Skip to main content

Communities of Small Terrestrial Arthropods Change Rapidly Along a Costa Rican Elevation Gradient

  • Chapter
  • First Online:
Neotropical Gradients and Their Analysis

Abstract

Biological diversity changes along montane slopes. Such changes are particularly stark in the neotropics due to the relative stability of abiotic variables (like temperature and precipitation) across elevation. While these relationships have been understood since the late 1960s, elucidating patterns of neotropical diversity along elevation is slowed by taxonomic impediments (including that most tropical arthropod species are not named) and by a general lack of quantified abiotic conditions (such as lapse rates) for specific neotropical mountains. In northwestern Costa Rica, in the Área de Conservación Guanacaste (ACG), we have worked to understand the elevational distribution of diverse leaf-litter fauna while collecting temperature data from coastal dry forest through rain forest into the cloud forest at the montane peaks of these volcanos. We found, the predictable pattern in the face of the climate crisis, that the cold, historically temperature invariant cloud forests are rapidly heating while the hot low elevation dry forests are not cooling off during the rainy season as they would have historically. To avoid the taxonomic impediment, we used DNA barcodes to focus on six taxa (Formicidae, Staphylinidae, Araneae, Collembola, Isopoda and the Microgastrinae) and found that the connection between alpha diversity and elevation was very dependent on the tax on in question (along elevation: some increased, some decreased, some displayed mid-elevational peaks and some no relationship). However, changes in betadiversity occurred with dramatic speed and were remarkably similar across taxa. To understand patterns of diversity and elevation in the neotropics we need to illuminate the biology of cryptic arthropod species. To communicate the sensitivity of neotropical elevation gradients to the climate crisis requires baseline data collection. Unfortunately, further study of these questions and collection of these data will not provide solutions to the underlying problems of the climate crisis in the neotropics. This requires (at least) three coincident strategies. Locally, increase the size of protected areas while concurrently maintaining and expanding long-term monitoring and expertise. Globally, accelerate and entrench strategies to reduce greenhouse gas emissions and transition to a low-carbon future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agosti D, Alonso LE (2000) In: Agosti D, Majer JD, Alonso LE, Schultz TR (eds) Ants. standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington, DC, pp 204–206

    Google Scholar 

  • Aguirre H, Shaw SR, Rodríguez-Jiménez A (2018) Contrasting patterns of altitudinal distribution between parasitoid wasps of the subfamilies Braconinae and Doryctinae (Hymenoptera: Braconidae). Insect Conserv Diver 11(3):219–229

    Google Scholar 

  • Andersen AN (1997) Functional groups and patterns of organization in North American ant communities: a comparison with Australia. J Biogeogr 24:433–460

    Google Scholar 

  • Anderson R, Ashe J (2000) Leaf litter inhabiting beetles as surrogates for establishing priorities for conservation of selected tropical montane cloud forests in Honduras, Central America (Coleoptera; Staphylinidae, Curculionidae). Biodivers Conserv 9(5):617–653

    Google Scholar 

  • Antão LH, Bates AE, Blowes SA, Waldock C, Supp SR, Magurran AE, Dornelas M, Schipper AM (2020) Temperature-related biodiversity change across temperate marine and terrestrial systems. Nat Ecol Evol 4(7):927–933

    PubMed  Google Scholar 

  • Antonelli A (2022) The rise and fall of Neotropical biodiversity. Bot J Linn Soc 199(1):8–24

    Google Scholar 

  • Antonelli A, Kissling WD, Flantua SGA, Bermúdez MA, Mulch A, Muellner-Riehl AN, Kreft H, Linder HP, Badgley C, Fjeldså J, Fritz SA, Rahbek C, Herman F, Hooghiemstra H, Hoorn C (2018) Geological and climatic influences on mountain biodiversity. Nat Geosci 11:718–725

    CAS  Google Scholar 

  • Barry RG (2008) Mountain weather and climate. Cambridge University Press, Cambridge

    Google Scholar 

  • Baselga A, Orme CDL (2012) Betapart: an R package for the study of beta diversity. Methods Ecol Evol:808–812

    Google Scholar 

  • Basset Y, Cizek L, Cuénoud P, Didham RK, Guilhaumon F, Missa O, Novotny V, Ødegaard F, Roslin T, Schmidl J, Tishechkin AK, Winchester NN, Roubik DW, Aberlenc H-P, Bail J, Barrios H, Bridle JR, Castaño-Meneses G, Corbara B, Curletti G, Duarte Da Rocha W, De Bakker D, Delabie JHC, Dejean A, Fagan LL, Floren A, Kitching RL, Medianero E, Miller SE, Gama De Oliveira E, Orivel J, Pollet M, Rapp M, Ribeiro SP, Roisin Y, Schmidt JB, Sørensen L, Leponce M (2012) Arthropod diversity in a tropical forest. Science 338(6113):1481–1484

    CAS  PubMed  Google Scholar 

  • Bates AE, Barrett NS, Stuart-Smith RD, Holbrook NJ, Thompson PA, Edgar GJ (2014) Resilience and signatures of tropicalization in protected reef fish communities. Nat Clim Chang 4(1):62–67

    Google Scholar 

  • Beck J, Mccain CM, Axmacher JC, Ashton LA, Bärtschi F, Brehm G, Choi SW, Cizek O, Colwell RK, Fiedler K, Francois CL, Highland S, Holloway JD, Intachat J, Kadlec T, Kitching RL, Maunsell SC, Merckx T, Nakamura A, Odell E, Sang W, Toko PS, Zamecnik J, Zou Y, Novotny V (2017) Elevational species richness gradients in a hyperdiverse insect taxon: a global meta-study on geometrid moths. Glob Ecol Biogeogr 26:412

    Google Scholar 

  • Beck MW (2017) ggord: ordination plots with ggplot2. R package version 1.0.0.: https://zenodo.org/badge/latestdoi/35334615

  • Bennett JM, Calosi P, Clusella-Trullas S, Martínez B, Sunday J, Algar AC, Araújo MB, Hawkins BA, Keith S, Kühn I, Rahbek C, Rodríguez L, Singer A, Villalobos F, Ángel Olalla-Tárraga M, Morales-Castilla I (2018) GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Sci Data 5(1):180022

    PubMed  PubMed Central  Google Scholar 

  • Betz O, Irmler U, Klimaszewski J, Gusarov VI, Chatzimanolis S, Asenjo A, Brunke AJ, Clarke DJ, Lipkow E, Buffam J, Work TT, Venier L, Koerner L, Dettner K, Jałoszyński P, Naomi S-I (2018) Biology of rove beetles (Staphylinidae): life history, evolution, ecology and distribution. Springer, Cham

    Google Scholar 

  • Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22(3):148–155

    PubMed  Google Scholar 

  • Binkenstein J, Klein A-M, Assmann T, Buscot F, Erfmeier A, Ma K, Pietsch KA, Schmidt K, Scholten T, Wubet T, Bruelheide H, Schuldt A, Staab M (2017) Multi-trophic guilds respond differently to changing elevation in a subtropical forest. Ecography 40:1–10

    Google Scholar 

  • Bishop T, Robertson M, Gibb H, Van Rensburg B, Braschler B, Chown S, Foord S, Munyai T, Okey I, Tshivhandekano P, Werenkraut V (2016) Ant assemblages have darker and larger members in cold environments. Glob Ecol Biogeogr 25(12):1489–1499

    Google Scholar 

  • Blaxter M, Mann J, Chapman T, Thomas F, Whitton C, Floyd R, Abebe E (2005) Defining operational taxonomic units using DNA barcode data. Philos Trans R Soc B Biol Sci 360(1462):1935–1943

    CAS  Google Scholar 

  • Blomberg SP, Garland J, Theodore R, Ives A (2003) Testing for phylogenetic signal in comparative data: behavoral traits are more labile. Evolution 57(4):717–745

    PubMed  Google Scholar 

  • Bohac J (1999) Staphylinid beetles as bioindicators. Agric Ecosyst Environ 74:357–372

    Google Scholar 

  • Bolger T, Kenny J, Arroyo J (2013) The Collembola fauna of Irish forests–a comparison between forest type and microhabitats within the forests. Soil Org 85:61–67

    Google Scholar 

  • Borowiec ML, Moreau CS, Rabeling C (2021) In: Starr CK (ed) Encyclopedia of social insects. Springer, Cham, pp 52–69

    Google Scholar 

  • Brehm G, Colwell RK, Kluge J (2007) The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Glob Ecol Biogeogr 16(2):205–219

    Google Scholar 

  • Brehm G, Hebert PDN, Colwell RK, Adams M-O, Bodner F, Friedemann K, Möckel L, Fiedler K (2016) Turning up the heat on a hotspot: DNA barcodes reveal 80% more species of geometrid moths along an Andean elevational gradient. PLoS One 11(3):e0150327

    PubMed  PubMed Central  Google Scholar 

  • Brühl CA, Mohamed M, Linsenmair KE (1999) Altitudinal distribution of leaf litter ants along a transect in primary forests on Mount Kinabalu, Sabah, Malaysia. J Trop Ecol 15:265–277

    Google Scholar 

  • Brunke A, Newton A, Klimaszewski J, Majka C, Marshall S (2011) Staphylinidae of Eastern Canada and adjacent United States. Key to subfamilies; Staphylininae: tribes and subtribes, and species of Staphylinina. Can J Arthropod Identif 12

    Google Scholar 

  • Bujan J, Nottingham AT, Velasquez E, Meir P, Kaspari M, Yanoviak SP (2022) Tropical ant community responses to experimental soil warming. Biol Lett 18(4):20210518

    PubMed  PubMed Central  Google Scholar 

  • Cabra-García J, Bermúdez-Rivas C, Osorio AM, Chacón P (2012) Cross-taxon congruence of α and β diversity among five leaf litter arthropod groups in Colombia. Biodivers Conserv 21(6):1493–1508

    Google Scholar 

  • Cajaiba RL, Périco E, Caron E, Dalzochio MS, Silva WB, Santos M (2017) Are disturbance gradients in neotropical ecosystems detected using rove beetles? A case study in the Brazilian Amazon. For Ecol Manag 405:319–327

    Google Scholar 

  • Camacho GP, Loss AC, Fisher BL, Blaimer BB (2021) Spatial phylogenomics of acrobat ants in Madagascar—Mountains function as cradles for recent diversity and endemism. J Biogeogr 48(7):1706–1719

    Google Scholar 

  • Caravaca F, Ruess L (2014) Arbuscular mycorrhizal fungi and their associated microbial community modulated by Collembola grazers in host plant free substrate. Soil Biol Biochem 69:25–33

    CAS  Google Scholar 

  • Carolina Arias-Penna D, Whitfield JB, Janzen DH, Hallwachs W, Dyer LA, Smith MA, Hebert PDN, Fernández-Triana JL (2019) A species-level taxonomic review and host associations of Glyptapanteles (Hymenoptera, Braconidae, Microgastrinae) with an emphasis on 136 new reared species from Costa Rica and Ecuador. ZooKeys 890:1–685

    Google Scholar 

  • Chatzaki M, Lymberakis P, Markakis G, Mylonas M (2005) The distribution of ground spiders (Araneae, Gnaphosidae) along the altitudinal gradient of Crete, Greece: species richness, activity and altitudinal range. J Biogeogr 32(5):813–831

    Google Scholar 

  • Chick LD, Lessard J-P, Dunn RR, Sanders NJ (2020) The coupled influence of thermal physiology and biotic interactions on the distribution and density of ant species along an elevational gradient. Diversity 12(12):456

    Google Scholar 

  • Chown SL, Gaston KJ (2000) Areas, cradles and museums: the latitudinal gradient in species richness. Trends Ecol Evol 15(8):311–315

    CAS  PubMed  Google Scholar 

  • Cicconardi F, Fanciulli PP, Emerson BC (2013) Collembola, the biological species concept and the underestimation of global species richness. Mol Ecol 22(21):5382–5396

    CAS  PubMed  Google Scholar 

  • Cleveland WS, Loader CL (1996) In: Haerdle W, Schimek MG (eds) Statistical theory and computational aspects of smoothing. Springer, New York, pp 10–49

    Google Scholar 

  • Colwell RK, Brehm G, Cardelus CL, Gilman AC, Longino JT (2008) Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322(5899):258–261

    CAS  PubMed  Google Scholar 

  • Colwell RK, Rahbek C, Gotelli NJ (2004) The mid-domain effect and species richness patterns: what have we learned so far? Am Nat 163(3):1–23

    Google Scholar 

  • Colwell RK, Rahbek C, Gotelli NJ (2005) The mid-domain effect: there’s a baby in the bathwater. Am Nat 166(5):E149–E154

    Google Scholar 

  • Corcos D, Cerretti P, Mei M, Vigna Taglianti A, Paniccia D, Santoiemma G, De Biase A, Marini L (2018) Predator and parasitoid insects along elevational gradients: role of temperature and habitat diversity. Oecologia 188(1):193–202

    PubMed  Google Scholar 

  • Currie DJ, Kerr JT (2008) Tests of the mid-domain hypothesis: a review of the evidence. Ecol Monogr 78(1):3–18

    Google Scholar 

  • Cutz-Pool LQ, Palacios-Vargas JG, Cano-Santana Z, Castaño-Meneses G (2010) Diversity patterns of Collembola in an elevational gradient in the NW slope of Iztaccíhuatl Volcano, State of Mexico, Mexico. 121(3):249–261

    Google Scholar 

  • Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci U S A 105:6668–6672

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dillon ME, Wang G, Huey RB (2010) Global metabolic impacts of recent climate warming. Nature 467(7316):704–706

    CAS  PubMed  Google Scholar 

  • Dirnböck T, Essl F, Rabitsch W (2011) Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob Chang Biol 17(2):990–996

    Google Scholar 

  • Dolson S, Mcphee M, Vizquez C, Hallwachs W, Janzen D, Smith MA (2020) Diversity, abundance, and phylogenetic structure of spiders (Araneae) across a Costa Rican elevation gradient. Biotropica 52:1092–1102

    Google Scholar 

  • Dolson SJ, Loewen E, Jones K, Jacobs SR, Solis A, Hallwachs W, Brunke AJ, Janzen DH, Smith MA (2021) Diversity and phylogenetic community structure across elevation during climate change in a family of hyperdiverse neotropical beetles (Staphylinidae). Ecography 44(5):740–752

    Google Scholar 

  • Dornhaus A, Powell S (2010) In: Lach L, Parr C, Abbott K (eds) Ant ecology. Oxford University Press, Great Britain

    Google Scholar 

  • Duffy GA, Coetzee BWT, Janion-Scheepers C, Chown SL (2015) Microclimate-based macrophysiology: implications for insects in a warming world. Cur Opin Insect Sc 11:84–89

    Google Scholar 

  • Edwards AW, Smith MA, Chavarria MM, Sasa M, Janzen DH, Hallwachs W, Chaves G, Fernandez R, Palmer C, Wilson C, Puschendorf R (in review) Changes in amphibian diversity and distribution across four interconnected and protected ecosystems in Costa Rica. J Trop Ecol, JTE-21-091

    Google Scholar 

  • Escribano-Álvarez P, Pertierra LR, Martínez B, Chown SL, Olalla-Tárraga MÁ (2022) Half a century of thermal tolerance studies in springtails (Collembola): a review of metrics, spatial and temporal trends. Curr Res Insect Sci 2:100023

    PubMed  Google Scholar 

  • Faith DP (2018) In: Scherson RA, Faith DP (eds) Phylogenetic diversity: applications and challenges in biodiversity science. Springer, Cham, pp 1–26

    Google Scholar 

  • Feeley KJ, Hurtado J, Saatchi S, Silman MR, Clark DB (2013) Compositional shifts in Costa Rican forests due to climate-driven species migrations. Glob Chang Biol 19(11):3472–3480

    PubMed  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125(1):1–15

    Google Scholar 

  • Fernandez-Triana J, Shaw MR, Boudreault C, Beaudin M, Broad GR (2020) Annotated and illustrated world checklist of Microgastrinae parasitoid wasps (Hymenoptera, Braconidae). ZooKeys 920:1–1089

    PubMed  PubMed Central  Google Scholar 

  • Fernandez-Triana JL, Janzen DH, Hallwachs W, Whitfield JB, Smith MA, Kula R (2014a) Revision of the genus Pseudapanteles (Hymenoptera, Braconidae, Microgastrinae), with emphasis on the species in Area de Conservacion Guanacaste, northwestern Costa Rica. ZooKeys 446:1–82

    Google Scholar 

  • Fernandez-Triana JL, Whitfield JB, Rodriguez JJ, Smith MA, Janzen DH, Hallwachs WD, Hajibabaei M, Burns JM, Solis MA, Brown J, Cardinal S, Goulet H, Hebert PDN (2014b) Review of Apanteles sensu stricto (Hymenoptera, Braconidae, Microgastrinae) from Area de Conservacion Guanacaste, northwestern Costa Rica, with keys to all described species from Mesoamerica. ZooKeys 383:1–565

    Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37(12):4302–4315

    Google Scholar 

  • Fiedler K, Brehm G, Hilt N, Süßenbach D, Häuser CL (2008) Gradients in a tropical mountain ecosystem of Ecuador. Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds). Berlin: Springer, pp 167–179

    Google Scholar 

  • Fiera C, Ulrich W (2012) Spatial patterns in the distribution of European springtails (Hexapoda: Collembola). Biol J Linn Soc 105(3):498–506

    Google Scholar 

  • Flenley JR (1995) Tropical montane cloud forests. Hamilton LS, Juvik JO, Scatena FN (eds). New York: Springer, pp 150–155

    Google Scholar 

  • Folgarait P (1998) Ant biodiversity and its relationship to ecosystem functioning: a review. Biodivers Conserv 7:1221–1244

    Google Scholar 

  • Forbes AA, Bagley RK, Beer MA, Hippee AC, Widmayer HA (2018) Quantifying the unquantifiable: why Hymenoptera, not Coleoptera, is the most speciose animal order. BMC Ecol 18(1):21

    PubMed  PubMed Central  Google Scholar 

  • Forister M, Pelton E, Black S (2019) Declines in insect abundance and diversity: we know enough to act now. Conserv Sci Pract 2019(e80)

    Google Scholar 

  • Freeman BG, Lee-Yaw JA, Sunday JM, Hargreaves AL (2018) Expanding, shifting and shrinking: the impact of global warming on species’ elevational distributions. Glob Ecol Biogeogr 27(11):1268–1276

    Google Scholar 

  • García-Gómez A, Castaño-Meneses G, Palacios-Vargas JG (2009) Diversity of springtails (Hexapoda) according to a altitudinal gradient. Pesq Agrop Brasileira 44(8):911–916

    Google Scholar 

  • García-Robledo C, Kuprewicz EK, Staines CL, Erwin TL, Kress WJ (2016) Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proc Natl Acad Sci 113(3):680

    PubMed  PubMed Central  Google Scholar 

  • Gaston KJ, Gauld ID (1993) How many species of pimplines (Hymenoptera: Ichneumonidae) are there in Costa Rica? J Trop Ecol 9(4):491–499

    Google Scholar 

  • Gauld ID (1988) A survey of the Ophioninae (Hymenoptera: Ichneumonidae) of tropical Mesoamerica with special reference to the fauna of Costa Rica Bulletin of the British Museum (Natural History). Entomology 57(1):1–309

    Google Scholar 

  • Gauld ID, Dubois J (2006) Phylogeny of the Polysphincta group of genera (Hymenoptera: Ichneumonidae; Pimplinae): a taxonomic revision of spider ectoparasitoids. Syst Entomol 31(3):529–564

    Google Scholar 

  • Gaüzère P, O’connor L, Botella C, Poggiato G, Münkemüller T, Pollock LJ, Brose U, Maiorano L, Harfoot M, Thuiller W (2022) The diversity of biotic interactions complements functional and phylogenetic facets of biodiversity. Curr Biol 32:2093

    PubMed  Google Scholar 

  • Ghalambor CK, Huey RB, Martin PR, Tewksbury JJ, Wang G (2006) Are mountain passes higher in the tropics? Janzen's hypothesis revisited. Integr Comp Biol 46(1):5–17

    PubMed  Google Scholar 

  • Glaser F (2006) Biogeography, diversity and vertical distribution of ants (Hymenoptera: Formicidae) in Vorarlberg, Austria. Myrmecol News 8:263–270

    Google Scholar 

  • Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University Press, Princeton, NJ

    Google Scholar 

  • González-Reyes AX, Corronca JA, Rodriguez-Artigas SM (2017) Changes of arthropod diversity across an altitudinal ecoregional zonation in Northwestern Argentina. PeerJ 5:2–29

    Google Scholar 

  • González-Tokman D, Córdoba-Aguilar A, Dáttilo W, Lira-Noriega A, Sánchez-Guillén RA, Villalobos F (2020) Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world. Biol Rev 95(3):802–821

    PubMed  Google Scholar 

  • Goulson D (2019) The insect apocalypse, and why it matters. Curr Biol 29(19):R967–R971

    CAS  PubMed  Google Scholar 

  • Greenslade P, Kitching R (2011) Potential effects of climatic warming on the distribution of Collembola along an altitudinal transect in Lamington National Park, Queensland, Australia. Memoirs Qld Museum Nat 55:333–347

    Google Scholar 

  • Greenstone MH (1984) Determinants of web spider species diversity: vegetation structural diversity vs. prey availability. Oecologia 62(3):299–304

    PubMed  Google Scholar 

  • Grubb PJ (1971) Interpretation of the 'Massenerhebung' effect on tropical mountains. Nature 229:44–45

    CAS  PubMed  Google Scholar 

  • Gutiérrez-Chacon C, Zúniga MDC, Van Bodegom PM, Chará J, Giraldo LP (2009) Rove beetles (Coleoptera: Staphylinidae) in Neotropical riverine landscapes: characterising their distribution. Insect Conserv Diver 2:106–115

    Google Scholar 

  • Hallmann C, Sorg M, Jongejans E, Siepel H, Hofland N, Schwan H, Stenmans W, Müller A, Sumser H, Hörren T, Goulson D (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12(109):e0185809

    PubMed  PubMed Central  Google Scholar 

  • Hanlon R (1981) Influence of grazing by Collembola on the activity of senescent fungal colonies grown on media of different nutrient concentration. Oikos 36(3):362–367

    Google Scholar 

  • Hargreaves AL, Germain RM, Bontrager M, Persi J, Angert AL (2019) Local adaptation to biotic interactions: a meta-analysis across latitudes. Am Nat 195(3):395–411

    Google Scholar 

  • Hargreaves AL, Samis KE, Eckert CG (2014) Are species’ range limits simply niche limits writ large? a review of transplant experiments beyond the range. Am Nat 183(2):157–173

    PubMed  Google Scholar 

  • Harvey JA, Heinen R, Gols R, Thakur MP (2020) Climate change-mediated temperature extremes and insects: from outbreaks to breakdowns. Glob Chang Biol 26(12):6685–6701

    PubMed  PubMed Central  Google Scholar 

  • Hastie TJ (1992) Statistical models. Chambers JM, Hastie TJ (eds). Wadsworth & Brooks Cole

    Google Scholar 

  • Hawkins E (2018) Show your stripes

    Google Scholar 

  • Helmer EH, Gerson EA, Baggett LS, Bird BJ, Ruzycki TS, Voggesser SM (2019) Neotropical cloud forests and páramo to contract and dry from declines in cloud immersion and frost. PLoS One 14(4):e0213155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ho C (2019) Impacts of forestry on spider (Araneae) diversity, abundance, and community structure. University of Guelph

    Google Scholar 

  • Ho C, Smith MA (2015) Impacts of anthropogenic disturbance on arthropod biodiversity and community structure. Adamowicz SJ (ed). Genome, pp 163–303

    Google Scholar 

  • Hodkinson ID (2005) Terrestrial insects along elevation gradients: species and community responses to altitude. Biol Rev 80(3):489–513

    PubMed  Google Scholar 

  • Hoenle PO, Blüthgen N, Brückner A, Kronauer DJC, Fiala B, Donoso DA, Smith MA, Ospina Jara B, Von Beeren C (2019) Species-level predation network uncovers high prey specificity in a Neotropical army ant community. Mol Ecol 28(9):2423–2440

    PubMed  Google Scholar 

  • Holdridge R (1967) Life zone ecology. Tropical Science Center, San José, CR

    Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Hood GR, Forbes AA, Powell THQ, Egan SP, Hamerlinck G, Smith JJ, Feder JL (2015) Sequential divergence and the multiplicative origin of community diversity. Proc Natl Acad Sci U S A 112. https://doi.org/10.1073/pnas.1424717112

  • Hunt JH, Brodie RJ, Carithers TP, Goldstein PZ, Janzen DH (1999) Dry season migration by Costa Rican lowland paper wasps to high elevation cold dormancy sites. Biotropica 31(1):192–196

    Google Scholar 

  • Illig J, Norton RA, Scheu S, Maraun M (2010) Density and community structure of soil-and bark-dwelling microarthropods along an altitudinal gradient in a tropical montane rainforest. Exp Appl Acarol 52(1):49–62

    PubMed  PubMed Central  Google Scholar 

  • Irmler U, Gurlich S (2007) What do rove beetles (Coleoptera: Staphylinidae) indicate for site conditions? Experimental C-enrichment of tropical agricultural soil View project. Faun Ökol Mitt 8:439–455

    Google Scholar 

  • Irmler U, Klimaszewski J, Betz O (2018) Biology of rove beetles (Staphylinidae): life history, evolution, ecology and distribution. Springer, Cham, pp 1–4

    Google Scholar 

  • Irmler U, Lipkow E (2018) In: Betz O, Irmler U, Klimaszewski J (eds) Biology of rove beetles (Staphylinidae). Springer, Cham

    Google Scholar 

  • Janzen D, Hallwachs W (2020) Área de Conservación Guanacaste, northwestern Costa Rica: converting a tropical national park to conservation via biodevelopment. Biotropica 52:1017–1029

    Google Scholar 

  • Janzen D, Hallwachs W, Pereira G, Blanco R, Masis A, Chavarria MM, Chavarria F, Guadamuz A, Araya M, Smith MA, Valerio J, Guido H, Sanchez E, Bermudez S, Perez KHJ, Manjunath R, Ratnasingham S, St. Jacques B, Milton MA, Dewaard JR, Zakharov EV, Naik S, Hajibabaei M, Hebert PDN, Hasegawa M (2020) Using DNA-barcoded Malaise trap samples to measure impact of a geothermal energy project on the biodiversity of a Costa Rican old-growth rain forest. Genome 63(9):407–436

    PubMed  Google Scholar 

  • Janzen DH (1967) Why mountain passes are higher in the tropics. Am Nat 101:233–249

    Google Scholar 

  • Janzen DH (1973) Sweep samples of tropical foliage insects: effects of seasons, vegetation types, elevation, time of day, and insularity. Ecology 54(3):687–708

    Google Scholar 

  • Janzen DH (1993) In: Stamp NE, Casey TM (eds) Caterpillars: ecological and evolutionary constraints on foraging. Chapman and Hall, New York, pp 448–477

    Google Scholar 

  • Janzen DH (2004) Biodiversity conservation in Costa Rica: learning the lessons in a seasonal dry forest. Gordon WF, Alfonso M, Vinson SB (eds). University of California Press, Berkeley

    Google Scholar 

  • Janzen DH, Ataroff M, Farinas M, Reyes S, Rincon N, Soler A, Soriano P, Vera M (1976) Changes in the arthropod community along an elevational transect in the Venezuelan Andes. Biotropica 8(3):193–203

    Google Scholar 

  • Janzen DH, Hallwachs W (2016) Costa Rican ecosystems. University of Chicago Press

    Google Scholar 

  • Janzen DH, Hallwachs W (2019) Perspective: where might be many tropical insects? Biol Conserv 233:102–108

    Google Scholar 

  • Janzen DH, Hallwachs W (2021) To us insectometers, it is clear that insect decline in our Costa Rican tropics is real, so let’s be kind to the survivors. Proc Natl Acad Sci 118(2):e2002546117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jarvis B (2018) The insect apocalypse is here, New York

    Google Scholar 

  • Jimenez-Valverde A, Lobo JM (2007) Determinants of local spider (Araneidae and Thomisidae) species richness on a regional scale: climate and altitude vs. habitat structure. Ecol Entomol 32(1):113–122

    Google Scholar 

  • Jing S, Solhøy T, Huifu W, Vollan TI, Rumei X (2005) Differences in soil arthropod communities along a high altitude gradient at Shergyla Mountain, Tibet, China. Arct Antarct Alp Res 37(2):261–266

    Google Scholar 

  • John C, Post E (2021) Seasonality, niche management and vertical migration in landscapes of relief. Ecography 2022. https://doi.org/10.1111/ecog.05774

  • Karmalkar AV, Bradley RS, Diaz HF (2008) Climate change scenario for Costa Rican montane forests. Geophys Res Lett 35:L11702

    Google Scholar 

  • Kehoe R, Frago E, Sanders D (2021) Cascading extinctions as a hidden driver of insect decline. Ecol Entomol 46(4):743–756

    Google Scholar 

  • Kembel S, Cowan P, Helmus M, Cornwell W, Morlon H, Ackerly D, Blomberg S, Webb C (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464

    CAS  PubMed  Google Scholar 

  • Khila M, Zaabar W, Achouri MS (2018) Diversity of terrestrial isopod species in the Chambi National Park (Kasserine, Tunisia). Afr J Ecol 56(3):582–590

    Google Scholar 

  • Koleff P, Gaston KJ, Lennon JJ (2003) Measuring beta diversity for presence–absence data. J Anim Ecol 72(3):367–382

    Google Scholar 

  • Körner C (2004) Mountain biodiversity, its causes and function. AMBIO J Human Environ 33(sp13):11–17

    Google Scholar 

  • Körner C (2007) The use of 'altitude' in ecological research. Trends Ecol Evol 22(11):569–574

    PubMed  Google Scholar 

  • Kremen C (1992) Assessing the indicator properties of species assemblages for natural areas monitoring. Ecol Appl 2(2):203–217

    PubMed  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lawton RO, Lawton MF, Lawton RM, Daniels JD (2016) Costa Rican ecosystems. University of Chicago Press

    Google Scholar 

  • Leather SR (2018) “Ecological Armageddon” – more evidence for the drastic decline in insect numbers. Ann Appl Biol 172(1):1–3

    Google Scholar 

  • Lehikoinen P, Tiusanen M, Santangeli A, Rajasärkkä A, Jaatinen K, Valkama J, Virkkala R, Lehikoinen A (2021) Increasing protected area coverage mitigates climate-driven community changes. Biol Conserv 253:108892

    Google Scholar 

  • Leistikow A (2000) The terrestrial isopod genus ischioscia in Costa Rica: new species and records, and an analysis of its phylogeny (Crustacea, Isopoda, Oniscidea). Zoosystematics Evol 76(1):19–49

    Google Scholar 

  • Lessard J-P, Dunn RR, Parker CR, Sanders NJ (2007) Rarity and diversity in forest ant assemblages of Great Smoky Mountains National Park. Southeast Nat 6:215–228

    Google Scholar 

  • Lister BC, Garcia A (2018) Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc Natl Acad Sci 115(44):E10397–E10406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Longino JT (2021) Army ants take the stage. Curr Biol 31(4):R164–R165

    Google Scholar 

  • Longino JT, Branstetter MG (2019) The truncated bell: an enigmatic but pervasive elevational diversity pattern in Middle American ants. Ecography 42:272–283

    Google Scholar 

  • Longino JT, Colwell RK (1997) Biodiversity assessment using structured inventory: capturing the ant fauna of a tropical rain forest. Ecol Appl 7(4):1263–1277

    Google Scholar 

  • Loranger G, Bandyopadhyaya I, Razaka B, Ponge JF (2001) Does soil acidity explain altitudinal sequences in collembolan communities? Soil Biol Biochem 33(3):381–393

    CAS  Google Scholar 

  • Malhi Y, Franklin J, Seddon N, Solan M, Turner MG, Field CB, Knowlton N (2020) Climate change and ecosystems: threats, opportunities and solutions. Philos Trans R Soc B Biol Sci 375(1794):20190104

    CAS  Google Scholar 

  • Malumbres-Olarte J, Crespo L, Cardoso P, Szűts T, Fannes W, Pape T, Scharff N (2018) The same but different: equally megadiverse but taxonomically variant spider communities along an elevational gradient. Acta Oecol 88:19–28

    Google Scholar 

  • Mamantov MA, Gibson-Reinemer DK, Linck EB, Sheldon KS (2021) Climate-driven range shifts of montane species vary with elevation. Glob Ecol Biogeogr 30(4):784–794

    Google Scholar 

  • Marc P, Canard A, Ysnel F (1999) Spiders (Araneae) useful for pest limitation and bioindication. Agric Ecosyst Environ 74(1):229–273

    Google Scholar 

  • Marris E (2007) The escalator effect. Nat Climate Change 1(712):94–96

    Google Scholar 

  • Martin PS (1963) The last 10,000 years, A fossil pollen record of the American South-West. University of Arizona Press, Tucson, AZ

    Google Scholar 

  • Mccain C, Grytness J-A (2010) Elevational gradients in species richness. In: Encyclopedia of life sciences, pp 1–10

    Google Scholar 

  • Mccain CM (2005) Elevational gradients in diversity of small mammals. Ecology 86(2):366–372

    Google Scholar 

  • Mccain CM (2007) Could temperature and water availability drive elevational species richness patterns? A global case study for bats. Glob Ecol Biogeogr 16(1):1–13

    Google Scholar 

  • Mccain CM (2009) Global analysis of bird elevational diversity. Glob Ecol Biogeogr 18:346–360

    Google Scholar 

  • Mccain CM (2010) Global analysis of reptile elevational diversity. Glob Ecol Biogeogr 19(4):541–553

    Google Scholar 

  • Mccain CM, Garfinkel CF (2021) Climate change and elevational range shifts in insects. Curr Opin Insect Sci 47:111–118

    PubMed  Google Scholar 

  • Mccoy ED (1990) The distribution of insects along elevational gradients. Oikos 58(3):313–322

    Google Scholar 

  • Mcdevitt-Irwin JM, Kappel C, Harborne AR, Mumby PJ, Brumbaugh DR, Micheli F (2021) Coupled beta diversity patterns among coral reef benthic taxa. Oecologia 195(1):225–234

    PubMed  Google Scholar 

  • Mcvicar TR, Körner C (2013) On the use of elevation, altitude, and height in the ecological and climatological literature. Oecologia 171(2):335–337

    PubMed  Google Scholar 

  • Milman O (2022) The insect crisis: the fall of the tiny empires that run the world. WW Norton, New York

    Google Scholar 

  • Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NE (2006) Phylogeny of the ants: diversification in the age of angiosperms. Science 312(5770):101–104

    CAS  PubMed  Google Scholar 

  • Muhlfeld CC, Cline TJ, Giersch JJ, Peitzsch E, Florentine C, Jacobsen D, Hotaling S (2020) Specialized meltwater biodiversity persists despite widespread deglaciation. Proc Natl Acad Sci 117(22):12208–12214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Müller J, Brandl R, Cadotte MW, Heibl C, Bässler C, Weiß I, Birkhofer K, Thorn S, Seibold S (2022) A replicated study on the response of spider assemblages to regional and local processes. Ecol Monogr e1511. https://doi.org/10.1002/ecm.1511

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858

    CAS  PubMed  Google Scholar 

  • Myster RW (in press) Neotropical gradients. Myster RW (ed). Berlin: Spring

    Google Scholar 

  • Nascimento G, Câmara T, Arnan X (2022) Critical thermal limits in ants and their implications under climate change. Biol Rev 97:1287. https://doi.org/10.1111/brv.12843

    Article  PubMed  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and Phylogenetics. Oxford University Press, New York

    Google Scholar 

  • New TR (2022) Insect diversity, declines and conservation in Australia. New TR (ed). Springer, Cham, pp 83–97

    Google Scholar 

  • Newell K (1984) Interaction between two decomposer basidiomycetes and a collembolan under Sitka spruce: grazing and its potential effects on fungal distribution and litter decomposition. Soil Biol Biochem 16(3):235–239

    Google Scholar 

  • Newton AF, Thayer MK (1992) Current classification and family-group names in Staphyliniformia (Coleoptera). Field Museum of Natural History, Chicago, IL

    Google Scholar 

  • Nogueira ADA, Brescovit AD, Perbiche-Neves G, Venticinque EM (2021) Spider (Arachnida-Araneae) diversity in an amazonian altitudinal gradient: are the patterns congruent with mid-domain and rapoport effect predictions? Biota Neotrop 21(4):e20211210

    Google Scholar 

  • Noss RF (1990) Indicators for monitoring biodiversity: a hierarchical approach. Conserv Biol 4(4):355–364

    Google Scholar 

  • Odegaard F (2006) Host specificity, alpha- and beta-diversity of phytophagous beetles in two tropical forests in Panama. Biodivers Conserv 15:83–105

    Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, Minchin PR, O'hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) Vegan: community ecology package: R package version 2.5–2

    Google Scholar 

  • Outhwaite CL, Mccann P, Newbold T (2022) Agriculture and climate change are reshaping insect biodiversity worldwide. Nature 605:97–102

    CAS  PubMed  Google Scholar 

  • Owen NR, Gumbs R, Gray CL, Faith DP (2019) Global conservation of phylogenetic diversity captures more than just functional diversity. Nat Commun 10(1):859

    PubMed  PubMed Central  Google Scholar 

  • Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401(6756):877–884

    CAS  PubMed  Google Scholar 

  • Paquette A, Hargreaves AL (2021) Biotic interactions are more often important at species’ warm versus cool range edges. Ecol Lett 24(11):2427–2438

    PubMed  Google Scholar 

  • Pare K (2015) Patterns in Neotropical Collembola diversity and morphology along an elevation gradient. University of Guelph, Guelph

    Google Scholar 

  • Parker J, Kronauer DJC (2021) How ants shape biodiversity. Curr Biol 31(19):R1208–R1214

    CAS  PubMed  Google Scholar 

  • Parkinson D, Visser S, Whittaker J (1979) Effects of collembolan grazing on fungal colonization of leaf litter. Soil Biol Biochem 11(5):529–535

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Ann Rev Ecol Evol Syst 37:637–669

    Google Scholar 

  • Parmesan C, Morecroft MD, Trisurat Y, Adrian R, Anshari GZ, Arneth A, Gao Q, Gonzalez P, Harris R, Price J, Stevens N, Talukdarr GH (2022) Climate change 2022: impacts, adaptation, and vulnerability. In: Pörtner H-O, Roberts DC, Tignor M, Poloczanska ES, Mintenbeck K, Alegría A, Craig M, Langsdorf S, Löschke S, Möller V, Okem A, Rama B (eds) Contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press

    Google Scholar 

  • Patterson DJ, Cooper J, Kirk PM, Pyle RL, Remsen DP (2010) Names are key to the big new biology. Trends Ecol Evol 25(12):686–691

    CAS  PubMed  Google Scholar 

  • Pecl Gretta T, Araújo Miguel B, Bell Johann D, Blanchard J, Bonebrake Timothy C, Chen IC, Clark Timothy D, Colwell Robert K, Danielsen F, Evengård B, Falconi L, Ferrier S, Frusher S, Garcia Raquel A, Griffis Roger B, Hobday Alistair J, Janion-Scheepers C, Jarzyna Marta A, Jennings S, Lenoir J, Linnetved Hlif I, Martin Victoria Y, Mccormack Phillipa C, Mcdonald J, Mitchell Nicola J, Mustonen T, Pandolfi John M, Pettorelli N, Popova E, Robinson Sharon A, Scheffers Brett R, Shaw Justine D, Sorte Cascade JB, Strugnell Jan M, Sunday Jennifer M, Tuanmu M-N, Vergés A, Villanueva C, Wernberg T, Wapstra E, Williams Stephen E (2017) Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355(6332):eaai9214

    PubMed  Google Scholar 

  • Pérez-Espona S (2021) Eciton army ants—umbrella species for conservation in Neotropical Forests. Diversity 13(3):136

    Google Scholar 

  • Perrigo A, Hoorn C, Antonelli A (2020) Why mountains matter for biodiversity. J Biogeogr 47(2):315–325

    Google Scholar 

  • Peters MK, Hemp A, Appelhans T, Behler C, Classen A, Detsch F, Ensslin A, Ferger SW, Frederiksen SB, Gebert F, Haas M, Helbig-Bonitz M, Hemp C, Kindeketa WJ, Mwangomo E, Ngereza C, Otte I, Röder J, Rutten G, Schellenberger Costa D, Tardanico J, Zancolli G, Deckert J, Eardley CD, Peters RS, Rödel MO, Schleuning M, Ssymank A, Kakengi V, Zhang J, Böhning-Gaese K, Brandl R, Kalko EKV, Kleyer M, Nauss T, Tschapka M, Fischer M, Steffan-Dewenter I (2016) Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nat Commun 7:1–11

    Google Scholar 

  • Pettorelli N, Graham NAJ, Seddon N, Maria Da Cunha Bustamante M, Lowton MJ, Sutherland WJ, Koldewey HJ, Prentice HC, Barlow J (2021) Time to integrate global climate change and biodiversity science-policy agendas. J Appl Ecol 58(11):2384–2393

    Google Scholar 

  • Pflug A, Wolters V (2001) Influence of drought and litter age on Collembola communities. Eur J Soil Biol 37(4):305–308

    Google Scholar 

  • Plowman KP (1979) Litter and soil fauna of two Australian subtropical forests. Aust J Ecol 4(1):87–104

    Google Scholar 

  • Pohl G, Langor D, Klimaszewski J, Work T, Paquin P (2008) Rove beetles (Coleoptera: Staphylinidae) in northern Nearctic forests1. Can Entomol 140(4):415–436

    Google Scholar 

  • Polato NR, Gill BA, Shah AA, Gray MM, Casner KL, Barthelet A, Messer PW, Simmons MP, Guayasamin JM, Encalada AC, Kondratieff BC, Flecker AS, Thomas SA, Ghalambor CK, Poff NL, Funk WC, Zamudio KR (2018) Narrow thermal tolerance and low dispersal drive higher speciation in tropical mountains. Proc Natl Acad Sci 115(49):12471–12476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pollock HS, Toms JD, Tarwater CE, Benson TJ, Karr JR, Brawn JD (2022) Long-term monitoring reveals widespread and severe declines of understory birds in a protected Neotropical forest. Proc Natl Acad Sci 119(16):e2108731119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poole T (1959) Studies on the food of Collembola in a Douglas fir plantation. Proc Zool Soc London 132:71–82

    Google Scholar 

  • Potapov A, Bellini BC, Chown SL, Deharveng L, Janssens F, Kováč Ľ, Kuznetsova N, Ponge JF, Potapov M, Querner P, Russell D, Sun X, Zhang F, Berg MP (2020) Towards a global synthesis of Collembola knowledge: challenges and potential solutions. Soil Org 92(3):161–188

    Google Scholar 

  • Pounds JA, Fogden MPL, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature 398(6728):611–615

    CAS  Google Scholar 

  • Prendergast JR, Eversham BC (1997) Species richness covariance in higher taxa: empirical tests of the biodiversity indicator concept. Ecography 20(2):210–216

    Google Scholar 

  • Prendergast JR, Quinn RM, Lawton JH, Eversham BC, Gibbons DW (1993) Rare species, the coincidence of diversity hotspots and conservation strategies. Nature 365(6444):335–337

    Google Scholar 

  • Pringle RM (2017) Upgrading protected areas to conserve wild biodiversity. Nature 546(7656):91–99

    CAS  PubMed  Google Scholar 

  • Qodri A, Raffiudin R, Noerdjito WA (2016) Diversity and Abundance of Carabidae and Staphylinidae (Insecta: Coleoptera) in Four Montane Habitat Types on Mt. Bawakaraeng, South Sulawesi. J Biosci 23(1):22–28

    Google Scholar 

  • Rahbek C, Borregaard M, Colwell R, Dalsgaard B, Holt B, Morueta-Holme N, Nogues-Bravo D, Whittaker R, Fjeldså J (2019a) Humboldt’s enigma: what causes global patterns of mountain biodiversity? Science 365(6458):1108–1113

    CAS  PubMed  Google Scholar 

  • Rahbek C, Borregaard Michael K, Antonelli A, Colwell Robert K, Holt Ben G, Nogues-Bravo D, Rasmussen Christian MØ, Richardson K, Rosing Minik T, Whittaker Robert J, Fjeldså J (2019b) Building mountain biodiversity: geological and evolutionary processes. Science 365(6458):1114–1119

    CAS  PubMed  Google Scholar 

  • Ramirez-Barahona S, Eguiarte LE (2013) The role of glacial cycles in promoting genetic diversity in the Neotropics: the case of cloud forest during the Last Glacial Maximum. Ecol Evol 3:725–738

    PubMed  PubMed Central  Google Scholar 

  • Ratnasingham S, Hebert PD (2013) A DNA-based registry for all animal species: the barcode index number (BIN) system. PLoS One 8(7):e66213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ratnasingham S, Hebert PDN (2007) BOLD: the barcode of life data system (www.barcodinglife.org). Mol Ecol Notes 7(3):355–364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raven PH, Gereau RE, Phillipson PB, Chatelain C, Jenkins Clinton N, Ulloa Ulloa C (2021) The distribution of biodiversity richness in the tropics. Sci Adv 6(37):eabc6228

    Google Scholar 

  • Rehm EM, Feeley KJ (2015) The inability of tropical cloud forest species to invade grasslands above treeline during climate change: potential explanations and consequences. Ecography 38(12):1167–1175

    Google Scholar 

  • Reta-Heredia I, Jurado E, Pando-Moreno M, González-Rodríguez H, Mora-Olivo A, Estrada-Castillón E (2018) Diversidad de arañas en ecosistemas forestales como indicadoras de altitud y disturbio. Rev Mex Cienc Forestales 9:251–273

    Google Scholar 

  • Revell LJ (2012) phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3(2):217–223

    Google Scholar 

  • Rodriguez J (2009) Integrating molecular, ecological and morphological data to explore the biodiversity of microgastrine parasitoid wasps. University of Illinois at Urbana-Champaign

    Google Scholar 

  • Rodriguez JJ, Fernandez-Triana JL, Smith MA, Janzen DH, Hallwachs W, Erwin TL, Whitfield JB (2013) Extrapolations from field studies and known faunas converge on dramatically increased estimates of global microgastrine parasitoid wasp species richness (Hymenoptera: Braconidae). Insect Conserv Diver 6(4):530–536

    Google Scholar 

  • Roeder KA, Roeder DV, Bujan J (2021) Ant thermal tolerance: a review of methods, hypotheses, and sources of variation. Ann Entomol Soc Am 114(4):459–469

    Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press

    Google Scholar 

  • Rusek J (1998) Biodiversity of Collembola and their functional role in the ecosystem. Biodivers Conserv 7(9):1207–1219

    Google Scholar 

  • Sadaka N, Ponge J-F (2003) Soil animal communities in holm oak forests: influence of horizon, altitude and year. Eur J Soil Biol 39(4):197–207

    Google Scholar 

  • Samson DA, Rickart EA, Gonzales PC (1997) Ant diversity and abundance along an elevational gradient in the Philippines. Biotropica 29(3):349–363

    Google Scholar 

  • Sánchez-Bayo F, Wyckhuys KAG (2019) Worldwide decline of the entomofauna: a review of its drivers. Biol Conserv 232:8–27

    Google Scholar 

  • Sarnat EM, Friedman NR, Fischer G, Lecroq-Bennet B, Economo EP (2017) Rise of the spiny ants: diversification, ecology and function of extreme traits in the hyperdiverse genus Pheidole (Hymenoptera: Formicidae). Biol J Linn Soc 122(3):514–538

    Google Scholar 

  • Scheffers BR, Joppa LN, Pimm SL, Laurance WF (2012) What we know and don’t know about Earth’s missing biodiversity. Trends Ecol Evol 27(9):501–510

    PubMed  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sfenthourakis S (1992) Altitudinal effect on species richness of Oniscidea (Crustacea; Isopoda) on three mountains in Greece. Glob Ecol Biogeogr Lett 2(5):157–164

    Google Scholar 

  • Sfenthourakis S, Anastasiou I, Strutenschi T (2005) Altitudinal terrestrial isopod diversity. Eur J Soil Biol 41(3):91–98

    Google Scholar 

  • Sfenthourakis S, Hornung E (2018) Isopod distribution and climate change. ZooKeys 801:25–61

    Google Scholar 

  • Shah AA, Dillon ME, Hotaling S, Woods HA (2020) High elevation insect communities face shifting ecological and evolutionary landscapes. Curr Opin Insect Sci 41:1–6

    PubMed  Google Scholar 

  • Sheldon K, Huey R, Kaspari M, Sanders N (2018a) Fifty years of mountain passes: a perspective on Dan Janzen’s classic article. Am Nat 191(5):553–565

    PubMed  Google Scholar 

  • Sheldon KS, Huey RB, Kaspari M, Sanders NJ (2018b) Fifty years of mountain passes: a perspective on Dan Janzen’s classic article. Am Nat 191(5):553–565

    PubMed  Google Scholar 

  • Siddiky MRK, Schaller J, Caruso T, Rillig MC (2012) Arbuscular mycorrhizal fungi and collembola non-additively increase soil aggregation. Soil Biol Biochem 47:93–99

    CAS  Google Scholar 

  • Sinclair BJ, Marshall KE, Sewell MA, Levesque DL, Willett CS, Slotsbo S, Dong Y, Harley CD, Marshall DJ, Helmuth BS (2016) Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecol Lett 19(11):1372–1385

    PubMed  Google Scholar 

  • Slabber S, Chown SL (2005) Differential responses of thermal tolerance to acclimation in the sub-Antarctic rove beetle Halmaeusa atriceps. Physiol Entomol 30(2):195–204

    Google Scholar 

  • Smith M, Fernande-Triana J, Roughley R, Hebert PDN (2009) DNA barcode accumulation curves for understudied taxa and areas. Mol Ecol Resour 9:208–216

    CAS  PubMed  Google Scholar 

  • Smith MA (2012) The encyclopedia of sustainability: Vol. 6 Measurements, indicators, and research methods for sustainability. Daniel Fogel SF, Lisa Harrington, and Ian Spellerberg (ed). Great Barrington, MA: Berkshire Publishing, pp 326–328

    Google Scholar 

  • Smith MA (2015) Ants, elevation, phylogenetic diversity and community structure. Ecosphere 6(11):1–17

    CAS  Google Scholar 

  • Smith MA (2018) Janzen’s mountain passes hypothesis is comprehensively tested in its fifth decade. Proc Natl Acad Sci 115(49):12337–12339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith MA, Hallwachs W, Janzen DH (2014) Diversity and phylogenetic community structure of ants along a Costa Rican elevational gradient. Ecography 37(8):720–731

    Google Scholar 

  • Smith MA, Hallwachs W, Janzen DH, Longino JT, Branstetter MG (2020) A subterranean ant Acanthostichus Mayr, 1887 is revealed in Costa Rica. Insect Soc 67(2):327–330

    Google Scholar 

  • Smith MA, Janzen DH, Hallwachs W, Longino JT (2015) Observations of Adelomyrmex (Hymenoptera:Formicidae) reproductive biology facilitated by digital field microscopy and DNA barcoding. Can Entomol 147:611–616

    Google Scholar 

  • Smith MA, Rodriguez JJ, Whitfield JB, Deans AR, Janzen DH, Hallwachs W, Hebert PDN (2008) Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. Proc Natl Acad Sci U S A 105(34):12359–12364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Still CJ, Foster PN, Schneider SH (1999) Simulating the effects of climate change on tropical montane cloud forests. Nature 398(6728):608–610

    CAS  Google Scholar 

  • Stroud JT, Feeley KJ (2017) Neglect of the tropics is widespread in ecology and evolution: a comment on Clarke et al. Trends Ecol Evol 32(9):626–628

    PubMed  Google Scholar 

  • Sun X, Marian F, Bluhm C, Maraun M, Scheu S (2020) Response of Collembola to the addition of nutrients along an altitudinal gradient of tropical montane rainforests. Appl Soil Ecol 147:103382

    Google Scholar 

  • Sunday J, Bennett JM, Calosi P, Clusella-Trullas S, Gravel S, Hargreaves AL, Leiva FP, Verberk WCEP, Olalla-Tárraga MÁ, Morales-Castilla I (2019) Thermal tolerance patterns across latitude and elevation. Philos Trans R Soc B Biol Sci 374(1778):20190036

    Google Scholar 

  • Swenson NG (2012) DNA barcodes: methods and protocols. Kress WJ, Erickson DL (eds). Humana Press, Totowa, NJ, pp 409–419

    Google Scholar 

  • Swenson NG (2019) Phylogenetic ecology: a history, critique, and remodeling. University of Chicago Press

    Google Scholar 

  • Symondson WOC, Sunderland KD, Greenstone MH (2001) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47:561–594

    Google Scholar 

  • Team RC (2021) R: a language and environment for statistical computing. Austria

    Google Scholar 

  • Thayer MK (2005) Handbook of zoology, Vol. IV, Part 38, Coleoptera, Vol. 1: Morphology and systematics (Archostemata, Adephaga, Myxophaga, Staphyliniformia, Scarabaeiformia, Elateriformia). Beutel RG, RAB L (eds). Berlin: De Gruyter, pp 296–344

    Google Scholar 

  • Thomas Chris D, Gillingham Phillipa K, Bradbury Richard B, Roy David B, Anderson Barbara J, Baxter John M, Bourn Nigel AD, Crick Humphrey QP, Findon Richard A, Fox R, Hodgson Jenny A, Holt Alison R, Morecroft Mike D, O’hanlon Nina J, Oliver Tom H, Pearce-Higgins James W, Procter Deborah A, Thomas Jeremy A, Walker Kevin J, Walmsley Clive A, Wilson Robert J, Hill Jane K (2012) Protected areas facilitate species’ range expansions. Proc Natl Acad Sci 109(35):14063–14068

    CAS  PubMed  PubMed Central  Google Scholar 

  • Townes H (1962) Design for a Malaise trap. Proc Entomol Soc Wash 64(4):253–262

    Google Scholar 

  • Townes H (1972) A light-weight Malaise trap. Entomol News 83:239–247

    Google Scholar 

  • Turnbull AL (1973) Ecology of the true spiders (Araneomorphae). Annu Rev Entomol 18(1):305–348

    Google Scholar 

  • Uetz GW (1976) Gradient analysis of spider communities in a streamside forest. Oecologia 22:373–385

    PubMed  Google Scholar 

  • Uhler J, Redlich S, Zhang J, Hothorn T, Tobisch C, Ewald J, Thorn S, Seibold S, Mitesser O, Morinière J, Bozicevic V, Benjamin CS, Englmeier J, Fricke U, Ganuza C, Haensel M, Riebl R, Rojas-Botero S, Rummler T, Uphus L, Schmidt S, Steffan-Dewenter I, Müller J (2021) Relationship of insect biomass and richness with land use along a climate gradient. Nat Commun 12(1):5946

    CAS  PubMed  PubMed Central  Google Scholar 

  • Urban Mark C (2018) Escalator to extinction. Proc Natl Acad Sci 115(47):11871–11873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Der Hammen T, Ward PS (2005) Ants from the Ecoandes expeditions: diversity and distribution (Hormigas de las expediciones de Ecoandes: diversidad y distribucion). Stud Trop Andean Ecosyst 6:239–248

    Google Scholar 

  • Veijalainen A, Sääksjärvi IE, Tuomisto H, Broad GR, Bordera S, Jussila R (2014) Altitudinal trends in species richness and diversity of Mesoamerican parasitoid wasps (Hymenoptera: Ichneumonidae). Insect Conserv Diver 7(6):496–507

    Google Scholar 

  • Waagner D, Bayley M, Holmstrup M (2011) Recovery of reproduction after drought in the soil living Folsomia candida (Collembola). Soil Biol Biochem 43(3):690–692

    CAS  Google Scholar 

  • Wagner David L, Grames Eliza M, Forister Matthew L, Berenbaum May R, Stopak D (2021) Insect decline in the Anthropocene: death by a thousand cuts. Proc Natl Acad Sci 118(2):e2023989118

    PubMed  PubMed Central  Google Scholar 

  • Wagner DL (2020) Insect declines in the anthropocene. Annu Rev Entomol 65(1):457–480

    CAS  PubMed  Google Scholar 

  • Ward PS (2006) Ants. Curr Biol 16(5):R152–R155

    CAS  PubMed  Google Scholar 

  • Warne CPK, Hallwachs W, Janzen DH, Smith MA (2020) Functional and genetic diversity changes through time in a cloud forest ant assemblage. Biotropica 52:1084–1091

    Google Scholar 

  • Warren RJ, Chick LD, Demarco B, Mcmillan A, De Stefano V, Gibson R, Pinzone P (2016) Climate-driven range shift prompts species replacement. Insect Soc 63(4):593–601

    Google Scholar 

  • Weber NA (1938) The biology of the fungus-growing ants. Part IV. Additional new forms. Part V. The Attini of Bolivia. Rev Entomol 9(1–2):154–206

    Google Scholar 

  • Westgate MJ, Barton PS, Lane PW, Lindenmayer DB (2014) Global meta-analysis reveals low consistency of biodiversity congruence relationships. Nat Commun 5(1):3899

    CAS  PubMed  Google Scholar 

  • Whalen JK, Sampedro L (2010) Soil ecology and management. CABI

    Google Scholar 

  • Whitfield JB, Austin AD, Fernandez-Triana JL (2018) Systematics, biology, and evolution of microgastrine parasitoid wasps. Annu Rev Entomol 63(1):389–406

    CAS  PubMed  Google Scholar 

  • Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York

    Google Scholar 

  • Williams JJ, Bates AE, Newbold T (2020) Human-dominated land uses favour species affiliated with more extreme climates, especially in the tropics. Ecography 43(3):391–405

    Google Scholar 

  • Wilson RJ, Fox R (2021) Insect responses to global change offer signposts for biodiversity and conservation. Ecol Entomol 46(4):699–717

    Google Scholar 

  • Wolda H (1987) Altitude, habitat and tropical insect diversity. Biol J Linn Soc 30:313–323

    Google Scholar 

  • Xie Z, Sun X, Lux J, Chen T-W, Potapov M, Wu D, Scheu S (2022) Drivers of Collembola assemblages along an altitudinal gradient in Northeast China. Ecol Evol 12(2):e8559

    PubMed  PubMed Central  Google Scholar 

  • Xu G-L, Kuster TM, Günthardt-Goerg MS, Dobbertin M, Li M-H (2012) Seasonal exposure to drought and air warming affects soil Collembola and mites. PLoS One 7(8):e43102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yanoviak SP, Kragh G, Nadkarni NM (2003) Spider assemblages in Costa Rican cloud forests: effects of forest level and forest age. Stud Neotropical Fauna Environ 38(2):145–154

    Google Scholar 

  • Yoshimura M, Fisher BL (2012) A revision of male ants of the Malagasy Amblyoponinae (Hymenoptera: Formicidae) with resurrections of the genera Stigmatomma and Xymmer. PLoS One 7(3)

    Google Scholar 

  • Zou Y, Sang W, Zhou H, Huang L, Axmacher JC (2014) Altitudinal diversity patterns of ground beetles (Coleoptera: Carabidae) in the forests of Changbai Mountain, Northeast China. Insect Conserv Diver 7(2):161–171

    Google Scholar 

Download references

Acknowledgements

All authors emphatically and gratefully acknowledge the support of the parataxonomist team from Área de Conservación Guanacaste, Costa Rica. All authors gratefully acknowledge the support of the staff of the Área de Conservación de Guanacaste in protecting and managing this area, and in enabling this research. We gratefully acknowledge the enthusiasm and diligence of the students and volunteers from the Smith Lab at the University of Guelph who spent many hours sorting through mixed species field lots from ACG. Funding–Research in ACG was supported by grants to MAS by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canada Foundation for Innovation (CFI). The Government of Costa Rica, the Guanacaste Dry Forest Conservation Fund (GDFCF), and its individual private donors and especially the Wege Foundation provided valuable funding for portions of this research. All specimens were collected, exported and DNA barcoded under Costa Rican government permits issued to BioAlfa (Janzen and Hallwachs 2019) (R-054-2022-OT-CONAGEBIO; R-019-2019-CONAGEBIO; National Published Decree #41767), JICA-SAPI #0328497 (2014) and DHJ and WH (ACG-PI-036-2013; R-SINAC-ACG-PI-061-2021; Resolución Nº001-2004 SINAC; PI-028-2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Alex Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smith, M.A. et al. (2023). Communities of Small Terrestrial Arthropods Change Rapidly Along a Costa Rican Elevation Gradient. In: Myster, R.W. (eds) Neotropical Gradients and Their Analysis. Springer, Cham. https://doi.org/10.1007/978-3-031-22848-3_10

Download citation

Publish with us

Policies and ethics