1989) Novel marine sponge-derived amino acids. 8. Conformational analysis of jasplakinolide. J Am Chem Soc 111:2822–2829

    Article  CAS  Google Scholar 

  39. Tannert R, Milroy L-G, Ellinger B, Hu T-S, Arndt H-D, Waldmann H (2010) Synthesis and structure−activity correlation of natural-product inspired cyclodepsipeptides stabilizing F-actin. J Am Chem Soc 132:3063–3077

    Article  CAS  PubMed  Google Scholar 

  40. Steadman VA, Pettit SB, Poullennec KG, Lazarides L, Keats AJ, Dean DK, Stanway SJ, Austin CA, Sanvoisin JA, Watt GM, Fliri HG, Liclican AC, Jin D, Wong MH, Leavitt SA, Lee Y-J, Tian Y, Frey CR, Appleby TC, Schmitz U, Jansa P, Mackman RL, Schultz BE (2017) Discovery of potent cyclophilin inhibitors based on the structural simplification of sanglifehrin A. J Med Chem 60:1000–1017

    Article  CAS  PubMed  Google Scholar 

  41. Gregory MA, Bobardt M, Obeid S, Chatterji U, Coates NJ, Foster T, Gallay P, Leyssen P, Moss SJ, Neyts J, Nur-e-Alam M, Paeshuyse J, Piraee M, Suthar D, Warneck T, Zhang M-Q, Wilkinson B (2011) Preclinical characterization of naturally occurring polyketide cyclophilin inhibitors from the Sanglifehrin family. Antimicrob Agents Chemother 55:1975–1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Barrière J, Bouanchaud D, Desnottes J, Paris J (1994) Streptogramin analogues. Expert Opin Investig Drugs 3:115–131

    Article  Google Scholar 

  43. Bacqué E (2004) Influence of fluorination at position 16 of antibacterial Pristinamycins II. Chimia 58:128–132

    Article  Google Scholar 

  44. Barriere J-C, Paris JM (1993) RP 59500 and related semisynthetic streptogramins. Drugs Future 18:883–885

    Article  Google Scholar 

  45. Clausen DJ, Smith WB, Haines BE, Wiest O, Bradner JE, Williams RM (2015) Modular synthesis and biological activity of pyridyl-based analogs of the potent class I histone deacetylase inhibitor largazole. Bioorg Med Chem 23:5061–5074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pilon JL, Clausen DJ, Hansen RJ, Lunghofer PJ, Charles B, Rose BJ, Thamm DH, Gustafson DL, Bradner JE, Williams RM (2015) Comparative pharmacokinetic properties and antitumor activity of the marine HDACi Largazole and largazole peptide isostere. Cancer Chemother Pharmacol 75:671–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Martin Cabrejas LM, Rohrbach S, Wagner D, Kallen J, Zenke G, Wagner J (1999) Macrolide analogues of the novel immunosuppressant sanglifehrin: new application of the ring-closing metathesis reaction. Angew Chem Int Ed 38:2443–2446

    Article  Google Scholar 

  48. Almaliti J, Al-Hamashi AA, Negmeldin AT, Hanigan CL, Perera L, Pflum MKH, Casero RA, Tillekeratne LMV (2016) Largazole analogues embodying radical changes in the depsipeptide ring: development of a more selective and highly potent analogue. J Med Chem 59:10642–10660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Belin P, Le Du MH, Fielding A, Lequin O, Jacquet M, Charbonnier J-B, Lecoq A, Thai R, Courcon M, Masson C, Dugave C, Genet R, Pernodet J-L, Gondry M (2009) Identification and structural basis of the reaction catalyzed by CYP121, an essential cytochrome P450 in Mycobacterium tuberculosis. Proc Natl Acad Sci 106:7426–7431

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhu X, McAtee CC, Schindler CS (2018) Scalable synthesis of mycocyclosin. Org Lett 20:2862–2866

    Article  CAS  PubMed  Google Scholar 

  51. Loosli H-R, Kessler H, Oschkinat H, Weber H-P, Petcher TJ, Widmer A (1985) Peptide conformations. Part 31. The conformation of cyclosporin A in the crystal and in solution. Helv Chim Acta 68:682–704

    Article  CAS  Google Scholar 

  52. In Y, Doi M, Inoue M, Ishida T, Hamada Y, Shioiri T (1993) Molecular conformation of patellamide A, a cytotoxic cyclic peptide from the ascidian Lissoclinum patella, by X-ray crystal analysis. Chem Pharm Bull (Tokyo) 41:1686–1690

    Article  CAS  Google Scholar 

  53. Koehnke J, Bent AF, Houssen WE, Mann G, Jaspars M, Naismith JH (2014) The structural biology of patellamide biosynthesis. Curr Opin Struct Biol 29:112–121

    Article  CAS  PubMed  Google Scholar 

  54. Milne BF, Morris LA, Jaspars M, Thompson GS (2002) Conformational change in the thiazole and oxazoline containing cyclic octapeptides, the patellamides. Part 2. Solvent dependent conformational change. J Chem Soc Perkin Trans 2:1076–1080. Electronic supplementary information (ESI) available: further calculational details. See http://www.rsc.org/suppdata/p2/b2/b201824c/

  55. Walsh CT, Malcolmson SJ, Young TS (2012) Three ring posttranslational circuses: insertion of oxazoles, thiazoles, and pyridines into protein-derived frameworks. ACS Chem Biol 7:429–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bockus AT, McEwen CM, Lokey RS (2013) Form and function in cyclic peptide natural products: a pharmacokinetic perspective. Curr Top Med Chem 13:821–836

    Article  CAS  PubMed  Google Scholar 

  57. Sivonen K, Leikoski N, Fewer DP, Jokela J (2010) Cyanobactins—ribosomal cyclic peptides produced by cyanobacteria. Appl Microbiol Biotechnol 86:1213–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Koehnke J, Bent A, Houssen WE, Zollman D, Morawitz F, Shirran S, Vendome J, Nneoyiegbe AF, Trembleau L, Botting CH, Smith MCM, Jaspars M, Naismith JH (2012) The mechanism of patellamide macrocyclization revealed by the characterization of the PatG macrocyclase domain. Nat Struct Mol Biol 19:767–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McIntosh JA, Robertson CR, Agarwal V, Nair SK, Bulaj GW, Schmidt EW (2010) Circular logic: nonribosomal peptide-like macrocyclization with a ribosomal peptide catalyst. J Am Chem Soc 132:15499–15501

    Article  CAS  Google Scholar 

  60. Freeman DJ, Pattenden G, Drake AF, Siligardi G (1998) Marine metabolites and metal ion chelation. Circular dichroism studies of metal binding to Lissoclinum cyclopeptides. J Chem Soc Perkin Trans 2:129–136

    Article  Google Scholar 

  61. Ishida T, In Y, Shinozaki F, Doi M, Yamamoto D, Hamada Y, Shioiri T, Kamigauchi M, Sugiura M (1995) Solution conformations of patellamides B and C, cytotoxic cyclic Hexapeptides from marine tunicate, determined by NMR spectroscopy and molecular dynamics. J Org Chem 60:3944–3952

    Article  CAS  Google Scholar 

  62. Schmitz FJ, Ksebati MB, Chang JS, Wang JL, Hossain MB, Van der Helm D, Engel MH, Serban A, Silfer JA (1989) Cyclic peptides from the ascidian Lissoclinum patella: conformational analysis of patellamide D by x-ray analysis and molecular modeling. J Org Chem 54:3463–3472

    Article  CAS  Google Scholar 

  63. Ishida T, Tanaka M, Nabae M, Inoue M, Kato S, Hamada Y, Shioiri T (1988) Solution and solid-state conformations of ascidiacyclamide, a cytotoxic cyclic peptide from ascidian. J Org Chem 53:107–112

    Article  CAS  Google Scholar 

  64. van den Brenk AL, Fairlie DP, Hanson GR, Gahan LR, Hawkins CJ, Jones A (1994) Binding of Copper(II) to the cyclic octapeptide patellamide D. Inorg Chem 33:2280–2289

    Article  Google Scholar 

  65. Morris LA, Milne BF, Thompson GS, Jaspars M (2002) Conformational change in the thiazole and oxazoline containing cyclic octapeptides, the patellamides. Part 1. Cu2+ and Zn2+ induced conformational change. J Chem Soc Perkin Trans 2:1072–1075. Electronic supplementary information (ESI) available: further calculational details. See http://www.rsc.org/suppdata/p2/b2/b201823n/

  66. Hernández D, Vilar G, Riego E, Cañedo LM, Cuevas C, Albericio F, Álvarez M (2007) Synthesis of IB-01211, a cyclic peptide containing 2,4-concatenated thia- and oxazoles, via Hantzsch macrocyclization. Org Lett 9:809–811

    Article  PubMed  CAS  Google Scholar 

  67. Hernández D, Riego E, Albericio F, Álvarez M (2008) Synthesis of natural product derivatives containing 2,4-concatenated oxazoles. Eur J Org Chem 2008:3389–3396

    Article  CAS  Google Scholar 

  68. Wahyudi H, McAlpine SR (2015) Predicting the unpredictable: recent structure–activity studies on peptide-based macrocycles. Bioorg Chem 60:74–97

    Article  CAS  PubMed  Google Scholar 

  69. Tilvi S, Singh K (2016) Synthesis of oxazole, oxazoline and isoxazoline derived marine natural products: a review. Curr Org Chem 20:898–929

    Article  CAS  Google Scholar 

  70. Amagai K, Ikeda H, Hashimoto J, Kozone I, Izumikawa M, Kudo F, Eguchi T, Nakamura T, Osada H, Takahashi S, Shin-ya K (2017) Identification of a gene cluster for telomestatin biosynthesis and heterologous expression using a specific promoter in a clean host. Sci Rep 7:3382. https://doi.org/10.1038/s41598-017-03308-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim M-Y, Vankayalapati H, Shin-ya K, Wierzba K, Hurley LH (2002) Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular G-quadruplex. J Am Chem Soc 124:2098–2099

    Article  CAS  PubMed  Google Scholar 

  72. Rezler EM, Seenisamy J, Bashyam S, Kim M-Y, White E, Wilson WD, Hurley LH (2005) Telomestatin and diseleno sapphyrin bind selectively to two different forms of the human telomeric G-quadruplex structure. J Am Chem Soc 127:9439–9447

    Article  CAS  PubMed  Google Scholar 

  73. Sohda K, Nagai K, Yamori T, Suzuki K, Tanaka A (2005) YM-216391, a novel cytotoxic cyclic peptide from Streptomyces nobilis: I. Fermentation, isolation and biological activities. J Antibiot (Tokyo) 58:27–31

    Article  CAS  Google Scholar 

  74. Doi T, Yoshida M, Shin-ya K, Takahashi T (2006) Total synthesis of ( R )-Telomestatin. Org Lett 8:4165–4167

    Article  CAS  PubMed  Google Scholar 

  75. Tauchi T, Shin-ya K, Sashida G, Sumi M, Nakajima A, Shimamoto T, Ohyashiki JH, Ohyashiki K (2003) Activity of a novel G-quadruplex-interactive telomerase inhibitor, telomestatin (SOT-095), against human leukemia cells: involvement of ATM-dependent DNA damage response pathways. Oncogene 22:5338–5347

    Article  CAS  PubMed  Google Scholar 

  76. Maleki P, Ma Y, Iida K, Nagasawa K, Balci H (2017) A single molecule study of a fluorescently labeled telomestatin derivative and G-quadruplex interactions. Nucleic Acids Res 45:288–295

    Article  CAS  PubMed  Google Scholar 

  77. Mulholland K, Wu C (2016) Binding of telomestatin to a telomeric G-quadruplex DNA probed by all-atom molecular dynamics simulations with explicit solvent. J Chem Inf Model 56:2093–2102

    Article  CAS  PubMed  Google Scholar 

  78. Rzuczek SG (2011) Design and synthesis of G-quadruplex selective macrocyclic polyoxazoles. Rutgers, The State University of New Jersey

    Google Scholar 

  79. Tera M, Iida K, Ikebukuro K, Seimiya H, Shin-ya K, Nagasawa K (2010) Visualization of G-quadruplexes by using a BODIPY-labeled macrocyclic heptaoxazole. Org Biomol Chem 8:2749–2755

    Article  CAS  PubMed  Google Scholar 

  80. Iida K, Nakamura T, Yoshida W, Tera M, Nakabayashi K, Hata K, Ikebukuro K, Nagasawa K (2013) Fluorescent-ligand-mediated screening of G-quadruplex structures using a DNA microarray. Angew Chem Int Ed 52:12052–12055

    Article  CAS  Google Scholar 

  81. Du L, Shen B (2001) Biosynthesis of hybrid peptide-polyketide natural products. Curr Opin Drug Discov Devel 4:215–228

    CAS  PubMed  Google Scholar 

  82. Sieber SA, Marahiel MA (2005) Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem Rev 105:715–738

    Article  CAS  PubMed  Google Scholar 

  83. Marimganti S, Yasmeen S, Fischer D, Maier ME (2005) Synthesis of jasplakinolide analogues containing a novel ω-amino acid. Chem Eur J 11:6687–6700

    Article  CAS  PubMed  Google Scholar 

  84. Marimganti S, Wieneke R, Geyer A, Maier ME (2007) Synthesis and conformational analysis of Geodiamolide analogues. Eur J Org Chem 2007:2779–2790

    Article  CAS  Google Scholar 

  85. NMR solvent data chart, Cambridge Isotope Laboratories, Inc.

    Google Scholar 

  86. Rezai T, Yu B, Millhauser GL, Jacobson MP, Lokey RS (2006) Testing the conformational hypothesis of passive membrane permeability using synthetic cyclic peptide diastereomers. J Am Chem Soc 128:2510–2511

    Article  CAS  PubMed  Google Scholar 

  87. Koehorst RBM, Spruijt RB, Vergeldt FJ, Hemminga MA (2004) Lipid bilayer topology of the Transmembrane α-helix of M13 major coat protein and bilayer polarity profile by site-directed fluorescence spectroscopy. Biophys J 87:1445–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nielsen DS, Lohman R-J, Hoang HN, Hill TA, Jones A, Lucke AJ, Fairlie DP (2015) Flexibility versus rigidity for orally bioavailable cyclic Hexapeptides. Chembiochem 16:2289–2293

    Article  CAS  PubMed  Google Scholar 

  89. Luesch H, Yoshida WY, Moore RE, Paul VJ (2002) New apratoxins of marine cyanobacterial origin from guam and palau. Bioorg Med Chem 10:1973–1978

    Article  CAS  PubMed  Google Scholar 

  90. Grindberg RV, Ishoey T, Brinza D, Esquenazi E, Coates RC, Liu W, Gerwick L, Dorrestein PC, Pevzner P, Lasken R, Gerwick WH (2011) Single cell genome amplification accelerates identification of the apratoxin biosynthetic pathway from a complex microbial assemblage. PLoS One 6:e18565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Masuda Y, Suzuki J, Onda Y, Fujino Y, Yoshida M, Doi T (2014) Total synthesis and conformational analysis of Apratoxin C. J Org Chem 79:8000–8009

    Article  CAS  PubMed  Google Scholar 

  92. Chen Q-Y, Liu Y, Cai W, Luesch H (2014) Improved total synthesis and biological evaluation of potent Apratoxin S4 based anticancer agents with differential stability and further enhanced activity. J Med Chem 57:3011–3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Doi T, Numajiri Y, Takahashi T, Takagi M, Shin-ya K (2011) Solid-phase total synthesis of (−)-Apratoxin a and its analogues and their biological evaluation. Chem Asian J 6:180–188

    Article  CAS  PubMed  Google Scholar 

  94. Yin R, Zhang W, Liu G, Wu P, Lau C, Li Y (2016) Synthesis, conformational analysis and biological evaluation of the lactam analogue of the cyclodepsipeptide apratoxin A. Tetrahedron 72:3823–3831

    Article  CAS  Google Scholar 

  95. Luesch H, Chanda SK, Raya RM, DeJesus PD, Orth AP, Walker JR, Izpisúa Belmonte JC, Schultz PG (2006) A functional genomics approach to the mode of action of apratoxin a. Nat Chem Biol 2:158–167

    Article  CAS  PubMed  Google Scholar 

  96. Ma D, Zou B, Cai G, Hu X, Liu JO (2006) Total synthesis of the Cyclodepsipeptide Apratoxin A and its analogues and assessment of their biological activities. Chem Eur J 12:7615–7626

    Article  CAS  PubMed  Google Scholar 

  97. Shen S, Zhang P, Lovchik MA, Li Y, Tang L, Chen Z, Zeng R, Ma D, Yuan J, Yu Q (2009) Cyclodepsipeptide toxin promotes the degradation of Hsp90 client proteins through chaperone-mediated autophagy. J Cell Biol 185:629–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Onda Y, Masuda Y, Yoshida M, Doi T (2017) Conformation-based design and synthesis of Apratoxin A mimetics modified at the α,β-unsaturated thiazoline moiety. J Med Chem 60:6751–6765

    Article  CAS  PubMed  Google Scholar 

  99. Rastelli EJ, Coltart DM (2018) Synthesis and biological activity of apratoxin derivatives. Tetrahedron 74:2269–2290

    Article  CAS  Google Scholar 

  100. Gala F, D’Auria MV, De Marino S, Sepe V, Zollo F, Smith CD, Copper JE, Zampella A (2008) Jaspamides H–L, new actin-targeting depsipeptides from the sponge Jaspis splendens. Tetrahedron 64:7127–7130

    Article  CAS  Google Scholar 

  101. Gala F, D’Auria MV, De Marino S, Sepe V, Zollo F, Smith CD, Keller SN, Zampella A (2009) Jaspamides M–P: new tryptophan modified jaspamide derivatives from the sponge Jaspis splendans. Tetrahedron 65:51–56

    Article  CAS  Google Scholar 

  102. Gala F, D’Auria MV, De Marino S, Zollo F, Smith CD, Copper JE, Zampella A (2007) New jaspamide derivatives with antimicrofilament activity from the sponge Jaspis splendans. Tetrahedron 63:5212–5219

    Article  CAS  Google Scholar 

  103. Milroy L-G, Rizzo S, Calderon A, Ellinger B, Erdmann S, Mondry J, Verveer P, Bastiaens P, Waldmann H, Dehmelt L, Arndt H-D (2012) Selective chemical imaging of static actin in live cells. J Am Chem Soc 134:8480–8486

    Article  CAS  PubMed  Google Scholar 

  104. Visegrády B, Lőrinczy D, Hild G, Somogyi B, Nyitrai M (2004) The effect of phalloidin and jasplakinolide on the flexibility and thermal stability of actin filaments. FEBS Lett 565:163–166

    Article  PubMed  CAS  Google Scholar 

  105. Spector I, Braet F, Shochet NR, Bubb MR (1999) New anti-actin drugs in the study of the organization and function of the actin cytoskeleton. Microsc Res Tech 47:18–37

    Article  CAS  PubMed  Google Scholar 

  106. Ghosh AK, Dawson ZL, Moon DK, Bai R, Hamel E (2010) Synthesis and biological evaluation of new jasplakinolide (jaspamide) analogs. Bioorg Med Chem Lett 20:5104–5107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sedrani R, Kallen J, Martin Cabrejas LM, Papageorgiou CD, Senia F, Rohrbach S, Wagner D, Thai B, Jutzi Eme A-M, France J, Oberer L, Rihs G, Zenke G, Wagner J (2003) Sanglifehrin−cyclophilin interaction: degradation work, synthetic macrocyclic analogues, X-ray crystal structure, and binding data. J Am Chem Soc 125:3849–3859

    Article  CAS  PubMed  Google Scholar 

  108. Caroline Aciro, Dean DK, Dunbar NA, Highton AJ, Jansa P, Karki KK, Keats AJ, Lazarides L, Mackman RL, Pettit SN, Poullennec KG, Schrier AJ, Siegel D, Steadman VA (2015) Macrocyclic inhibitors of flaviviridae viruses, US Patent 9,873,716, 23 Jan 2018

    Google Scholar 

  109. Reddy DN, Ballante F, Chuang T, Pirolli A, Marrocco B, Marshall GR (2016) Design and synthesis of simplified largazole analogues as isoform-selective human lysine deacetylase inhibitors. J Med Chem 59:1613–1633

    Article  CAS  PubMed  Google Scholar 

  110. Li X, Tu Z, Li H, Liu C, Li Z, Sun Q, Yao Y, Liu J, Jiang S (2013) Biological evaluation of new largazole analogues: alteration of macrocyclic scaffold with click chemistry. ACS Med Chem Lett 4:132–136

    Article  CAS  PubMed  Google Scholar 

  111. Bowers A, West N, Taunton J, Schreiber SL, Bradner JE, Williams RM (2008) Total synthesis and biological mode of action of largazole: a potent class I histone deacetylase inhibitor. J Am Chem Soc 130:11219–11222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bhansali P, Hanigan CL, Casero RA, Tillekeratne LMV (2011) Largazole and analogues with modified metal-binding motifs targeting histone deacetylases: synthesis and biological evaluation. J Med Chem 54:7453–7463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chen Q-Y, Chaturvedi PR, Luesch H (2018) Process development and scale-up total synthesis of largazole, a potent class I histone deacetylase inhibitor. Org Process Res Dev 22:190–199

    Article  CAS  Google Scholar 

  114. Bowers AA, Greshock TJ, West N, Estiu G, Schreiber SL, Wiest O, Williams RM, Bradner JE (2009) Synthesis and conformation−activity relationships of the peptide isosteres of FK228 and largazole. J Am Chem Soc 131:2900–2905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bowers AA, West N, Newkirk TL, Troutman-Youngman AE, Schreiber SL, Wiest O, Bradner JE, Williams RM (2009) Synthesis and histone deacetylase inhibitory activity of largazole analogs: alteration of the zinc-binding domain and macrocyclic scaffold. Org Lett 11:1301–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ying Y, Liu Y, Byeon SR, Kim H, Luesch H, Hong J (2008) Synthesis and activity of largazole analogues with linker and macrocycle modification. Org Lett 10:4021–4024

    Article  CAS  PubMed  Google Scholar 

  117. Wang Q, Rosa BA, Nare B, Powell K, Valente S, Rotili D, Mai A, Marshall GR, Mitreva M (2015) Targeting lysine deacetylases (KDACs) in parasites. PLoS Negl Trop Dis 9:e0004026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Poli G, Di Fabio R, Ferrante L, Summa V, Botta M (2017) Largazole analogues as histone deacetylase inhibitors and anticancer agents: an overview of structure-activity relationships. ChemMedChem 12:1917–1926

    Article  CAS  PubMed  Google Scholar 

  119. Djokić S, Kobrehel G, Lazarevski G, Lopotar N, Tamburašev Z, Kamenar B, Nagl A, Vicković I (1986) Erythromycin series. Part 11. Ring expansion of erythromycin a oxime by the Beckmann rearrangement. J Chem Soc Perkin Trans 1:1881–1890

    Article  Google Scholar 

  120. Cooper RDG, Snyder NJ, Zweifel MJ, Staszak MA, Wilkie SC, Nicas TI, Mullen DL, Butler TF, Rodriguez MJ, Huff BE, Thompson RC (1996) Reductive alkylation of glycopeptide antibiotics: synthesis and antibacterial activity. J Antibiot (Tokyo) 49:575–581

    Article  CAS  Google Scholar 

  121. Dushin RG, Wang T-Z, Sum P-E, He H, Sutherland AG, Ashcroft JS, Graziani EI, Koehn FE, Bradford PA, Petersen PJ, Wheless KL, How D, Torres N, Lenoy EB, Weiss WJ, Lang SA, Projan SJ, Shlaes DM, Mansour TS (2004) Hydrophobic acetal and ketal derivatives of mannopeptimycin-α and desmethylhexahydromannopeptimycin-α: semisynthetic glycopeptides with potent activity against gram-positive bacteria. J Med Chem 47:3487–3490

    Article  CAS  PubMed  Google Scholar 

  122. Hill J, Siedlecki J, Parr I, Morytko M, Yu X, Zhang Y, Silverman J, Controneo N, Laganas V, Li T, Lai J-J, Keith D, Shimer G, Finn J (2003) Synthesis and biological activity of N-Acylated ornithine analogues of daptomycin. Bioorg Med Chem Lett 13:4187–4191

    Article  CAS  PubMed  Google Scholar 

  123. Debono M, Turner WW, LaGrandeur L, Burkhardt FJ, Nissen JS, Nichols KK, Rodriguez MJ, Zweifel MJ, Zeckner DJ (1995) Semisynthetic chemical modification of the antifungal lipopeptide echinocandin B (ECB): structure-activity studies of the lipophilic and geometric parameters of Polyarylated acyl analogs of ECB. J Med Chem 38:3271–3281

    Article  CAS  PubMed  Google Scholar 

  124. Peel M, Scribner A (2015) Semi-synthesis of cyclosporins. Biochim Biophys Acta Gen Subj 1850:2121–2144

    Article  CAS  Google Scholar 

  125. Skotnicki JS, Abou-Gharbia MA (2014) Chapter 12: Unleashing the power of semi-synthesis: the discovery of Torisel®. In: Pryde DC, Palmer MJ (eds) Drug discovery. Royal Society of Chemistry, Cambridge, pp 347–366

    Google Scholar 

  126. Wang B, Waters AL, Valeriote FA, Hamann MT (2015) An efficient and cost-effective approach to kahalalide F N-terminal modifications using a nuisance algal bloom of Bryopsis pennata. Biochim Biophys Acta Gen Subj 1850:1849–1854

    Article  CAS  Google Scholar 

  127. Just-Baringo X, Albericio F, Álvarez M (2014) Thiopeptide engineering: a multidisciplinary effort towards future drugs. Angew Chem Int Ed 53:6602–6616

    Article  CAS  Google Scholar 

  128. LaMarche MJ, Leeds JA, Dzink-Fox J, Gunderson K, Krastel P, Memmert K, Patane MA, Rann EM, Schmitt E, Tiamfook S, Wang B (2011) 4-Aminothiazolyl analogues of GE2270 a: antibacterial lead finding. J Med Chem 54:2517–2521

    Article  CAS  PubMed  Google Scholar 

  129. LaMarche MJ, Leeds JA, Amaral K, Brewer JT, Bushell SM, Dewhurst JM, Dzink-Fox J, Gangl E, Goldovitz J, Jain A, Mullin S, Neckermann G, Osborne C, Palestrant D, Patane MA, Rann EM, Sachdeva M, Shao J, Tiamfook S, Whitehead L, Yu D (2011) Antibacterial optimization of 4-aminothiazolyl analogues of the natural product GE2270 A: identification of the cycloalkylcarboxylic acids. J Med Chem 54:8099–8109

    Article  CAS  PubMed  Google Scholar 

  130. LaMarche MJ, Leeds JA, Amaral A, Brewer JT, Bushell SM, Deng G, Dewhurst JM, Ding J, Dzink-Fox J, Gamber G, Jain A, Lee K, Lee L, Lister T, McKenney D, Mullin S, Osborne C, Palestrant D, Patane MA, Rann EM, Sachdeva M, Shao J, Tiamfook S, Trzasko A, Whitehead L, Yifru A, Yu D, Yan W, Zhu Q (2012) Discovery of LFF571: an investigational agent for Clostridium difficile infection. J Med Chem 55:2376–2387

    Article  CAS  PubMed  Google Scholar 

  131. Bassères E, Endres BT, Dotson KM, Alam MJ, Garey KW (2017) Novel antibiotics in development to treat Clostridium difficile infection. Curr Opin Gastroenterol 33:1–7

    Article  PubMed  CAS  Google Scholar 

  132. LaMarche MJ, Leeds JA, Dzink-Fox J, Gangl E, Krastel P, Neckermann G, Palestrant D, Patane MA, Rann EM, Tiamfook S, Yu D (2012) Antibiotic optimization and chemical structure stabilization of thiomuracin A. J Med Chem 55:6934–6941

    Article  CAS  PubMed  Google Scholar 

  133. LaMarche MJ, Leeds JA, Brewer J, Dean K, Ding J, Dzink-Fox J, Gamber G, Jain A, Kerrigan R, Krastel P, Lee K, Lombardo F, McKenney D, Neckermann G, Osborne C, Palestrant D, Patane MA, Rann EM, Robinson Z, Schmitt E, Stams T, Tiamfook S, Yu D, Whitehead L (2016) Antibacterial and solubility optimization of thiomuracin A. J Med Chem 59:6920–6928

    Article  CAS  PubMed  Google Scholar 

  134. Just-Baringo X, Bruno P, Ottesen LK, Cañedo LM, Albericio F, Álvarez M (2013) Total synthesis and Stereochemical assignment of baringolin. Angew Chem Int Ed 52:7818–7821

    Article  CAS  Google Scholar 

  135. Just-Baringo X, Bruno P, Pitart C, Vila J, Albericio F, Álvarez M (2014) Dissecting the structure of thiopeptides: assessment of thiazoline and tail moieties of baringolin and antibacterial activity optimization. J Med Chem 57:4185–4195

    Article  CAS  PubMed  Google Scholar 

  136. Noeske J, Huang J, Olivier NB, Giacobbe RA, Zambrowski M, Cate JHD (2014) Synergy of streptogramin antibiotics occurs independently of their effects on translation. Antimicrob Agents Chemother 58:5269–5279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Harms JM, Schlunzen F, Fucini P, Bartels H, Yonath A (2004) Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin. BMC Biol 2:4

    Article  PubMed  PubMed Central  Google Scholar 

  138. Li Q, Seiple IB (2017) Modular, scalable synthesis of group a streptogramin antibiotics. J Am Chem Soc 139:13304–13307

    Article  CAS  PubMed  Google Scholar 

  139. Osterman IA, Khabibullina NF, Komarova ES, Kasatsky P, Kartsev VG, Bogdanov AA, Dontsova OA, Konevega AL, Sergiev PV, Polikanov YS (2017) Madumycin II inhibits peptide bond formation by forcing the peptidyl transferase center into an inactive state. Nucleic Acids Res 45:7507–7514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Jamjian C, Barrett MS, Jones RN (1997) Antimicrobial characteristics of quinupristin/dalfopristin (Synercid® at 30:70 ratio) compared to alternative ratios for in vitro testing. Diagn Microbiol Infect Dis 27:129–138

    Article  CAS  PubMed  Google Scholar 

  141. Etienne SD, Montay G, Le Liboux A, Frydman A, Garaud JJ (1992) A phase I, double-blind, placebo-controlled study of the tolerance and pharmacokinetic behaviour of RP 59500. J Antimicrob Chemother 30:123–131

    Article  PubMed  Google Scholar 

  142. Bergeron M, Montay G (1997) The pharmacokinetics of quinupristin/dalfopristin in laboratory animals and in humans. J Antimicrob Chemother 39:129–138

    Article  CAS  PubMed  Google Scholar 

  143. Arndt H-D, Rizzo S, Nöcker C, Wakchaure VN, Milroy L-G, Bieker V, Calderon A, Tran TTN, Brand S, Dehmelt L, Waldmann H (2015) Divergent solid-phase synthesis of natural product-inspired bipartite cyclodepsipeptides: total synthesis of Seragamide a. Chem Eur J 21:5311–5316

    Article  CAS  PubMed  Google Scholar 

  144. Saupe J, Kunz O, Haustedt LO, Jakupovic S, Mang C (2017) MacroEvoLution: a new method for the rapid generation of novel scaffold-diverse macrocyclic libraries. Chem Eur J 23:11784–11791

    Article  CAS  PubMed  Google Scholar 

  145. Jefferson EA, Arakawa S, Blyn LB, Miyaji A, Osgood SA, Ranken R, Risen LM, Swayze EE (2002) New inhibitors of bacterial protein synthesis from a combinatorial library of macrocycles. J Med Chem 45:3430–3439

    Article  CAS  PubMed  Google Scholar 

  146. Jefferson EA, Swayze EE, Osgood SA, Miyaji A, Risen LM, Blyn LB (2003) Antibacterial activity of quinolone–macrocycle conjugates. Bioorg Med Chem Lett 13:1635–1638

    Article  CAS  PubMed  Google Scholar 

  147. Marsault E, Peterson ML (2011) Macrocycles are great cycles: applications, opportunities, and challenges of synthetic macrocycles in drug discovery. J Med Chem 54:1961–2004

    Article  CAS  PubMed  Google Scholar 

  148. Marsault E, Hoveyda HR, Gagnon R, Peterson ML, Vézina M, Saint-Louis C, Landry A, Pinault J-F, Ouellet L, Beauchemin S, Beaubien S, Mathieu A, Benakli K, Wang Z, Brassard M, Lonergan D, Bilodeau F, Ramaseshan M, Fortin N, Lan R, Li S, Galaud F, Plourde V, Champagne M, Doucet A, Bhérer P, Gauthier M, Olsen G, Villeneuve G, Bhat S, Foucher L, Fortin D, Peng X, Bernard S, Drouin A, Déziel R, Berthiaume G, Dory YL, Fraser GL, Deslongchamps P (2008) Efficient parallel synthesis of macrocyclic peptidomimetics. Bioorg Med Chem Lett 18:4731–4735

    Article  CAS  PubMed  Google Scholar 

  149. Hoveyda HR, Marsault E, Gagnon R, Mathieu AP, Vézina M, Landry A, Wang Z, Benakli K, Beaubien S, Saint-Louis C, Brassard M, Pinault J-F, Ouellet L, Bhat S, Ramaseshan M, Peng X, Foucher L, Beauchemin S, Bhérer P, Veber DF, Peterson ML, Fraser GL (2011) Optimization of the potency and pharmacokinetic properties of a macrocyclic ghrelin receptor agonist (part I): development of Ulimorelin (TZP-101) from hit to clinic. J Med Chem 54:8305–8320

    Article  PubMed  CAS  Google Scholar 

  150. A. Alanine, J. Beignet, K. Bleicher, B. Fasching, H. Hilpert, T. Hu, D. Macdonald, S. Jackson, S. Kolczewski, C. Kroll, A. Schaeublin, H. Shen, T. Stoll, H. Thomas, A. Wahhab, C. Zampaloni (2017) Peptide macrocycles against Acinetobacter Baumannii WO 2017/072062

    Google Scholar 

  151. Tranzyme Press Release, 12 March 2012; Tranzyme Press Release, 25 May 2012

    Google Scholar 

  152. K. Möhle, M. Thommen, Ph. Ermert, D. Obrecht, unpublished results

    Google Scholar 

  153. Oueis E, Nardone B, Jaspars M, Westwood NJ, Naismith JH (2017) Synthesis of hybrid cyclopeptides through enzymatic macrocyclization. ChemistryOpen 6:11–14

    Article  CAS  PubMed  Google Scholar 

  154. Oueis E, Adamson C, Mann G, Ludewig H, Redpath P, Migaud M, Westwood NJ, Naismith JH (2015) Derivatisable cyanobactin analogues: a semisynthetic approach. Chembiochem 16:2646–2650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Schmidt M, Toplak A, Quaedflieg PJLM, Ippel H, Richelle GJJ, Hackeng TM, van Maarseveen JH, Nuijens T (2017) Omniligase-1: a powerful tool for peptide head-to-tail cyclization. Adv Synth Catal 359:2050–2055

    Article  CAS  Google Scholar 

  156. Nuijens T, Toplak A, van de Meulenreek MBAC, Schmidt M, Goldbach M, Quaedflieg PJLM (2016) Improved solid phase synthesis of peptide carboxyamidomethyl (cam) esters for enzymatic segment condensation. Tetrahedron Lett 57:3635–3638

    Article  CAS  Google Scholar 

  157. Seiple IB, Zhang Z, Jakubec P, Langlois-Mercier A, Wright PM, Hog DT, Yabu K, Allu SR, Fukuzaki T, Carlsen PN, Kitamura Y, Zhou X, Condakes ML, Szczypinski FT, Green WD, Myers AG (2016) Myers and colleagues previously described a comparable platform for the synthesis of macrolide antibiotics. Nature 533:338–345; for discussion c.f. M.Yan, P. S. Baran (2016) Nature 533:326–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Ermert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ermert, P., Luther, A., Zbinden, P., Obrecht, D. (2019). Frontier Between Cyclic Peptides and Macrocycles. In: Goetz, G. (eds) Cyclic Peptide Design. Methods in Molecular Biology, vol 2001. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9504-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9504-2_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9503-5

  • Online ISBN: 978-1-4939-9504-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics