Skip to main content

Adipose Tissue: From Energy Reservoir to a Source of Cells for Epithelial Tissue Engineering

  • Chapter
  • First Online:
Stem Cells in Aesthetic Procedures

Abstract

Adipose tissue is accessible with minimally invasive procedures, is abundant, and is replenishable. It consists of a heterogeneous cell population including preadipocytes, mature adipocytes, fibroblasts, vascular smooth muscle cells, endothelial cells, resident macrophages, and cells composing the stromal vascular fraction. This fraction contains multipotent cells with the same mesenchymal origin and similar biological and immunological characteristics of bone marrow stroma. On the other hand, adipose-derived stromal cells are easier to harvest and culture in comparison to bone marrow-derived ones. The authors discuss the microenvironment where are the stem cells is the niche, adipose tissue, and adipose tissue-derived stromal cell transplant for the treatment of epithelial pathologies, wound healing, diabetic foot, and other disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lafontan M. Historical perspectives in fat cell biology: the fat cell as a model for the investigation of hormonal and metabolic pathways. Am J Physiol. 2012;302(2):C327–59.

    Article  CAS  Google Scholar 

  2. Neuber F. Fettransplantation. Chir Kongr Verhandl Deutsche Gesellsch Chir. 1893;22:66.

    Google Scholar 

  3. Rodbell M. Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis. J Biol Chem. 1964;239:375–80.

    CAS  PubMed  Google Scholar 

  4. Van RL, Roncari DA. Isolation of fat cell precursors from adult rat adipose tissue. Cell Tissue Res. 1977;181(2):197–203.

    Article  CAS  PubMed  Google Scholar 

  5. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Gimble JM, Bunnell BA, Guilak F. Human adipose-derived cells: an update on the transition to clinical translation. Regen Med. 2012;7(2):225–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Mizuno H. Adipose-derived stem cells for tissue repair and regeneration: ten years of research and a literature review. J Nippon Med Sch. 2009;76(2):56–66.

    Article  PubMed  Google Scholar 

  8. Zuk PA. Adipose-derived stem cells in tissue regeneration: a review. ISRN Stem Cells. 2013;2013:Article ID 713959. Hindawi Publishing Corp. http://dx.doi.org/10.1155/2013/713959. Accessed 5 Dec 2013.

  9. Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, Blake J, Schwager C, Eckstein V, Ansorge W, Ho AD. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol. 2005;33(11):1402–16.

    Article  CAS  PubMed  Google Scholar 

  10. Zhu Y, Liu T, Song K, Fan X, Ma X, Cui Z. Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct. 2008;26(6):664–75.

    Article  CAS  PubMed  Google Scholar 

  11. Schaffler A, Buchler C. Concise review: adipose tissue-derived stromal cells – basic and clinical implications for novel cell-based therapies. Stem Cells. 2007;25(4):818–27.

    Article  PubMed  Google Scholar 

  12. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–28.

    Article  CAS  PubMed  Google Scholar 

  13. Miranville A, Heeschen C, Sengenes C, Curat CA, Busse R, Bouloumie A. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation. 2004;110(3):349–55.

    Article  CAS  PubMed  Google Scholar 

  14. Han J, Koh YJ, Moon HR, Ryoo HG, Cho CH, Kim I, Koh GY. Adipose tissue is an extramedullary reservoir for functional hematopoietic stem and progenitor cells. Blood. 2009;115(5):957–64.

    Article  PubMed  Google Scholar 

  15. Seo MJ, Suh SY, Bae YC, Jung JS. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem Biophys Res Commun. 2005;328(1):258–64.

    Article  CAS  PubMed  Google Scholar 

  16. Long JL, Zuk P, Berke GS, Chhetri DK. Epithelial differentiation of adipose-derived stem cells for laryngeal tissue engineering. Laryngoscope. 2010;120(1):125–31.

    CAS  PubMed  Google Scholar 

  17. Safford KM, Safford SD, Gimble JM, Shetty AK, Rice HE. Characterization of neuronal/glial differentiation of murine adipose-derived adult stromal cells. Exp Neurol. 2004;187(2):319–28.

    Article  CAS  PubMed  Google Scholar 

  18. Safford KM, Hicok KC, Safford SD, Halvorsen YD, Wilkison WO, Gimble JM, Rice HE. Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun. 2002;294(2):371–9.

    Article  CAS  PubMed  Google Scholar 

  19. Timper K, Seboek D, Eberhardt M, Linscheid P, Christ-Crain M, Keller U, Muller B, Zulewski H. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun. 2006;341(4):1135–40.

    Article  CAS  PubMed  Google Scholar 

  20. Li K, Han Q, Yan X, Liao L, Zhao RC. Not a process of simple vicariousness, the differentiation of human adipose-derived mesenchymal stem cells to renal tubular epithelial cells plays an important role in acute kidney injury repairing. Stem Cells Dev. 2010;19(8):1267–75.

    Article  CAS  PubMed  Google Scholar 

  21. Vossmerbaeumer U, Ohnesorge S, Kuehl S, Haapalahti M, Kluter H, Jonas JB, Thierse HJ, Bieback K. Retinal pigment epithelial phenotype induced in human adipose tissue-derived mesenchymal stromal cells. Cytotherapy. 2009;11(2):177–88.

    Article  CAS  PubMed  Google Scholar 

  22. Kingham PJ, Kalbermatten DF, Mahay D, Armstrong SJ, Wiberg M, Terenghi G. Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol. 2007;207(2):267–74.

    Article  CAS  PubMed  Google Scholar 

  23. Di Rocco G, Iachininoto MG, Tritarelli A, Straino S, Zacheo A, Germani A, Crea F, Capogrossi MC. Myogenic potential of adipose-tissue-derived cells. J Cell Sci. 2006;119(Pt 14):2945–52.

    Article  PubMed  Google Scholar 

  24. Szoke K, Beckstrom KJ, Brinchmann JE. Human adipose tissue as a source of cells with angiogenic potential. Cell Transplant. 2012;21(1):235–50.

    Article  PubMed  Google Scholar 

  25. Josiah DT, Zhu D, Dreher F, Olson J, McFadden G, Caldas H. Adipose-derived stem cells as therapeutic delivery vehicles of an oncolytic virus for glioblastoma. Mol Ther. 2010;18(2):377–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Toscano N, Holtzclaw D, Victor S. A prospective pilot study on the clinical application of stromal vascular fraction stem cells in the treatment of Miller class I and II gingival recession defects. J Implant Adv Clin Dent. 2011;3(6):23–33.

    Google Scholar 

  27. Prockop DJ. Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms. Mol Ther. 2009;17(6):939–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Qu X, Liu T, Song K, Li X, Ge D. Induced pluripotent stem cells generated from human adipose-derived stem cells using a non-viral polycistronic plasmid in feeder-free conditions. PLoS One. 2012;7(10):e48161.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Wilson A, Butler PE, Seifalian AM. Adipose-derived stem cells for clinical applications: a review. Cell Prolif. 2011;44(1):86–98.

    Article  CAS  PubMed  Google Scholar 

  30. Garcia-Olmo D, Herreros D, Pascual M, Pascual I, De-La-Quintana P, Trebol J, Garcia-Arranz M. Treatment of enterocutaneous fistula in Crohn’s disease with adipose-derived stem cells: a comparison of protocols with and without cell expansion. Int J Colorectal Dis. 2009;24(1):27–30.

    Article  PubMed  Google Scholar 

  31. Riordan NH, Ichim TE, Min WP, Wang H, Solano F, Lara F, Alfaro M, Rodriguez JP, Harman RJ, Patel AN, Murphy MP, Lee RR, Minev B. Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. J Transl Med. 2009;7:29.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Yamamoto T, Gotoh M, Hattori R, Toriyama K, Kamei Y, Iwaguro H, Matsukawa Y, Funahashi Y. Periurethral injection of autologous adipose-derived stem cells for the treatment of stress urinary incontinence in patients undergoing radical prostatectomy: report of two initial cases. Int J Urol. 2010;17(1):75–82.

    Article  PubMed  Google Scholar 

  33. Rodriguez JP, Murphy MP, Hong S, Madrigal M, March KL, Minev B, Harman RJ, Chen CS, Timmons RB, Marleau AM, Riordan NH. Autologous stromal vascular fraction therapy for rheumatoid arthritis: rationale and clinical safety. Int Arch Med. 2012;5:5.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Scherberich A, Muller AM, Schafer DJ, Banfi A, Martin I. Adipose tissue-derived progenitors for engineering osteogenic and vasculogenic grafts. J Cell Physiol. 2010;225(2):348–53.

    Article  CAS  PubMed  Google Scholar 

  35. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–7.

    Article  CAS  PubMed  Google Scholar 

  36. Krenning G, van Luyn MJ, Harmsen MC. Endothelial progenitor cell-based neovascularization: implications for therapy. Trends Mol Med. 2009;15(4):180–9.

    Article  CAS  PubMed  Google Scholar 

  37. Timmermans F, Plum J, Yoder MC, Ingram DA, Vandekerckhove B, Case J. Endothelial progenitor cells: identity defined? J Cell Mol Med. 2009;13(1):87–102.

    Article  PubMed  Google Scholar 

  38. Conway EM, Carmeliet P. The diversity of endothelial cells: a challenge for therapeutic angiogenesis. Genome Biol. 2004;5(2):207.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Madonna R, De Caterina R. In vitro neovasculogenic potential of resident adipose tissue precursors. Am J Physiol. 2008;295(5):C1271–80.

    Article  CAS  Google Scholar 

  40. Marchal JA, Picon M, Peran M, Bueno C, Jimenez-Navarro M, Carrillo E, Boulaiz H, Rodriguez N, Alvarez P, Menendez P, de Teresa E, Aránega A. Purification and long-term expansion of multipotent endothelial-like cells with potential cardiovascular regeneration. Stem Cells Dev. 2012;21(4):562–74.

    Article  CAS  PubMed  Google Scholar 

  41. Trivisonno A, Di Rocco G, Cannistra C, Finocchi V, Torres Farr S, Monti M, Toietta G. Harvest of superficial layers of fat with a microcannula and isolation of adipose tissue-derived stromal and vascular cells. Aesthet Surg J. 2014. doi:10.1177/1090820X14528000. Epub ahead of print.

    PubMed  Google Scholar 

  42. Cianfarani F, Toietta G, Di Rocco G, Cesareo C, Capogrossi MC, Zambruno G, Odorisio T. Diabetes impairs adipose-derived stem cell pro-healing function. J Invest Dermatol. 2010;130(Suppl 2s):S56.

    Google Scholar 

  43. Schipper BM, Marra KG, Zhang W, Donnenberg AD, Rubin JP. Regional anatomic and age effects on cell function of human adipose-derived stem cells. Ann Plast Surg. 2008;60(5):538–44.

    Article  CAS  PubMed  Google Scholar 

  44. Ichim TE, Harman RJ, Min WP, Minev B, Solano F, Rodriguez JP, Alexandrescu DT, De Necochea-Campion R, Hu X, Marleau AM, Riordan NH. Autologous stromal vascular fraction cells: a tool for facilitating tolerance in rheumatic disease. Cell Immunol. 2010;264(1):7–17.

    Article  CAS  PubMed  Google Scholar 

  45. O’Loughlin A, O’Brien T. Topical stem and progenitor cell therapy for diabetic foot ulcers. In: Gholamrezanezhad A, editor. Stem cells in clinic and research. New York: InTech; 2011.

    Google Scholar 

  46. Di Rocco G, Gentile A, Antonini A, Ceradini F, Wu JC, Capogrossi MC, Toietta G. Enhanced healing of diabetic wounds by topical administration of adipose tissue-derived stromal cells overexpressing stromal-derived factor-1: biodistribution and engraftment analysis by bioluminescent imaging. Stem Cells Int. 2011;2011:304562.

    Article  PubMed Central  Google Scholar 

  47. Murohara T. Autologous adipose tissue as a new source of progenitor cells for therapeutic angiogenesis. J Cardiol. 2009;53(2):155–63.

    Article  PubMed  Google Scholar 

  48. Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, Pell CL, Johnstone BH, Considine RV, March KL. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004;109(10):1292–8.

    Article  PubMed  Google Scholar 

  49. Kim JH, Jung M, Kim HS, Kim YM, Choi EH. Adipose-derived stem cells as a new therapeutic modality for ageing skin. Exp Dermatol. 2012;20(5):383–7.

    Article  Google Scholar 

  50. Wei X, Zhao L, Zhong J, Gu H, Feng D, Johnstone BH, March KL, Farlow MR, Du Y. Adipose stromal cells-secreted neuroprotective media against neuronal apoptosis. Neurosci Lett. 2009;462(1):76–9.

    Article  CAS  PubMed  Google Scholar 

  51. Moon KM, Park YH, Lee JS, Chae YB, Kim MM, Kim DS, Kim BW, Nam SW, Lee JH. The effect of secretory factors of adipose-derived stem cells on human keratinocytes. Int J Mol Sci. 2012;13(1):1239–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. McCoy MK, Martinez TN, Ruhn KA, Wrage PC, Keefer EW, Botterman BR, Tansey KE, Tansey MG. Autologous transplants of Adipose-Derived Adult Stromal (ADAS) cells afford dopaminergic neuroprotection in a model of Parkinson’s disease. Exp Neurol. 2008;210(1):14–29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Zhang H, Yang R, Wang Z, Lin G, Lue TF, Lin CS. Adipose tissue-derived stem cells secrete CXCL5 cytokine with neurotrophic effects on cavernous nerve regeneration. J Sex Med. 2011;8(2):437–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Kilroy GE, Foster SJ, Wu X, Ruiz J, Sherwood S, Heifetz A, Ludlow JW, Stricker DM, Potiny S, Green P, et al. Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. J Cell Physiol. 2007;212(3):702–9.

    Article  CAS  PubMed  Google Scholar 

  55. Salgado AJ, Reis RL, Sousa NJ, Gimble JM. Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr Stem Cell Res Ther. 2010;5(2):103–10.

    Article  CAS  PubMed  Google Scholar 

  56. Matsumoto D, Sato K, Gonda K, Takaki Y, Shigeura T, Sato T, Aiba-Kojima E, Iizuka F, Inoue K, Suga H, Yoshimura K. Cell-assisted lipotransfer: supportive use of human adipose-derived cells for soft tissue augmentation with lipoinjection. Tissue Eng. 2006;12(12):3375–82.

    Article  CAS  PubMed  Google Scholar 

  57. Claudio-da-Silva C, Baptista LS, Carias RB, Menezes Neto Hda C, Borojevic R. Autologous mesenchymal stem cells culture from adipose tissue for treatment of facial rhytids. Rev Col Bras Cir. 2009;36(4):288–91.

    Article  PubMed  Google Scholar 

  58. Park BS, Jang KA, Sung JH, Park JS, Kwon YH, Kim KJ, Kim WS. Adipose-derived stem cells and their secretory factors as a promising therapy for skin aging. Dermatol Surg. 2008;34(10):1323–6.

    CAS  PubMed  Google Scholar 

  59. Lambros V. Discussion. Improvement of skin quality after fat grafting: clinical observation and an animal study. Plast Reconstr Surg. 2009;124(3):775–6.

    Article  CAS  PubMed  Google Scholar 

  60. Mojallal A, Lequeux C, Shipkov C, Breton P, Foyatier JL, Braye F, Damour O. Improvement of skin quality after fat grafting: clinical observation and an animal study. Plast Reconstr Surg. 2009;124(3):765–74.

    Article  CAS  PubMed  Google Scholar 

  61. Lamme EN, Van Leeuwen RT, Brandsma K, Van Marle J, Middelkoop E. Higher numbers of autologous fibroblasts in an artificial dermal substitute improve tissue regeneration and modulate scar tissue formation. J Pathol. 2000;190(5):595–603.

    Article  CAS  PubMed  Google Scholar 

  62. Rigotti G, Marchi A, Galie M, Baroni G, Benati D, Krampera M, Pasini A, Sbarbati A. Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. Plast Reconstr Surg. 2007;119(5):1409–22.

    Article  CAS  PubMed  Google Scholar 

  63. Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S, Fuchs S, Epstein SE. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation. 2004;109(12):1543–9.

    Article  CAS  PubMed  Google Scholar 

  64. Kim Y, Kim H, Cho H, Bae Y, Suh K, Jung J. Direct comparison of human mesenchymal stem cells derived from adipose tissues and bone marrow in mediating neovascularization in response to vascular ischemia. Cell Physiol Biochem. 2007;20(6):867–76.

    Article  CAS  PubMed  Google Scholar 

  65. Guiducci S, Distler O, Distler JH, Matucci-Cerinic M. Mechanisms of vascular damage in SSc – implications for vascular treatment strategies. Rheumatology (Oxford). 2008;47 Suppl 5:v18–20.

    Article  CAS  Google Scholar 

  66. Casabona F, Priano V, Vallerino V, Cogliandro A, Lavagnino G. New surgical approach to lichen sclerosus of the vulva: the role of adipose-derived mesenchymal cells and platelet-rich plasma in tissue regeneration. Plast Reconstr Surg. 2010;126(4):210e–1.

    Article  PubMed  Google Scholar 

  67. Ding G, Wang W, Liu Y, Zhang C, Wang S. Mesenchymal stem cell transplantation: a potential therapy for oral lichen planus. Med Hypotheses. 2011;76(3):322–4.

    Article  CAS  PubMed  Google Scholar 

  68. Garcia-Olmo D, Garcia-Arranz M, Herreros D, Pascual I, Peiro C, Rodriguez-Montes JA. A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Dis Colon Rectum. 2005;48(7):1416–23.

    Article  PubMed  Google Scholar 

  69. de la Portilla F, Alba F, Garcia-Olmo D, Herrerias JM, Gonzalez FX, Galindo A. Expanded allogeneic adipose-derived stem cells (eASCs) for the treatment of complex perianal fistula in Crohn’s disease: results from a multicenter phase I/IIa clinical trial. Int J Colorectal Dis. 2013;28(3):313–23.

    Article  PubMed  Google Scholar 

  70. Herreros MD, Garcia-Arranz M, Guadalajara H, De-La-Quintana P, Garcia-Olmo D. Autologous expanded adipose-derived stem cells for the treatment of complex cryptoglandular perianal fistulas: a phase III randomized clinical trial (FATT 1: fistula Advanced Therapy Trial 1) and long-term evaluation. Dis Colon Rectum. 2012;55(7):762–72.

    Article  CAS  PubMed  Google Scholar 

  71. Jabbarzadeh E, Starnes T, Khan YM, Jiang T, Wirtel AJ, Deng M, Lv Q, Nair LS, Doty SB, Laurencin CT. Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: a combined gene therapy-cell transplantation approach. Proc Natl Acad Sci U S A. 2008;105(32):11099–104.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Donofrio G, Capocefalo A, Franceschi V, Morini G, Del Bue M, Conti V, Cavirani S, Grolli S. Virally and physically transgenized equine adipose-derived stromal cells as a cargo for paracrine secreted factors. BMC Cell Biol. 2010;11:73.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Jin XB, Sun YS, Zhang K, Wang J, Shi TP, Ju XD, Lou SQ. Tissue engineered cartilage from hTGF beta2 transduced human adipose derived stem cells seeded in PLGA/alginate compound in vitro and in vivo. J Biomed Mater Res A. 2008;86(4):1077–87.

    Article  PubMed  Google Scholar 

  74. Levi B, Hyun JS, Nelson ER, Li S, Montoro DT, Wan DC, Jia FJ, Glotzbach JC, James AW, Lee M, et al. Nonintegrating knockdown and customized scaffold design enhances human adipose-derived stem cells in skeletal repair. Stem Cells. 2011;29(12):2018–29.

    Article  CAS  PubMed  Google Scholar 

  75. Lin L, Fu X, Zhang X, Chen LX, Zhang JY, Yu CL, Ma KT, Zhou CY. Rat adipose-derived stromal cells expressing BMP4 induce ectopic bone formation in vitro and in vivo. Acta Pharmacol Sin. 2006;27(12):1608–15.

    Article  CAS  PubMed  Google Scholar 

  76. Cho HH, Kyoung KM, Seo MJ, Kim YJ, Bae YC, Jung JS. Overexpression of CXCR4 increases migration and proliferation of human adipose tissue stromal cells. Stem Cells Dev. 2006;15(6):853–64.

    Article  CAS  PubMed  Google Scholar 

  77. Deveza L, Choi J, Imanbayev G, Yang F. Paracrine release from nonviral engineered adipose-derived stem cells promotes endothelial cell survival and migration in vitro. Stem Cells Dev. 2012;22(3):483–91.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Kang SK, Lee DH, Bae YC, Kim HK, Baik SY, Jung JS. Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats. Exp Neurol. 2003;183(2):355–66.

    Article  CAS  PubMed  Google Scholar 

  79. Di Rocco G, Gentile A, Antonini A, Truffa S, Piaggio G, Capogrossi MC, Toietta G. Analysis of biodistribution and engraftment into the liver of genetically-modified mesenchymal stromal cells derived from adipose tissue. Cell Transplant. 2012;21(9):1997–2008.

    Article  PubMed  Google Scholar 

  80. Madonna R, Bolli R, Rokosh G, De Caterina R. Long-term engraftment and angiogenic properties of lentivirally transduced adipose tissue-derived stromal cells. Mol Biotechnol. 2013;54(1):13–24.

    Article  CAS  PubMed  Google Scholar 

  81. Lu F, Li J, Gao J, Ogawa R, Ou C, Yang B, Fu B. Improvement of the survival of human autologous fat transplantation by using VEGF-transfected adipose-derived stem cells. Plast Reconstr Surg. 2009;124(5):1437–46.

    Article  CAS  PubMed  Google Scholar 

  82. Grisendi G, Bussolari R, Cafarelli L, Petak I, Rasini V, Veronesi E, De Santis G, Spano C, Tagliazzucchi M, Barti-Juhasz H, Scarabelli L, Bambi F, Frassoldati A, Rossi G, Casali C, Morandi U, Horwitz EM, Paolucci P, Conte P, Dominici M. Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor-related apoptosis-inducing ligand delivery for cancer therapy. Cancer Res. 2010;70(9):3718–29.

    Article  CAS  PubMed  Google Scholar 

  83. Hsu WK, Wang JC, Liu NQ, Krenek L, Zuk PA, Hedrick MH, Benhaim P, Lieberman JR. Stem cells from human fat as cellular delivery vehicles in an athymic rat posterolateral spine fusion model. J Bone Joint Surg. 2008;90(5):1043–52.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Trivisonno M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trivisonno, A., Abecassis, M., Monti, M., Toietta, G., Bachir, A. (2014). Adipose Tissue: From Energy Reservoir to a Source of Cells for Epithelial Tissue Engineering. In: Shiffman, M., Di Giuseppe, A., Bassetto, F. (eds) Stem Cells in Aesthetic Procedures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45207-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45207-9_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45206-2

  • Online ISBN: 978-3-642-45207-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics