Skip to main content

Functional Morphology of the Postcranial Skeleton

  • Chapter
  • First Online:
Methods in Paleoecology

Part of the book series: Vertebrate Paleobiology and Paleoanthropology ((VERT))

Abstract

The field of vertebrate functional morphology grew out of traditional comparative vertebrate morphology. By the 17th century, scientists were modeling the actions of muscles on the skeleton as simple levers, but this remained uncommon until the latter half of the 20th century with the introduction of the concepts of mechanical advantage and speed vs. power systems in limb morphology. Current studies in this field are largely unchanged from those of the late 1900s, the largest steps forward being in the ability to analyze large, multivariate datasets, and quantify complex shapes due to leaps in computing power, and in the development of methods to account for phylogenetic signal in morphological data. This chapter will describe the process of a functional morphological analysis of lever mechanics including: identification of dominant muscles and assessing the action of those muscles based on comparative anatomy, identification of in-levers and out-levers, measurement of lever arms, and statistical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramoff, M. D., Magalhaes, P. J., & Ram, S. J. (2004). Image Processing with ImageJ. Biophotonics International, 11, 36–42.

    Google Scholar 

  • Alexander, R. M. (2003). Principles of animal locomotion. New Jersey: Princeton University Press.

    Book  Google Scholar 

  • Arnold, C., Matthews, L. J., & Nunn, C. L. (2010). The 10kTrees website: a new online resource for primate phylogeny. Evolutionary Anthropology, 19, 114–118.

    Article  Google Scholar 

  • Ashley-Ross, M. A., & Gillis, G. B. (2002). A brief history of vertebrate functional morphology. Integrative and Comparative Biology, 42, 183–189.

    Article  Google Scholar 

  • Atchley, W. R., Gaskins, C. T., & Anderson, D. (1976). Statistical properties of ratios. I. Empirical results. Systematic Biology, 25, 137–148.

    Google Scholar 

  • Barak, M. M., Lieberman, D. E., Raichlen, D. A., Pontzer, H., Warrener, A. G., & Hublin, J.-J. (2013). Trabecular evidence for a human-like gait in Australopithecus africanus. PLoS ONE, 8, e77687.

    Article  Google Scholar 

  • Barr, W. A. (2014). Functional morphology of the bovid astragalus in relation to habitat: controlling phylogenetic signal in ecomorphology. Journal of Morphology, 275, 1201–1216.

    Article  Google Scholar 

  • Barr, W. A. (2018). Ecomorphology. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 337–347). Cham: Springer.

    Google Scholar 

  • Barr, W. A., & Dunn, R. H. (2015). A method of analyzing complex joint surfaces in ecomorphology using slope rasters derived from digital elevation models. American Journal of Physical Anthropology, 156, 78.

    Google Scholar 

  • Biewener, A. A. (1990). Biomechanics of mammalian terrestrial locomotion. Science, 250, 1097–1103.

    Article  Google Scholar 

  • Bock, W. J. (1990). From biologische anatomie to ecomorphology. Netherlands Journal of Zoology, 40, 254–277.

    Article  Google Scholar 

  • Bock, W. J., & von Wahlert, G. (1965). Adaptation and the form-function complex. Evolution, 19, 269–299.

    Article  Google Scholar 

  • Boyer, D. M., & Seiffert, E. R. (2013). Patterns of astragalar fibular facet orientation in extant and fossil primates and their evolutionary implications. American Journal of Physical Anthropology, 151, 420–447.

    Article  Google Scholar 

  • Boyer, D. M., Patel, B. A., Larson, S. G., & Stern, J. T., Jr. (2007). Telemetered electromyography of peroneus longus in Varecia variegata and Eulemur rubriventer: implications for the functional significance of a large peroneal process. Journal of Human Evolution, 53, 119–134.

    Article  Google Scholar 

  • Boyer, D. M., Lipman, Y., St. Clair, E. M., Puente, J., Patel, B. A., Funkhouser, T., et al. (2011). Algorithms to automatically quantify the geometric similarity of anatomical surfaces. Proceedings of the National Academy of Sciences, USA, 108, 18221–18226.

    Google Scholar 

  • Boyer, D. M., Seiffert, E. R., Gladman, J. T., & Bloch, J. I. (2013). Evolution and allometry of calcaneal elongation in living and extinct primates. PLoS ONE, 8, e67792.

    Article  Google Scholar 

  • Boyer, D. M., Puente, J., Gladman, J. T., Glynn, C., Mukherjee, S., Yapuncich, G., et al. (2015a). A new fully automated approach for aligning and comparing shapes. Anatomical Record, 298, 249–276.

    Article  Google Scholar 

  • Boyer, D. M., Yapuncich, G. S., Butler, J. E., Dunn, R. H., & Seiffert, E. R. (2015b). Evolution of postural diversity in primates as reflected by the size and shape of the medial tibial facet of the talus. American Journal of Physical Anthropology, 157, 134–177.

    Article  Google Scholar 

  • Carrano, M. T. (1999). What, if anything, is a cursor? Categories versus continua for determining locomotor habit in mammals and dinosaurs. Journal of Zoology, London, 247, 29–42.

    Article  Google Scholar 

  • Connour, J. R., Glander, K., & Vincent, F. (2000). Postcranial adaptations for leaping in primates. Journal of Zoology, London, 251, 79–103.

    Article  Google Scholar 

  • Croft, D. A., & Anderson, L. C. (2008). Locomotion in the extinct notoungulate Protypotherium. Palaeontologia Electronica, 11.1.1A, 1–20.

    Google Scholar 

  • Curran, S. C. (2018). Three-dimensional geometric morphometrics in paleoecology. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 317–335). Cham: Springer.

    Google Scholar 

  • Dagosto, M., & Terranova, C. J. (1992). Estimating the body size of Eocene primates: a comparison of results from dental and postcranial variables. International Journal of Primatology, 13, 307–344.

    Article  Google Scholar 

  • Demes, B., Jungers, W. L., & Selpien, K. (1991). Body size, locomotion, and long bone cross-sectional geometry in indriid primates. American Journal of Physical Anthropology, 86, 537–547.

    Article  Google Scholar 

  • Dunn, R. H., & Rasmussen, D. T. (2007). Skeletal morphology and locomotor behavior of Pseudotomus eugenei (Rodentia, Paramyinae) from the Uinta Formation, Utah. Journal of Vertebrate Paleontology, 27, 987–1006.

    Article  Google Scholar 

  • Dunn, R. H., Tocheri, M. W., Orr, C. M., & Jungers, W. L. (2014). Ecological divergence and talar morphology in gorillas. American Journal of Physical Anthropology, 153, 526–541.

    Article  Google Scholar 

  • Elissamburu, A., & Vizcaíno, S. F. (2004). Limb proportions and adaptations in caviomorph rodents (Rodentia: Caviomorpha). Journal of Zoology, London, 262, 145–159.

    Article  Google Scholar 

  • Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist, 125, 1–15.

    Article  Google Scholar 

  • Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, 188–198.

    Google Scholar 

  • Fleagle, J. G. (1985). Size and adaptation in primates. In W. L. Jungers (Ed.), Size and scaling in primate biology (pp. 1–19). Boston: Springer.

    Google Scholar 

  • Garamszegi, L. Z. (Ed.). (2014). Modern phylogenetic comparative methods and their application to evolutionary biology. Berlin: Springer.

    Google Scholar 

  • Gebo, D. L. (1988). Foot morphology and locomotor adaptation in Eocene primates. Folia Primatologica, 50, 3–41.

    Article  Google Scholar 

  • Gebo, D. L., & Rose, K. D. (1993). Skeletal morphology and locomotor adaptation in Prolimnocyon atavus, an early Eocene hyaenodontid creodont. Journal of Vertebrate Paleontology, 13, 125–144.

    Article  Google Scholar 

  • Gould, F. D. H. (2014). To 3D or not to 3D, that is the question: do 3D surface analyses improve the ecomorphological power of the distal femur in placental mammals? PLoS ONE, 9, e91719.

    Article  Google Scholar 

  • Gould, S. J. (1966). Allometry and size in ontogeny and phylogeny. Biological Reviews, 41, 587–638.

    Article  Google Scholar 

  • Gregory, W. K. (1912). Notes on the principles of quadrupedal locomotion and on the mechanism of the limbs in hoofed animals. Annals of the New York Academy of Sciences, 22, 267–294.

    Article  Google Scholar 

  • Gunz, P., Mitteroecker, P., & Bookstein, F. L. (2005). Semilandmarks in three dimensions. In D. E. Slice (Ed.), Modern morphometrics in physical anthropology (pp. 73–98). New York: Kluwer Academic/Plenum Publishers.

    Chapter  Google Scholar 

  • Hammer, Ø., & Harper, D. (2006). Paleontological data analysis. Malden: Blackwell Publishing.

    Google Scholar 

  • Hammer, Ø., Harper, D., & Ryan, P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4.1.4A, 1–9.

    Google Scholar 

  • Hammond, A. S., Plavcan, J. M., & Ward, C. V. (2016). A validated method for modeling anthropoid hip abduction in silico. American Journal of Physical Anthropology, 160, 529–548.

    Article  Google Scholar 

  • Hamrick, M. W. (1996). Articular size and curvature as determinants of carpal joint mobility and stability in strepsirrhine primates. Journal of Morphology, 230, 113–127.

    Article  Google Scholar 

  • Heinrich, R. E., & Rose, K. D. (1997). Postcranial morphology and locomotor behaviour of two early Eocene miacoid carnivorans, Vulpavus and Didymictis. Palaeontology, 40, 279–305.

    Google Scholar 

  • Hildebrand, M. (1985). Walking and running. In M. Hildebrand, D. M. Bramble, K. F. Liem & D. B. Wake (Eds.), Functional vertebrate morphology (pp. 38–57). Cambridge: Belknap Press.

    Chapter  Google Scholar 

  • Hildebrand, M. (1988). Form and function in vertebrate feeding and locomotion. American Zoologist, 28, 727–738.

    Article  Google Scholar 

  • Hildebrand, M., & Goslow, G. (1998). Analysis of vertebrate structure (5th ed.). New York: Wiley.

    Google Scholar 

  • Hildebrand, M., Bramble, D. M., Liem, K. F., & Wake, D. B. (Eds.). (1985). Functional vertebrate morphology. Cambridge: Belknap Press.

    Google Scholar 

  • Hills, M. (1978). On ratios—a response to Atchley, Gaskins, and Anderson. Systematic Zoology, 27, 61–62.

    Article  Google Scholar 

  • Hogg, R. (2018). Permanent record: the use of dental and bone microstructure to assess life history evolution and ecology. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 75–98). Cham: Springer.

    Google Scholar 

  • Hopkins, S. S. B. (2018). Estimation of body size in fossil mammals. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 7–22). Cham: Springer.

    Google Scholar 

  • Huynh Nguyen, N., Pahr, D. H., Gross, T., Skinner, M. T., & Kivell, T. L. (2014). Micro-finite element (μFE) modeling of the siamang (Symphalangus syndactylus) third proximal phalanx: the functional role of curvature and the flexor sheath ridge. Journal of Human Evolution, 67, 60–75.

    Article  Google Scholar 

  • Jacobs, R. L., Boyer, D. M., & Patel, B. A. (2009). Comparative functional morphology of the primate peroneal process. Journal of Human Evolution, 57, 721–731.

    Article  Google Scholar 

  • Jungers, W. L., Falsetti, A. B., & Wall, C. E. (1995). Shape, relative size, and size-adjustments in morphometrics. American Journal of Physical Anthropology, 38, 137–161.

    Article  Google Scholar 

  • Kappelman, J. (1988). Morphology and locomotor adaptations of the bovid femur in relation to habitat. Journal of Morphology, 198, 119–130.

    Article  Google Scholar 

  • Kappelman, J., Plummer, T. W., Bishop, L. C., Duncan, A., & Appleton, S. (1997). Bovids as indicators of Plio-Pleistocene paleoenvironments in east Africa. Journal of Human Evolution, 32, 229–256.

    Article  Google Scholar 

  • Kivell, T. L. (2016). A review of trabecular bone functional adaptation: what have we learned from trabecular analyses in extant hominoids and what can we apply to fossils? Journal of Anatomy, 228, 569–594.

    Article  Google Scholar 

  • Klingenberg, C. P. (2011). MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11, 353–357.

    Article  Google Scholar 

  • Koehl, M. A. R. (1996). When does morphology matter? Annual Review of Ecology and Systematics, 27, 501–542.

    Article  Google Scholar 

  • Koehl, P., & Hass, J. (2015). Landmark-free geometric methods in biological shape analysis. Journal of the Royal Society Interface, 12, 20150795.

    Article  Google Scholar 

  • Larson, S. G. (1993). Functional morphology of the shoulder in primates. In D. L. Gebo (Ed.), Postcranial adaptation in nonhuman primates (pp. 45–69). De Kalb: Northern Illinois University Press.

    Google Scholar 

  • Lieberman, D. E. (1997). Making behavioral and phylogenetic inferences from hominid fossils: considering the developmental influence of mechanical forces. Annual Review of Anthropology, 26, 185–210.

    Article  Google Scholar 

  • Lieberman, D. E., Devlin, M. J., & Pearson, O. M. (2001). Articular area responses to mechanical loading: effects of exercise, age, and skeletal location. American Journal of Physical Anthropology, 116, 266–277.

    Article  Google Scholar 

  • Lieberman, D. E., Polk, J. D., & Demes, B. (2004). Predicting long bone loading from cross-sectional geometry. American Journal of Physical Anthropology, 123, 156–171.

    Article  Google Scholar 

  • Losos, J. B. (1999). Uncertainty in the reconstruction of ancestral character states and limitations on the use of phylogenetic comparative methods. Animal Behavior, 58, 1319–1324.

    Article  Google Scholar 

  • MacLatchy, L., & Müller, R. (2002). A comparison of the femoral head and neck trabecular architecture of Galago and Perodicticus using micro-computed tomography (μCT). Journal of Human Evolution, 43, 89–105.

    Article  Google Scholar 

  • MacLeod, N., & Rose, K. D. (1993). Inferring locomotor behavior in Paleogene mammals via eigenshape analysis. American Journal of Science, 293, 300–355.

    Article  Google Scholar 

  • Marelli, C. A., & Simons, E. L. R. (2014). Microstructure and cross-sectional shape of limb bones in great horned owls and red-tailed hawks: how do these features relate to differences in flight and hunting behavior? PLoS ONE, 9, e106094.

    Article  Google Scholar 

  • Marzke, M. W., Tocheri, M. W., Steinberg, B., Femiani, J. D., Reece, S. P., Lincheid, R. L., et al. (2010). Comparative 3D quantitative analyses of trapeziometacarpal joint surface curvatures among living catarrhines and fossil hominins. American Journal of Physical Anthropology, 141, 38–51.

    Google Scholar 

  • Moyà-Solà, S., Köhler, M., Alba, D. M., & Roig, I. (2012). Calcaneal proportions in primates and locomotor inferences in Anchomomys and other Palaeogene euprimates. Swiss Journal of Palaeontology, 131, 147–159.

    Article  Google Scholar 

  • Nunn, C. L. (2011). The comparative approach in evolutionary anthropology and biology. Chicago: The University of Chicago Press.

    Book  Google Scholar 

  • Pohlert, T. (2014). The pairwise multiple comparison of mean ranks package (PMCMR). R package. http://CRAN.R-project.org/package=PMCMR.

  • R Core Team. (2015). R: A language and environment for statistical computing. GNU General Public License.

    Google Scholar 

  • Rose, K. D. (1990). Postcranial skeletal remains and adaptations in early Eocene mammals from the Willwood Formation, Bighorn Basin, Wyoming. Geological Society of America Special Paper, 243, 107–133.

    Article  Google Scholar 

  • Ruff, C. B. (1989). New approaches to structural evolution of limb bones in primates. Folia Primatologica, 53, 142–159.

    Article  Google Scholar 

  • Ruff, C. B. (2003a). Long bone articular and diaphyseal structure in Old World monkeys and apes. II: estimation of body mass. American Journal of Physical Anthropology, 120, 16–37.

    Article  Google Scholar 

  • Ruff, C. B. (2003b). Ontogenetic adaptation to bipedalism: age changes in femoral to humeral length and strength proportions in humans, with a comparison to baboons. Journal of Human Evolution, 45, 317–349.

    Article  Google Scholar 

  • Ruff, C. B. (2009). Relative limb strength and locomotion in Homo habilis. American Journal of Physical Anthropology, 138, 90–100.

    Article  Google Scholar 

  • Ruff, C. B., & Runestad, J. A. (1992). Primate limb bone structural adaptations. Annual Review of Anthropology, 21, 407–433.

    Article  Google Scholar 

  • Ruff, C. B., Walker, A., & Trinkaus, E. (1994). Postcranial robusticity in Homo. III: ontogeny. American Journal of Physical Anthropology, 93, 35–54.

    Article  Google Scholar 

  • Ruff, C. B., Holt, B., & Trinkaus, E. (2006). Who’s afraid of the big bad Wolff?: ‘Wolff’s law’ and bone functional adaptation. American Journal of Physical Anthropology, 129, 484–498.

    Article  Google Scholar 

  • Runestad, J. A. (1997). Postcranial adaptations for climbing in Loridae (Primates). Journal of Zoology, London, 242, 261–290.

    Article  Google Scholar 

  • Ryan, T. M., & Ketcham, R. A. (2002a). The three-dimensional structure of trabecular bone in the femoral head of strepsirrhine primates. Journal of Human Evolution, 43, 1–26.

    Article  Google Scholar 

  • Ryan, T. M., & Ketcham, R. A. (2002b). Femoral head trabecular bone structure in two omomyid primates. Journal of Human Evolution, 43, 241–263.

    Article  Google Scholar 

  • Ryan, T. M., & Walker, A. (2010). Trabecular bone structure in the humeral and femoral heads of anthropoid primates. Anatomical Record, 293, 719–729.

    Article  Google Scholar 

  • Schaeffer, B. (1947). Notes on the origin and function of the artiodactyl tarsus. American Museum Novitates, 1356, 1–24.

    Google Scholar 

  • Scherf, H. (2008). Locomotion-related femoral trabecular architectures in primates—high resolution computed tomographies and their implications for estimations of locomotor preferences of fossil primates. In H. Endo & R. Frey (Eds.), Anatomical imaging (pp. 39–59). Tokyo: Springer Japan.

    Chapter  Google Scholar 

  • Schmitt, D. (1996). Humeral head shape as an indicator of locomotor behavior in extant strepsirrhines and Eocene adapids. Folia Primatologica, 67, 137–151.

    Article  Google Scholar 

  • Shaw, C. N., & Ryan, T. M. (2011). Does skeletal anatomy reflect adaptation to locomotor patterns? Cortical and trabecular architecture in human and nonhuman anthropoids. American Journal of Physical Anthropology, 147, 187–200.

    Article  Google Scholar 

  • Shockey, B. J., Croft, D. A., & Anaya, F. (2007). Analysis of function in the absence of extant functional homologues: a case study using mesotheriid notoungulates (Mammalia). Paleobiology, 33, 227–247.

    Article  Google Scholar 

  • Smith, J. M., & Savage, R. J. G. (1956). Some locomotory adaptations in mammals. Journal of Zoology, London, 42, 603–622.

    Article  Google Scholar 

  • Smith, R. J. (1980). Rethinking allometry. Journal of Theoretical Biology, 87, 97–111.

    Article  Google Scholar 

  • Smith, R. J. (2005). Relative size versus controlling for size. Current Anthropology, 46, 249–273.

    Article  Google Scholar 

  • Sockol, M. D., Raichlen, D. A., & Pontzer, H. (2007). Chimpanzee locomotor energetics and the origin of human bipedalism. Proceedings of the National Academy of Sciences, USA, 104, 12265–12269.

    Article  Google Scholar 

  • Sokal, R. R., & Rohlf, F. J. (1995). Biometry (3rd ed.). New York: W. H. Freeman & Co.

    Google Scholar 

  • Swartz, S., & Ward, C. V. (2014). Variation of proximal femoral angular orientation in human and non-human primates. American Journal of Physical Anthropology, 153, 250.

    Google Scholar 

  • Swartz, S. M. (1993). Biomechanics of primate limbs. In D. L. Gebo (Ed.), Postcranial adaptation in nonhuman primates (pp. 5–42). De Kalb: Northern Illinois University Press.

    Google Scholar 

  • Tocheri, M. W. (2009). Laser scanning: 3D analysis of biological surfaces. In C. W. Sensen & B. Hallgrímson (Eds.), Advanced imaging in biology and medicine (pp. 85–101). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Tocheri, M. W., Razdan, A., Williams, R. C., & Marzke, M. W. (2005). A 3D quantitative comparison of trapezium and trapezoid relative articular and nonarticular surface areas in modern humans and great apes. Journal of Human Evolution, 49, 570–586.

    Article  Google Scholar 

  • Tocheri, M. W., Solhan, C. R., Orr, C. M., Femiani, J., Frohlich, B., Groves, C. P., et al. (2011). Ecological divergence and medial cuneiform morphology in gorillas. Journal of Human Evolution, 60, 171–184.

    Article  Google Scholar 

  • Tsubamoto, T. (2014). Estimating body mass from the astragalus in mammals. Acta Palaeontologica Polonica, 59, 259–265.

    Google Scholar 

  • Van Valkenburgh, B. (1994). Ecomorphological analysis of fossil vertebrates and their paleocommunities. In P. C. Wainwright & S. M. Reilly (Eds.), Ecological morphology (pp. 140–166). Chicago: The University of Chicago Press.

    Google Scholar 

  • Walker, A. (1974). Locomotor adaptations in past and present prosimian primates. In F. A. Jenkins Jr. (Ed.), Primate locomotion (pp. 349–381). New York: Academic Press.

    Google Scholar 

  • Warrener, A. G., Lewton, K. L., Pontzer, H., & Lieberman, D. E. (2015). A wider pelvis does not increase locomotor cost in humans, with implications for the evolution of childbirth. PLoS ONE, 10, e0118903.

    Article  Google Scholar 

  • Yalden, D. W. (1970). The functional morphology of the carpal bones in carnivores. Acta Anatomica, 77, 481–500.

    Article  Google Scholar 

  • Yalden, D. W. (1971). The functional morphology of the carpus in ungulate mammals. Acta Anatomica, 78, 461–487.

    Article  Google Scholar 

  • Yalden, D. W. (1972). The form and function of the carpal bones in some arboreally adapted mammals. Acta Anatomica, 82, 383–406.

    Article  Google Scholar 

  • Yapuncich, G. S., & Boyer, D. M. (2014). Talar articular surface curvature decreases allometrically among primates. American Journal of Physical Anthropology, 153, 278–279.

    Google Scholar 

  • Yapuncich, G. S., Gladman, J. T., & Boyer, D. M. (2015). Predicting euarchontan body mass: a comparison of tarsal and dental variables. American Journal of Physical Anthropology, 157, 472–506.

    Article  Google Scholar 

  • Zelditch, M. L., Swiderski, D. L., & Sheets, H. D. (2012). Geometric morphometrics for biologists (2nd ed.). Amsterdam: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel H. Dunn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dunn, R.H. (2018). Functional Morphology of the Postcranial Skeleton. In: Croft, D., Su, D., Simpson, S. (eds) Methods in Paleoecology. Vertebrate Paleobiology and Paleoanthropology. Springer, Cham. https://doi.org/10.1007/978-3-319-94265-0_3

Download citation

Publish with us

Policies and ethics