Skip to main content
Log in

Phylogenetic contrasts and the evolution of mammalian life histories

  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Summary

A recent synthetic model of mammalian life history evolution predicts that αM = 3(1−δ0.25), where αM is the product of age at maturity and the average adult instantaneous mortality rate, and δ is the ratio of weight at independence to average adult female weight. Previous studies have tested this prediction by fitting a nonlinear regression to data collected for several species of mammals. However, this procedure suffers from non-independence of data points and may have led to incorrect estimates of regression parameters. We test the same life history prediction using phylogenetically independent contrasts with a phylogeny and data for 23 species of mammals. The results accord with the predicted relationship. Our study is one of the few examples where phylogenetic information has been used to improve the statistical power of a quantitative, model-based prediction of how life history variables should co-evolve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bulmer, M., Wolfe, K. H. and Sharp, P. M. (1991) Synonymous nucleotide substitution rates in mammalian genes: implications for the molecular clock and the relationships of mammalian orders.Press Proc. Natl Acad. Sci. USA 88, 5974–8.

    Google Scholar 

  • Calder, W. A. (1984)Size, Function and Life History. Harvard University Press, Cambridge, MA, USA.

    Google Scholar 

  • Case, T. J. (1978) On the evolution and adaptive significance of postnatal growth rates in the terrestrial vertebrates.Q. Rev. Biol. 53, 243–82.

    PubMed  Google Scholar 

  • Charnov, E. L. (1991) Evolution of life history variation among female mammals.Proc. Nat. Acad. Sci. USA 88, 1134–7.

    PubMed  Google Scholar 

  • Charnov, E. L. and Berrigan, D. (1990) Dimensionless numbers and life history evolution: age of maturity versus the adult lifespan.Evol. Ecol. 4, 273–5.

    Google Scholar 

  • Charnov, E. L. and Berrigan, D. (1991a) Dimensionless numbers and the assembly rules for life histories.Phil. Trans. Roy. Soc. Lond. (B) 332 41–8.

    Google Scholar 

  • Charnov, E. L. and Berrigan, D. (1991b) Evolution of life history patterns in animals with indeterminate growth, particularly fish.Evol. Ecol. 5, 63–8.

    Google Scholar 

  • Ellis, L. S. and Maxson, L. R. (1979) Evolution of the chipmunk generaEutamias andTamias.J. Mammal. 60, 331–4.

    Google Scholar 

  • Felsenstein, J. (1985) Phylogenies and the comparative method.Amer. Natur. 125, 1–15.

    Google Scholar 

  • Georgiadis, N. J., Kat, P. W. and Oketch, H. (1990) Allozyme divergence within the Bovidae.Evolution 44, 2135–49.

    Google Scholar 

  • Grzimek, B. (1990)Encyclopedia of Mammals. 5 Vols. McGraw-Hill, New York, USA.

    Google Scholar 

  • Hafner, D. J. (1984) Evolutionary relationships of the Nearctic Sciuridae. InThe biology of ground dwelling squirrels (J. O. Murie and G. R. Michener, ed.), pp. 3–23. University of Nebraska Press, Omaha.

    Google Scholar 

  • Harvey, P. H. and Mace, G. M. (1982) Comparisons between taxa and adaptive trends: problems of methodology. InCurrent problems in sociobiology (King's College Sociobiology Group, ed.), pp. 343–61. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Harvey, P. H. and Nee, S. (1991) How to live like a mammal.Nature 350, 23–4.

    PubMed  Google Scholar 

  • Harvey, P. H. and Pagel, M. D. (1991)The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Harvey, P. H. and Purvis, A. (1991). Comparative methods for explaining adaptations.Nature 351, 619–24.

    PubMed  Google Scholar 

  • Harvey, P. H. and Zammuto, R. M. (1985) Patterns of mortality and age at first reproduction in natural populations of mammals.Nature 315, 319–20.

    PubMed  Google Scholar 

  • Harvey, P. H., Read, A. F. and Promislow, D. E. L. (1989) Life history variation in placental mammals: unifying the data with theory.Oxford Sur. Evol. Biol. 6, 13–32.

    Google Scholar 

  • Hight, M. E., Goodman, M. and Prychodko, W. (1974) Immunological studies of the Sciuridae.Syst. Zool. 23, 12–25.

    Google Scholar 

  • Janis, C. M. (1988) New ideas in ungulate phylogeny and evolution.Trends Ecol. Evol. 3, 291–7.

    Google Scholar 

  • Lavigne, D. M. J. (1982) Similarity of energy budgets of animal populations.Anim. Ecol. 51, 195–206.

    Google Scholar 

  • Li, W.-H., Gouy, M., Sharp, P. M., O'hUigin, C. and Yang, Y. W. (1990) Molecular phylogeny of Rodentia, Lagomorpha, Primates, Artiodactyla, and Carnivora and molecular clocks.Proc. Natl. Acad. Sci. USA. 87, 6703–7.

    PubMed  Google Scholar 

  • Martins, E. and Garland, T. (1991) Phylogenetic analysis of the correlated evolution of continuous characters: a simulation study.Evolution 45, 534–57.

    Google Scholar 

  • Nadler, C. F., Lyapunova, E. A., Hoffmann, R. S., Vorontsov, N. N., Shaitarova, L. L. and Borisov, Y. M. (1984) Chromosomal evolution in Holarctic ground squirrels (Spermophilus).Z. Säugetierkunde 49, 78–90.

    Google Scholar 

  • Pagel, M. D. (1992) A method for the analysis of comparative data.J. Theor. Biol. 156, 431–42.

    Google Scholar 

  • Pagel, M. D. and Harvey, P. H. (1989) Taxonomic differences in the scaling of brain on body weight among mammals.Science 244, 1589–93.

    PubMed  Google Scholar 

  • Partridge, L. and Harvey, P. H. (1988) The ecological context of life history evolution.Science 241, 1449–55.

    Google Scholar 

  • Peters, R. H. (1983)The Ecological Implications of Body Size. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Promislow, D. E. L. and Harvey, P. H. (1990) Living fast and dying young: a comparative analysis of life history variation among mammals.J. Zool. 220, 417–37.

    Google Scholar 

  • Read, A. F. and Harvey, P. H. (1989) Life history differences among the Eutherian radiations.J. Zool. 219, 329–53.

    Google Scholar 

  • Reiss, M. J. (1989)The Allometry of Growth and Reproduction. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Reznick, D. (1985) Costs of reproduction: an evaluation of the empirical evidence.Oikos 44, 257–67.

    Google Scholar 

  • Ridley, M. (1983)The Explanation of Organic Diversity: the Comparative Method and Adaptations for Mating. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Roff, D. A. (1984) The evolution of life history parameters in Teleosts.Can. J. Fish. Aqua. Sci. 41, 989–1000.

    Google Scholar 

  • Sarich, V. M. (1985) Rodent macromolecular systematics. InEvolutionary relationships among Rodents; a multidisciplinary analysis (W. P. Luckett and J.-L. Hartenberger, eds), pp. 423–52. NATO ASI series A 92, Plenum Press, NY, USA.

    Google Scholar 

  • Shine, R. and Charnov, E. L. (1992) Patterns of survivorship, growth and maturation in snakes and lizards.Amer. Nat. (in press).

  • Sprent, P. (1969)Models in Regression and Related Topics. Methuen, London, UK.

    Google Scholar 

  • Stearns, S. C. (1983) The influence of size and phylogeny on life history patterns.Oikos 41, 173–87.

    Google Scholar 

  • Wozencraft, W. C. (1986) Classification of the Recent Carnivora. InCarnivore Biology (J. L. Gittleman, ed.), pp. 569–93. Cornell University Press, Ithaca, NY, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berrigan, D., Charnov, E.L., Purvis, A. et al. Phylogenetic contrasts and the evolution of mammalian life histories. Evol Ecol 7, 270–278 (1993). https://doi.org/10.1007/BF01237744

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01237744

Keywords

Navigation