Skip to main content

Criticism, Resistance, a Glimmer of Hope

  • Chapter
  • First Online:
The Major Metaphors of Evolution

Abstract

By the end of the twentieth century, neo-Darwinism had morphed from the New Synthesis to the Hardened Synthesis. At the same time, major contributions from molecular genetics and developmental biology made shortcomings and contradictions in the hardened synthesis evident. More fundamentally, insights from two seemingly disparate sources, phylogenetic systematics and complex systems theory, threatened to erode the foundation of the hardened synthesis by re-elevating the Nature of the Organism to its Darwinian status and returning history to its essential role in biological explanations. Yet, as the twenty-first century dawned, none of those insights were able to penetrate the core of the hardened synthesis. Staunch proponents maintained the status quo, arguing that any aspect of the nature of the organism, including their historicity and cohesive inheritance and developmental natures, could be subsumed by the consensus framework. As a result, none of the core shortcomings recognized in the last 20 years of the twentieth century have been resolved; they have simply been shunted aside by what has become the Extended Hardened Synthesis. Evolutionary theory cannot move forward without the true integration of novel insights. Three independent proposals for conceptual frameworks from the period 1980–1995 make virtually identical core assertions, have complementary foci of attention, and most importantly are radical in the sense that they returned to the roots of Darwinism. They sowed the seeds then for where we are today—on the brink of going “back to the future” to reset the evolutionary narrative, rediscovering and extending the panoramic and inclusive framework that Darwin proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberch P, Gould SJ, Oster GF, Wake DB (1979) Size and shape in ontogeny and phylogeny. Paleobiology 5:296–315

    Google Scholar 

  • Armbruster WS (1994) Early evolution of Dalechampia (Euphorbiaceae): insights from phylogeny, biogeography, and comparative biology. Ann Mo Bot Garden 81:302–316

    Google Scholar 

  • Avise JC (1989) Gene trees and organismal histories: a phylogenetic approach to population biology. Evolution 43:1192–1208

    PubMed  Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Bak P (1996) How nature works: the science of self-organized criticality. Copernicus, New York

    Google Scholar 

  • Barrowclough GF, Gutierrez RJ, Groth GG (1999) Phylogeography of spotted owl (Strix occidentalis) populations based on mitochondrial DNA sequences: gene flow, genetic structure, and a novel biogeographic pattern. Evolution 53:919–931

    CAS  PubMed  Google Scholar 

  • Beatty J (1994) Theoretical pluralism in biology. In: Grande L, Rieppel O (eds) Interpreting the hierarchy of nature: from systematic patterns to evolutionary process theories. Academic, London, pp 33–57

    Google Scholar 

  • Boas F (1896) The limitations of the comparative method in anthropology. Science 4:901–908

    CAS  PubMed  Google Scholar 

  • Boas F (1898) A precise criterion of species. Science 7:860–861

    CAS  PubMed  Google Scholar 

  • Boucot AJ (1975a) Standing diversity of fossil groups in successive intervals of geologic time viewed in the light of changing levels of provincialism. J Paleontol 49:1105–1111

    Google Scholar 

  • Boucot AJ (1975b) Evolution and extinction rate controls. Elsevier, New York

    Google Scholar 

  • Boucot AJ (1981) Principles of benthic marine paleoecology. Academic, New York

    Google Scholar 

  • Boucot AJ (1982) Paleobiologic evidence of behavioral evolution and coevolution. By the author, Corvallis

    Google Scholar 

  • Boucot AJ (1983) Does evolution take place in an ecological vacuum? J Paleontol 57:1–30

    Google Scholar 

  • Boucot AJ (1990) Community evolution: its evolutionary and biostratigraphic significance. In: Miller W III (ed) Paleocommunity temporal dynamics: the long-term development of multi-species assemblies. The Paleontological Society Special Publication No 5, pp 48–70

    Google Scholar 

  • Brooks DR (1979) Testing the context and extent of host-parasite coevolution. Syst Zool 28:299–307

    Google Scholar 

  • Brooks DR (1985) Historical ecology: a new approach to studying the evolution of ecological associations. Ann Mo Bot Garden 72:660–680

    Google Scholar 

  • Brooks DR (1990) Parsimony analysis in historical biogeography and coevolution: methodological and theoretical update. Syst Zool 39:14–30

    Google Scholar 

  • Brooks DR (1992) Incorporating origins into evolutionary theory. In: Varela F, Dupuy JP (eds) Understanding origins: contemporary ideas on the genesis of life, mind and society. Reidel/Kluwer Associates, Amsterdam, pp 191–212

    Google Scholar 

  • Brooks DR (1994) Entropy, information and evolving biological systems. Theor Hist Sci 4:31–49

    Google Scholar 

  • Brooks DR (1997) Biological evolution as a microcosm of cosmological evolution. Bridges 4:9–35

    Google Scholar 

  • Brooks DR (1998) The unified theory of evolution and selection processes. In: van de Vijver G, Salthe SN, Delpos M (eds) Evolutionary systems: biological and epistemological perspectives on selection and self-organization. Kluwer Academic, Dordrecht, pp 113–128

    Google Scholar 

  • Brooks DR (2000) The nature of the organism: life has a life of its own. Proc NY Acad Sci 901:257–265

    CAS  Google Scholar 

  • Brooks DR, Agosta SJ (2012) Children of time: the extended synthesis and major metaphors of evolution. Fortschr Zool 29:497–514

    Google Scholar 

  • Brooks DR, McLennan DA (1990) Searching for a general theory of biological evolution. J Ideas 1:35–46

    Google Scholar 

  • Brooks DR, McLennan DA (1991) Phylogeny, ecology and behavior: a research program in comparative biology. University of Chicago Press, Chicago

    Google Scholar 

  • Brooks DR, McLennan DA (1993a) Historical ecology: examining phylogenetic components of community evolution. In: Ricklefs RE, Schluter D (eds) Species diversity in ecological communities. University of Chicago Press, Chicago, pp 267–280

    Google Scholar 

  • Brooks DR, McLennan DA (1993b) Parascript: parasites and the language of evolution. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Brooks DR, McLennan DA (1994) Historical ecology as a research programme: scope, limitations and the future. In: Eggleton P, Vane-Wright R (eds) Phylogenetics and ecology. Linnaean society symposium series no. 17. Academic Press, London, pp 1–27

    Google Scholar 

  • Brooks DR, McLennan DA (1997) Biological signals as material phenomena. Rev pensee d’aujord d’hui 25:118–127. [in Japanese]

    Google Scholar 

  • Brooks DR, McLennan DA (2002) The nature of diversity: an evolutionary voyage of discovery. University of Chicago Press, Chicago

    Google Scholar 

  • Brooks DR, Wiley EO (1986) Evolution as entropy: toward a unified theory of biology, 1st edn. University of Chicago Press, Chicago

    Google Scholar 

  • Brooks DR, Wiley EO (1988) Evolution as entropy: toward a unified theory of biology, 2nd edn. University of Chicago Press, Chicago

    Google Scholar 

  • Brooks DR, Bandoni SM, Macdonald CM, O’Grady RT (1989) Aspects of the phylogeny of the Trematoda Rudolphi, 1808 (Platyhelminthes: Cercomeria). Can J Zool 67:2609–2624

    Google Scholar 

  • Brooks DR, Hoberg EP, Boeger WA (2019) The Stockholm paradigm: climate change and emerging disease. University of Chicago Press, Chicago

    Google Scholar 

  • Brown JH (1995) Macroecology. University of Chicago Press, Chicago

    Google Scholar 

  • Brown JH, Maurer BA (1989) Macroecology: the division of food and space among species on continents. Science 243:1145–1150

    CAS  PubMed  Google Scholar 

  • Brundin L (1972) Evolution, causal biology and classification. Zool Scripta 1:107–120

    Google Scholar 

  • Callebaut W, Müller GB, Newman SA (2007) The organismic systems approach: Evo-Devo and the streamlining of the naturalistic agenda. In: Sansom RE, Brandon B (eds) Integrating evolution and development. From theory to practice. MIT Press, Cambridge, MA, pp 25–92

    Google Scholar 

  • Charlesworth B, Lande R, Slatkin M (1982) A neo-darwinian commentary on macroevolution. Evolution 36:474–498

    PubMed  Google Scholar 

  • Chernoff B (1982) Character variation among populations and the analysis of biogeography. Am Zool 22:425–439

    Google Scholar 

  • Cheverud JM, Dow MM, Leutenegger W (1985) The quantitative assessment of phylogenetic constraints in comparative analyses: sexual dimorphism in body weight among primates. Evolution 39:1335–1351

    PubMed  Google Scholar 

  • Clutton-Brock TH, Harvey PH (1977) Primate ecology and social organization. J Zool Lond 183:1–39

    Google Scholar 

  • Clutton-Brock TH, Harvey PH (1984) Comparative approaches to investigating adaptation. In: Krebs JR, Davies NB (eds) Behavioural ecology: an evolutionary approach, 2nd edn. Sinauer, Sunderland, pp 7–29

    Google Scholar 

  • Coddington JA (1988) Cladistic tests of adaptational hypotheses. Cladistics 4:3–22

    Google Scholar 

  • Coddington JA (1990) Bridges between evolutionary pattern and process. Cladistics 6:379–386

    Google Scholar 

  • Coddington JA (1992) Avoiding phylogenetic bias. Trends Ecol Evol 7:68–69

    Google Scholar 

  • Coddington JA (1994) The roles of homology and convergence in studies of adaptation. In: Eggleton P, Vane-Wright R (eds) Phylogenetics and ecology. Academic, London, pp 53–78

    Google Scholar 

  • Collier J (1986) Entropy in evolution. Biol Philos 1:5–24

    Google Scholar 

  • Collier J (1988) The dynamics of biological order. In: Weber BH, Depew DJ, Smith JD (eds) Information, entropy and evolution: new perspectives on physical and biological evolution. MIT Press, Cambridge, MA, pp 227–242

    Google Scholar 

  • Collier J (1990) Two faces of Maxwell’s demon reveal the nature of irreversibility. Stud Hist Phil Sci 21:257–268

    Google Scholar 

  • Collier J (1998) Information increase in biological systems: how does adaptation fit? In: van de Vijver G, Salthe SN, Delpos M (eds) Evolutionary systems: biological and epistemological perspectives on selection and self-organization. Kluwer Academic, Dordrecht, pp 129–140

    Google Scholar 

  • Collier J (2000) The dynamical basis of information and the origins of semiosis. In: Taborsky E (ed) Semiotics, evolution, energy. Shaker, Aachen, pp 111–138

    Google Scholar 

  • Collier J, Hooker C (1999) Complexly organised dynamical systems. Open Syst Inf Dyn 6:241–302

    Google Scholar 

  • Corning PA (1995) Synergy and self-organization in the evolution of complex systems. Syst Res 12:89–121

    Google Scholar 

  • Cowan G, Pines D, Melzner D (eds) (1994) Complexity: metaphors, models and reality. Addison-Wesley, Reading

    Google Scholar 

  • Crespi BJ (1996) Comparative analysis of the origins and losses of eusociality: causal mosaics and historical uniqueness. In: Martins EP (ed) Phylogenies and the comparative method in animal behavior. Oxford University Press, New York, pp 253–287

    Google Scholar 

  • Croizat L, Nelson G, Rosen DE (1974) Centers of origin and related concepts. Syst Zool 23:265–287

    Google Scholar 

  • Csanyi V (1989) Evolutionary systems and society: a general theory. Duke University Press, Durham

    Google Scholar 

  • Darwin C (1872) Origin of species. John Murray, London

    Google Scholar 

  • Day RL, Laland KN, Odling-Schmee FJ (2003) Rethinking adaptation: the niche-constructive perspective. Perspect Biol Med 46:80–95

    CAS  PubMed  Google Scholar 

  • Depew D, Weber B (1995) Darwinism evolving. Bradford Books, Cambridge

    Google Scholar 

  • Dietz RS, Holden JC (1966) Miogeoclines (Miogeosynclines) in space and time. J Geol 74:566–583

    Google Scholar 

  • Donoghue MJ (1990) Why parsimony? Evolution 44:1121–1123

    PubMed  Google Scholar 

  • Dunham AE, Miles DB (1985) Patterns of covariation in the life history traits of squamate reptiles: the effects of size and phylogeny reconsidered. Am Nat 126:231–257

    Google Scholar 

  • Eldredge N (1979) Alternative approaches to evolutionary theory. In: Schwartz JH, Rollins HB (eds) Models and methodologies in evolutionary theory. Bull Carnegie Mus Nat Hist 13:7–19

    Google Scholar 

  • Eldredge N (1985) The ontology of species. In: Vrba E (ed) Species and speciation, Transvaal Mus. Monogr. No., vol 4, pp 17–20

    Google Scholar 

  • Eldredge N (1986) Information, economics and evolution. Ann Rev Ecol Syst 17:351–369

    Google Scholar 

  • Eldredge N (1995) Reinventing Darwin: the great debate at the high table of evolutionary theory. Wiley, New York

    Google Scholar 

  • Eldredge N, Gould SJ (1972) Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf TJM (ed) Models in paleobiology. W.H. Freeman, San Francisco, pp 82–115

    Google Scholar 

  • Eldredge N, Salthe SN (1984) Hierarchy and evolution. In: Dawkins R, Ridley M (eds) Oxford surveys in evolutionary biology, vol 1. Oxford University Press, Oxford, pp 182–206

    Google Scholar 

  • Ellsworth DL, Honeycutt LR, Silvy NJ, Bickham JW, Klimstra WD (1994) Historical biogeography and contemporary patterns of mitochondrial DNA variation in white-tailed deer from the southeastern United States. Evolution 48:122–136

    PubMed  Google Scholar 

  • Endler JA (1977) Geographic variation, speciation, and clines. Monographs in population biology #10. Princeton University Press, Princeton

    Google Scholar 

  • Febregas-Tejeda A, Vergara-Silva F (2018) The emerging structure of the extended evolutionary synthesis: where does evo-devo fit in? Theory Biosci 137:169–184

    Google Scholar 

  • Felsenstein J (1982) Numerical methods for inferring phylogenetic trees. Q Rev Biol 57:379–404

    Google Scholar 

  • Felsenstein J (1984) The statistical approach to inferring phylogeny and what it tells us about parsimony and compatibility. In: Duncan T, Stuessy TF (eds) Cladistics: perspectives on the reconstruction of evolutionary history. Columbia University Press, New York, pp 169–191

    Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Google Scholar 

  • Felsenstein J (1988) The detection of phylogeny. In: Hawksworth DL (ed) Prospects in systematics. Systematics association. Clarendon, Oxford, pp 112–127

    Google Scholar 

  • Fitter AH (1995) Interpreting quantitative and qualitative characteristics in comparative analyses. J Ecol 83:730

    Google Scholar 

  • Frost DR, Kluge AG (1994) A consideration of epistemology in systematic biology, with special reference to species. Cladistics 10:259–293

    Google Scholar 

  • Futuyma DJ (1989) Speciational trends and the role of species in macroevolution. Am Nat 134:318–321

    Google Scholar 

  • Gaarder J (1999) Maya. H. Aschehoug (W. Nygaard), Oslo

    Google Scholar 

  • Garland T Jr, Ives AR (2000) Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. Am Nat 155:346–364

    PubMed  Google Scholar 

  • Garland T Jr, Midford PE, Ives AR (1999) An introduction to phylogenetically based statistical methods, with a new method for confidence intervals on ancestral values. Am Zool 39:374–388

    Google Scholar 

  • Gittleman JL (1981) The phylogeny of parental care in fishes. Anim Behav 29:936–941

    Google Scholar 

  • Gladyshev GP (1996) Thermodynamic direction of biological evolution: model and reality. Izvestiya Akad Nauk Ser Biol 4:389–397

    Google Scholar 

  • Gladyshev GP, Kitaeva DK (1995) On thermodynamic direction of evolutionary processes. Izvestiya Rosk Akad Nauk Ser Biol 6:645–649

    Google Scholar 

  • Goodwin BC (1982) Development and evolution. J Theor Biol 97:43–55

    CAS  PubMed  Google Scholar 

  • Goodwin BC, Trainor LEH (1983) The ontogeny and phylogeny of the pentadactyl limb. In: Goodwin BC, Holder N, Wylie CG (eds) Development and evolution. Cambridge University Press, Cambridge, pp 75–98

    Google Scholar 

  • Gould SJ (1977) Ontogeny and phylogeny. Harvard University Press, Cambridge

    Google Scholar 

  • Gould SJ (1980) Is a new and general theory of evolution emerging? Paleobiology 6:119–120

    Google Scholar 

  • Gould SJ (1983) The hardening of the modern synthesis. In: Grene M (ed) Dimensions of Darwinism. Cambridge University Press, Cambridge, pp 71–93

    Google Scholar 

  • Gould SJ (1986) Evolution and the triumph of homology, or why history matters. Am Sci 74:60–69

    Google Scholar 

  • Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B 205:581–598

    CAS  PubMed  Google Scholar 

  • Haldane JBS (1927) Possible worlds and other essays. Chatto and Windus, London

    Google Scholar 

  • Hart MW, Byrne M, Smith MJ (1997) Molecular phylogenetic analysis of life-history evolution in asterinid starfish. Evolution 51:1848–1861

    PubMed  Google Scholar 

  • Harvey PH, Clutton-Brock T (1985) Life history variation in primates. Evolution 39:559–581

    PubMed  Google Scholar 

  • Harvey PH, Mace GM (1982) Comparisons between taxa and adaptive trends. In: King’s College Sociobiology Group (ed) Current problems in sociobiology. Cambridge University Press, Cambridge, pp 343–361

    Google Scholar 

  • Harvey PH, Pagel M (1991) The comparative method in evolutionary biology. Oxford University Press, Oxford

    Google Scholar 

  • Harvey PH, Read AF, Nee S (1995a) Why ecologists need to be phylogenetically challenged. J Ecol 83:535–536

    Google Scholar 

  • Harvey PH, Read AF, Nee S (1995b) Further remarks on the role of phylogeny in comparative ecology. J Ecol 83:733–734

    Google Scholar 

  • Hedin MC (1997) Speciational history in a diverse clade of habitat-specialized spiders (Araneae: Nesticidae: Nesticus): inferences from geographic-based sampling. Evolution 51:1929–1945

    PubMed  Google Scholar 

  • Hennig W (1950) Grundzüge einer theory der phylogenetischen Systematik. Deutscher Zentralverlag, Berlin

    Google Scholar 

  • Hennig W (1966) Phylogenetic systematics. University of Illinois Press, Urbana

    Google Scholar 

  • Herbert B, Anderson KJ (2006) Hunters of Dune. Tor, New York

    Google Scholar 

  • Hewzulla D, Boulter MC, Benton MJ, Halley JM (1999) Evolutionary patterns from mass originations and mass extinctions. Philos Trans R Soc Lond B 354:463–469

    CAS  Google Scholar 

  • Holland J (1995) Hidden order: how adaptation builds complexity. Addison-Wesley, Reading

    Google Scholar 

  • Huang S (2011) The molecular and mathematical basis of Waddington’s epigenetic landscape: a framework for post-Darwinian biology? BioEssays 34:149–157. https://doi.org/10.1002/bies.201100031

    Article  CAS  PubMed  Google Scholar 

  • Huey R, Garland T Jr, Turelli M (2019) Revisiting a key innovation in evolutionary biology: Felsenstein’s “phylogenies and the comparative method”. Am Nat 193:744–772

    Google Scholar 

  • Hull DL (1988) Science as a process. University of Chicago Press, Chicago

    Google Scholar 

  • Hunter E (1953) Blackboard jungle. Simon and Schuster, New York

    Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427

    Google Scholar 

  • Huxley JS (ed) (1942) Evolution, the modern synthesis. Allen and Unwin, London

    Google Scholar 

  • Juarrero A (1999) Dynamics in action: intentional behavior as a complex system, 1st edn. MIT, Boston

    Google Scholar 

  • Juarrero A (2002) Dynamics in action: intentional behavior as a complex system, 2nd edn. MIT, Boston

    Google Scholar 

  • Kampis G (1991) Self-modifying systems in biology and cognitive science: a new framework for dynamics, information and complexity. Pergamon, Oxford

    Google Scholar 

  • Kampis G (1998) Evolution as its own cause and effect. In: van de Vijver G, Salthe SN, Delpos M (eds) Evolutionary systems: biological and epistemological perspectives on selection and self-organization. Kluwer Academic, Dordrecht, pp 255–265

    Google Scholar 

  • Kauffman SA (1986) Autocatalytic sets of proteins. J Theor Biol 119:1–24

    CAS  PubMed  Google Scholar 

  • Kauffman S (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, Oxford

    Google Scholar 

  • Kjellstrom G (1996) Evolution as a statistical optimization algorithm. Evol Theory 11:105–117

    Google Scholar 

  • Kjellstrom G, Taxen L (1981) Stochastic optimization in system design. IEEE Trans Circuit Syst CAS-28:702–715

    Google Scholar 

  • Klein NK, Brown WM (1994) Intraspecific molecular phylogeny in the yellow warbler (Dendroica petechia), and implications for avian biogeography in the West Indies. Evolution 48:1914–1932

    PubMed  Google Scholar 

  • Kluge AG (1990) Species as historical individuals. Biol Philos 5:417–431

    Google Scholar 

  • Korb KB, Dorin A (2011) Evolution unbound: releasing the arrow of complexity. Biol Philos 26:317–338

    Google Scholar 

  • Kornet DJ (1993a) Permanent splits as speciation events: a formal reconstruction of the internodal species concept. J Theor Biol 164:407–435

    Google Scholar 

  • Kornet DJ (1993b) Reconstructing species: demarcations in genealogical networks (Ph.D. Dissertation). Leiden University, Leiden

    Google Scholar 

  • Kornet DJ, McAllister JW (1993) The composite species concept. In: Kornet DJ (ed) Reconstructing species: demarcations in genealogical networks. Ph.D. Dissertation. Leiden University, Leiden, pp 61–89

    Google Scholar 

  • Kornet DJ, Metz AJ, Schellinx HAJM (1995) Internodons as equivalence classes in the genealogical network: building-blocks for a rigorous species concept. J Math Biol 34:110–122

    Google Scholar 

  • Laland KN, Odling-Smee J, Hoppitt W, Uller T (2013) More on how and why: a response to commentaries. Biol Philos 28:793–810

    PubMed  PubMed Central  Google Scholar 

  • Laland K, Uller T, Feldman M, Sterelny K, Müller GB, Moczek A, Jablonka E, Odling-Smee J (2014) Does evolutionary theory need a re-think? Yes, urgently. Nature 514:161–164

    CAS  PubMed  Google Scholar 

  • Laland KN, Uller T, Feldman MW, Sterelny K, Muller GB, Moczek A, Jablonka E, Odling-Smee J (2015) The extended evolutionary synthesis: its structure, assumptions and predictions. Proc R Soc B 282:20151019. https://doi.org/10.1098/rspb.2015.1019

    Article  PubMed  Google Scholar 

  • Landweber LF, Simon PJ, Wagner TA (1998) Ribozyme engineering and early evolution. Bioscience 48:94–103

    Google Scholar 

  • Layzer D (1978) A macroscopic approach to population genetics. J Theor Biol 73:769–788

    CAS  PubMed  Google Scholar 

  • Layzer D (1980) Genetic variation and progressive evolution. Am Nat 115:809–826

    Google Scholar 

  • Lessios HA, Kessing BD, Roberston DR, Paulay G (1999) Phylogeography of the pantropical sea urchin Eucidaris in relation to land barriers and ocean currents. Evolution 53:806–817

    CAS  PubMed  Google Scholar 

  • Lewontin RC (1966) The principle of historicity in evolution. In: Moorhead PS, Kaplan MM (eds) Mathematical challenges to the neo-Darwinian interpretation of evolution. Alan R. Liss, New York, pp 81–94

    Google Scholar 

  • Lewontin RC (1978) Adapt Sci Am 239:212–230

    CAS  Google Scholar 

  • Lewontin RC (1983) Gene, organism, and environment. In: Bendall DS (ed) Evolution from molecules to men. Cambridge University Press, Cambridge, pp 273–285

    Google Scholar 

  • Losos JB, Arnold SJ, Bejerano G, Brodie ED III, Hibbett D, Hoekstra HE, Mindell DP, Monteiro A, Moritz C, Orr HA, Petrov DA, Renner SS, Ricklefs RE, Soltis PS, Turner TL (2013) Evolutionary biology for the 21st century. PLoS Biol 11:e1001466. https://doi.org/10.1371/journal.pbio.1001466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Löther R (1990) Species and monophyletic taxa as individual substantial systems. In: Baas P, Kalkman K, Geesink R (eds) The plant diversity of Malesia. Kluwer Academic, The Hague, pp 371–378

    Google Scholar 

  • Mabee PM (1993) Phylogenetic interpretation of ontogenetic change: sorting out the actual and artefactual in an empirical case study of centrarchid fishes. Biol J Linn Soc 107:175–291

    Google Scholar 

  • Mabee PM (2000) Developmental data and phylogenetic systematics: evolution of the vertebrate limb. Am Zool 40:789–800

    Google Scholar 

  • Mabee PM, Humphries J (1993) Coding polymorphic data: examples from allozymes and ontogeny. Syst Biol 42:166–181

    Google Scholar 

  • Maddison WP (1990) A method for testing the correlated evolution of two binary characters: are gains and losses concentrated on certain branches of a phylogenetic tree? Evolution 44:539–557

    PubMed  Google Scholar 

  • Maddison DR (1994) Phylogenetic methods for inferring the evolutionary history and processes of change in discretely valued characters. Annu Rev Entomol 39:267–292

    Google Scholar 

  • Maddison WP, Maddison DR (2000) MacClade. Analysis of hylogeny and character evolution. Version 4. Sinauer Association, Sunderland

    Google Scholar 

  • Matsuno K (1989) Protobiology: physical basis of biology. CRC, Boca Raton

    Google Scholar 

  • Matsuno K (1995) Consumer power as the major evolutionary force. J Theor Biol 173:137–145

    CAS  PubMed  Google Scholar 

  • Matsuno K (1998) Competence of natural languages for describing the physical origin of life. In: van de Vijver G, Salthe SN, Delpos M (eds) Evolutionary systems: biological and epistemological perspectives on selection and self-organization. Kluwer Academic, Dordrecht, pp 295–306

    Google Scholar 

  • Maurer BA (1999) Untangling ecological complexity: the macroscopic perspective. University of Chicago Press, Chicago

    Google Scholar 

  • Maurer BA, Brooks DR (1991) Energy flow and entropy production in biological systems. J Ideas 2:48–53

    Google Scholar 

  • Maurer BA, Brown JH, Rusler RD (1992) The micro and macro in body size evolution. Evolution 46:939–953

    PubMed  Google Scholar 

  • Maynard Smith J (1968) Mathematical ideas in biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Maynard Smith J (1970) Time in the evolutionary process. Stud Gen 23:266–272

    Google Scholar 

  • Maynard Smith J (1972) On evolution. Edinburgh University Press, Edinburgh

    Google Scholar 

  • Maynard Smith J (1974) Models in ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Maynard Smith J (1976) What determines the rate of evolution? Am Nat 110:331–338

    Google Scholar 

  • Maynard Smith J (1978) The evolution of sex. Cambridge University Press, Cambridge

    Google Scholar 

  • Maynard Smith J (ed) (1981) Evolution now. Macmillan, London

    Google Scholar 

  • Maynard Smith J (1986) The problems of biology. Oxford University Press, Oxford

    Google Scholar 

  • Maynard Smith J (1988) Did Darwin get it right?: essays on games, sex and evolution. Chapman & Hall, London

    Google Scholar 

  • Maynard Smith J (1989) Evolutionary genetics. Oxford University Press, Oxford

    Google Scholar 

  • Maynard Smith J (1993) The theory of evolution, 2nd edn. Penguin Books, London

    Google Scholar 

  • Maynard Smith J, Price GR (1973) The logic of animal conflict. Nature 246:15–18

    Google Scholar 

  • Maynard Smith J, Szathmary E (1995) The major transitions in evolution. W.H. Freeman, Oxford

    Google Scholar 

  • Maynard Smith J, Burian R, Kauffman S, Alberch P, Campbell J, Goodwin B, Lande R, Raup D, Wolpert L (1985) Developmental constraints and evolution. Q Rev Biol 60:265–287

    Google Scholar 

  • McKitrick MC (1994) On homology and ontological relationship of parts. Syst Biol 43:1–10

    Google Scholar 

  • McLennan DA (1991) Integrating phylogeny and experimental ethology: from pattern to process. Evolution 45:1773–1178

    PubMed  Google Scholar 

  • McLennan DA (1993) Phylogenetic relationships in the Gasterosteidae: an updated tree based on behavioral characters with a discussion of homoplasy. Copeia 1993:318–326

    Google Scholar 

  • McLennan DA (1994) A phylogenetic approach to the evolution of fish behaviour. Fish Biol Fish 4:430–460

    Google Scholar 

  • McLennan DA (1996) Integrating phylogenetic and experimental analyses: the evolution of male and female nuptial coloration in the Gasterosteidae. Syst Biol 45:261–277

    Google Scholar 

  • McLennan DA (2000) The macroevolutionary diversification of female and male components of the stickleback breeding system. Behaviour 137:1029–1045

    Google Scholar 

  • McLennan DA, Brooks DR, McPhail JD (1988) The benefits of communication between comparative ethology and phylogenetic systematics: a case study using gasterosteid fishes. Can J Zool 66:2177–2190

    Google Scholar 

  • McShea DW, Changizi MA (2003) Three puzzles of hierarchical evolution. Integr Comp Biol 43:74–81

    PubMed  Google Scholar 

  • Mesoudi A, Blanchet AS, Charmantier A, Danchin E, Fogarty L, Jablonka E, Laland KN, Morgan TJH, Muller GB, Odling-Smee FJ, Pujol B (2013) Is non-genetic inheritance just a proximate mechanism? A corroboration of the extended evolutionary synthesis. Biol Theory 7:189–195

    Google Scholar 

  • Morgan TH (1932) The scientific basis of evolution. W.W. Norton and Co, New York

    Google Scholar 

  • Moyers B (1987) The power of myth. Public Broadcasting System television series

    Google Scholar 

  • Muller GB (2017) Why an extended evolutionary synthesis is necessary. Interface Focus 7:20170065. https://doi.org/10.1098/rsfs.2017.0065

    Article  PubMed  PubMed Central  Google Scholar 

  • Myers CE, Saupe EE (2013) A macroevolutionary expansion of the modern synthesis and the importance of extrinsic abiotic factors. Palaeontology 2013:1–20

    Google Scholar 

  • Nelson G, Platnick N (1981) Systematics and biogeography: cladistics and vicariance. Columbia University Press, New York

    Google Scholar 

  • Nelson G, Rosen DE (eds) (1980) Vicariance biogeography: a critique. Columbia University Press, New York

    Google Scholar 

  • Newman SA (1970) Note on complex systems. J Theor Biol 28:411–413

    CAS  PubMed  Google Scholar 

  • Niklas KJ (1999) Evolutionary walks through a land plant morphospace. J Exp Bot 50:39–52

    CAS  Google Scholar 

  • Niklas K (2004) Computer models of early plant evolution. Annu Rev Earth Planet Sci 32:47–66

    CAS  Google Scholar 

  • O’Hara RJ (1993) Systematic generalization, historical fate, and the species problem. Syst Biol 42:231–246

    Google Scholar 

  • O’Hara RJ (1994) Evolutionary history and the species problem. Am Zool 34:12–22

    Google Scholar 

  • Odling-Schmee FJ (1988) Niche constructing phenotypes. In: Plotkin HC (ed) The role of behavior in evolution. MIT Press, Cambridge, MA, pp 73–132

    Google Scholar 

  • Odling-Schmee FJ, Laland KN, Feldman MW (1996) Niche construction. Am Nat 147:641–648

    Google Scholar 

  • Pagel MD (1994) Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc R Soc Lond B 255:37–45

    Google Scholar 

  • Patterson C (1982) Morphological characters and homology. In: Joysey KA, Friday AE (eds) Problems of phylogeny reconstruction. Academic, London, pp 21–74

    Google Scholar 

  • Phillips CA (1994) Geographic distribution of mitochondrial DNA variants and the historical biogeography of the spotted salamander, Ambystoma maculatum. Evolution 48:597–607

    PubMed  Google Scholar 

  • Pigliucci M (2007) Do we need an extended evolutionary synthesis? Evolution 61:2743–2749

    PubMed  Google Scholar 

  • Pigliucci M (2009) An extended synthesis for evolutionary biology. Ann NY Acad Sci 1168:218–228

    PubMed  Google Scholar 

  • Pigliucci M, Muller GB (eds) (2010) Evolution – the extended synthesis. MIT, Cambridge

    Google Scholar 

  • Platnick NI, Nelson G (1978) A method of analysis for historical biogeography. Syst Zool 27:1–16

    Google Scholar 

  • Raff RA (1996) The shape of life: genes, development, and the evolution of animal form. University of Chicago Press, Chicago

    Google Scholar 

  • Raup DM, Gould SJ (1974) Stochastic simulation and evolution of morphology – towards a nomothetic paleontology. Syst Zool 23:305–322

    Google Scholar 

  • Read AF, Nee S (1995) Inference from binary comparative data. J Theor Biol 173:99–108

    Google Scholar 

  • Reilly SM, Wiley EO, Meinhardt DJ (1997) An integrative approach to heterochrony: the distinction between interspecific and intraspecific phenomena. Biol J Linn Soc 60:119–143

    Google Scholar 

  • Ricklefs RE (1987) Community diversity: relative roles of local and regional processes. Science 235:167–171

    CAS  PubMed  Google Scholar 

  • Riddle BR (1996) The molecular phylogeographic bridge between deep and shallow history in continental biotas. Trends Ecol Evol 11:207–211

    CAS  PubMed  Google Scholar 

  • Ridley M (1983) The explanation of organic diversity: the comparative method and adaptations for mating. Clarendon, Oxford

    Google Scholar 

  • Riedl R (1978) Order in living organisms. Wiley, New York

    Google Scholar 

  • Rieppel O (1992) Homology and logical fallacy. J Evol Biol 5:701–715

    Google Scholar 

  • Rocha LM (1998) Selected self-organization and the semiotics of evolutionary systems. In: Van de Vijver G, Salthe SN, Delpos M (eds) Evolutionary systems: biological and epistemological perspectives on selection and self-organization. Kluwer Academic, Dordrecht, pp 341–358

    Google Scholar 

  • Rose MR, Oakley TH (2007) The new biology: beyond the modern synthesis. Biol Direct 2:30. https://doi.org/10.1186/1745-6150-2-30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosen DE (1975) A vicariance model of Caribbean biogeography. Syst Zool 24:431–464

    Google Scholar 

  • Rosen DE (1978) Vicariant patterns and historical explanation in biogeography. Syst Zool 27:159–188

    Google Scholar 

  • Rosen DE (1979) Fishes from the uplands and intermontane basins of Guatemala: revisionary studies and comparative biogeography. Bull Am Mus Nat Hist 162:267–376

    Google Scholar 

  • Rosen DE (1985) Geological hierarchies and biogeographic congruence in the Caribbean. Ann Mo Bot Garden 72:636–659

    Google Scholar 

  • Ross HH (1972a) The origin of species diversity in ecological communities. Taxon 21:253–259

    Google Scholar 

  • Ross HH (1972b) An uncertainty principle in ecological evolution. In: Allen RT, James FC (eds) A symposium on ecosystematics. University Arkansas Mus. occ. paper, vol 4, pp 133–157

    Google Scholar 

  • Roth VL (1984) On homology. Biol J Linn Soc 22:13–29

    Google Scholar 

  • Roth VL (1988) The biological basis of homology. In: Humphries CJ (ed) Ontogeny and systematics. Columbia University Press, New York, pp 1–26

    Google Scholar 

  • Roth VL (1991) Homology and hierarchies: problems solved and unresolved. J Evol Biol 4:167–194

    Google Scholar 

  • Roth VL (1994) Within and between organisms: replicators, lineages, and homologues. In: Hall BK (ed) Homology: the hierarchical basis of comparative biology. New Academic, New York, pp 301–337

    Google Scholar 

  • Salthe SN (1985) Evolving hierarchical systems: their structure and representation. Columbia University Press, New York

    Google Scholar 

  • Salthe SN (1993) Development and evolution: complexity and change in biology. MIT, Boston

    Google Scholar 

  • Salthe SN (1998) The role of natural selection theory in understanding evolutionary systems. In: Van de Vijver G, Salthe SN, Delpos M (eds) Evolutionary systems: biological and epistemological perspectives on selection and self-organization. Kluwer Academic, Dordrecht, pp 13–20

    Google Scholar 

  • Schneider TD (1988) Information and entropy of patterns in genetic switches. In: Erickson GJ, Smith CR (eds) Maximum entropy and Bayesian methods in science and engineering, vol 2. Kluwer, Brussels, pp 147–154

    Google Scholar 

  • Schwenk K (1995) A utilitarian approach to evolutionary constraint. Zoology 98:251–262

    Google Scholar 

  • Schwenk K, Wagner GP (2001) Function and the evolution of phenotypic stability: connecting pattern with process. Am Zool 41:552–563

    Google Scholar 

  • Seutin G, Brawm J, Ricklefs RE, Bermingham E (1993) Genetic divergence among populations of a tropical passerine, the streaked saltator (Saltator albicolllis). Auk 110:117–126

    Google Scholar 

  • Shaffer HB, McKnight ML (1996) The polytypic species revisited: genetic differentiation and molecular phylogenetics of the tiger salamander Ambystoma tigrinum (Amphibia: Caudata) complex. Evolution 50:417–433

    CAS  PubMed  Google Scholar 

  • Sillén-Tullberg B (1993) The effect of biased inclusion of taxa on the correlation between discrete characters in phylogenetic trees. Evolution 47:1182–1191

    Google Scholar 

  • Simpson GG (1944) Tempo and mode in evolution. Columbia University Press, New York

    Google Scholar 

  • Simpson GG (1953) The major features of evolution. Columbia University Press, New York

    Google Scholar 

  • Smith JDH (1988) A class of mathematical models for evolution and hierarchical information theory. Inst Math Appl Preprint Series 396:1–13

    Google Scholar 

  • Smith JDH (1998) Canonical ensembles, competing species, and the arrow of time. In: Van de Vijver G, Salthe SN, Delpos M (eds) Evolutionary systems: biological and epistemological perspectives on selection and self-organization. Kluwer Academic, Dordrecht, pp 141–154

    Google Scholar 

  • Sober E (1988) Reconstructing the past: parsimony, evolution and inference. MIT, Cambridge

    Google Scholar 

  • Sokal RR, Sneath PHA (1963) The principles of numerical taxonomy. W. H. Freeman, San Francisco, CA

    Google Scholar 

  • Soto A, Longo G, Miquel PA, Montevil M, Mossio M, Perret N, Pocheville A, Sonnenschein C (2016) Toward a theory of organisms: three founding principles in search of a useful integration. Prog Biophys Mol Biol 122:77–82

    PubMed  PubMed Central  Google Scholar 

  • Stenseth NC (1984) Why mathematical models in evolutionary ecology? In: Cooley JH, Golley FB (eds) Trends for ecological research for the 1980’s. Plenum, New York, pp 239–287

    Google Scholar 

  • Stocking GW Jr (1968) Race, culture and evolution. University of Chicago Press, Chicago, IL

    Google Scholar 

  • Swofford DL, Olsen GJ (1990) Phylogeny reconstruction. In: Hillis DM, Moritz C (eds) Molecular systematics. Sinauer Assoc, Sunderland, pp 411–501

    Google Scholar 

  • Trivers RL (1972) Parental investment and sexual selection. In: Campbell B (ed) Sexual selection and the descent of man, 1871–1971. Aldine, Chicago, pp 136–179

    Google Scholar 

  • Tuomi J, Vuorisalo T, Laihonen P (1988) Components of selection: an expanded theory of natural selection. In: de Jong G (ed) Population genetics and evolution. Springer, Berlin, pp 109–118

    Google Scholar 

  • Ulanowicz RE (1986) Growth and development: ecosystems phenomenology. Springer, New York

    Google Scholar 

  • Ulanowicz RE (1997) Ecology: the ascendent perspective. Columbia University Press, New York

    Google Scholar 

  • van de Vijver G, Salthe SN, Delpos M (eds) (1998) Evolutionary systems: biological and epistemological perspectives on selection and self-organization. Kluwer Academic, Dordrecht

    Google Scholar 

  • Vogel G (1998) Tracking the history of the genetic code. Science 281:329–331

    CAS  PubMed  Google Scholar 

  • Wagner GP (1984) Coevolution of functionally constrained characters: prerequisites for adaptive versatility. Biosystems 17:51–55

    CAS  PubMed  Google Scholar 

  • Wagner GP (1985) The adaptive significance of developmental constraints. In: Proceedings of international symposium evolution and morphogenesis. Academia, Prague, pp 97–103

    Google Scholar 

  • Wagner GP, Schwenk K (2000) Evolutionary stable configurations: functional integration and the evolution of phenotypic stability. Evol Biol 31:155–217

    Google Scholar 

  • Wake DB, Roth G (eds) (1989) Complex organismal functions: integration and evolution in vertebrates. Wiley, New York

    Google Scholar 

  • Wake DB, Roth G, Wake MH (1983) On the problem of stasis in organismal evolution. J Theor Biol 101:211–224

    Google Scholar 

  • Wanntorp H-E (1983) Historical constraints in adaptation theory: traits and non-traits. Oikos 41:157–160

    Google Scholar 

  • Wanntorp H-E, Brooks DR, Nilsson T, Nylin S, Ronqvist F, Stearns SC, Weddell N (1990) Phylogenetic approaches in ecology. Oikos 57:119–132

    Google Scholar 

  • Watts P (2006) Blindsight. Tor, New York

    Google Scholar 

  • Weber BH (2011) Extending and expanding the Darwinian synthesis: the role of complex systems dynamics. Stud Hist Phil Biol Biomed Sci 42:75–81

    Google Scholar 

  • Weber BH, Depew D, Smith JD (1988) Entropy, information and evolution. MIT, Cambridge

    Google Scholar 

  • Werdelin L, Sillen-Tullberg B (1995) A comparison of two methods to study correlated discrete characters on phylogenetic trees. Cladistics 11:265–277

    Google Scholar 

  • Westoby M, Leishman MR, Lord JM (1995a) On misinterpreting the “phylogenetic correction”. J Ecol 83:531–534

    Google Scholar 

  • Westoby M, Leishman MR, Lord JM (1995b) Further remarks on phylogenetic correction. J Ecol 83:727–730

    Google Scholar 

  • Wicken JS (1987) Evolution, thermodynamics and information: extending the Darwinian paradigm. Oxford University Press, Oxford

    Google Scholar 

  • Wiley EO (1978) The evolutionary species concept reconsidered. Syst Zool 27:17–26

    Google Scholar 

  • Wiley EO (1980) Is the evolutionary species concept fiction? A consideration of classes, individuals, and historical entities. Syst Zool 29:76–80

    Google Scholar 

  • Wiley EO (1981) Phylogenetics: the theory and practice of phylogenetic systematics. Wiley, New York

    Google Scholar 

  • Wiley EO (1986) The evolutionary basis for phylogenetic classification. In: Hovenkamp P (ed) Systematics and evolution: a matter of diversity. Utrecht University Press, Utrecht, pp 55–64

    Google Scholar 

  • Wiley EO, Brooks DR (1982) Victims of history – a nonequilibrium approach to evolution. Syst Zool 31:1–24

    Google Scholar 

  • Wiley EO, Siegel-Causey DJ, Brooks DR, Funk VA (1991) The compleat cladist: a primer of phylogenetic procedures. Special Publ. Mus. Nat. Hist. Univ. Kansas, Lawrence

    Google Scholar 

  • Wilson EO (1965) A consistency test for phylogenies based on contemporaneous species. Syst Zool 14:214–220

    Google Scholar 

  • Wimsatt WC, Schanck JC (1988) Adaptations and the means of their avoidance. In: Nitecki MH (ed) Evolutionary progress. University of Chicago Press, Chicago, pp 000–000

    Google Scholar 

  • Windley BF (1986) The evolving continents. Wiley, New York

    Google Scholar 

  • Wray GA, Lowe CJ (2000) Developmental regulatory genes and echinoderm evolution. Syst Biol 49:28–51

    CAS  PubMed  Google Scholar 

  • Wray GA, Hoekstra HE, Futuyma DJ, Lenski RE, Mackay TFC, Schluter D, Strassman JE (2014) [Does evolutionary theory need a rethink?] No, all is well. Nature 514:161–164

    PubMed  Google Scholar 

  • Zink RM (1994) The geography of mitochondrial DNA variation, population structure, hybridization, and species limits in the fox sparrow (Passerella iliaca). Evolution 48:96–111

    PubMed  Google Scholar 

  • Zink RM (1996) Comparative phylogeography in North American birds. Evolution 50:308–317

    PubMed  Google Scholar 

  • Zotin AI, Zotina RS (1978) Experimental basis for qualitative phenomenological theory of development. In: Lamprecht I, Zotin AI (eds) Thermodynamics of biological processes. de Gruyter, Berlin, pp 61–84

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore J. Agosta .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agosta, S.J., Brooks, D.R. (2020). Criticism, Resistance, a Glimmer of Hope. In: The Major Metaphors of Evolution. Evolutionary Biology – New Perspectives on Its Development, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-52086-1_5

Download citation

Publish with us

Policies and ethics