Skip to main content

Advertisement

Log in

Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Cyanobacteria were present on the earth 3.5 billion years ago; since then they have colonized almost all terrestrial and aquatic ecosystems. They produce a high number of bioactive molecules, among which some are cyanotoxins. Cyanobacterial growth at high densities, forming blooms, is increasing in extension and frequency, following anthropogenic activities and climate changes, giving rise to some concern for human health and animal life exposed to cyanotoxins. Numerous cases of lethal poisonings have been associated with cyanotoxins ingestion in wild animal and livestock. In humans few episodes of lethal or severe human poisonings have been recorded after acute or short-term exposure, but the repeated/chronic exposure to low cyanotoxin levels remains a critical issue. The properties of the most frequently detected cyanotoxins (namely, microcystins, nodularins, cylindrospermopsin and neurotoxins) are here critically reviewed, describing for each toxin the available information on producing organisms, biosynthesis/genetic and occurrence, with a focus on the toxicological profile (including kinetics, acute systemic toxicity, mechanism and mode of action, local effects, repeated toxicity, genotoxicity, carcinogenicity, reproductive toxicity; human health effects and epidemiological studies; animal poisoning) with the derivation of health-based values and considerations on the risks for human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adamovsky O, Moosova Z, Pekarova M, Basu A, Babica P, Svihalkova Sindlerova L, Kubala L, Blaha L (2015) Immunomodulatory potency of microcystin, an important water-polluting cyanobacterial toxin. Environ Sci Technol 49(20):12457–12464. doi:10.1021/acs.est.5b02049

    Article  CAS  PubMed  Google Scholar 

  • Affan A, Khomavis HS, Al-Harbi SM, Haque M, Khan S (2015) Effect of environmental factors on cyanobacterial abundance and cyanotoxins production in natural and drinking water, Bangladesh. Pak J Biol Sci 18(2):50–58

    Article  PubMed  Google Scholar 

  • Akcaalan R, Mazur-Marzec H, Zalewska A, Albay M (2009) Phenotypic and toxicological characterization of toxic Nodularia spumigena from a freshwater lake in Turkey. Harmf Algae 8(2):273–278. doi:10.1016/j.hal.2008.06.007

    Article  CAS  Google Scholar 

  • Algermissen D, Mischke R, Seehusen F, Göbel J, Beineke A (2011) Lymphoid depletion in two dogs with nodularin intoxication. Vet Rec 169(1):15. doi:10.1136/vr.d1019 (Epub 2011 Jun 7)

    Article  CAS  PubMed  Google Scholar 

  • Alonso E, Alfonso A, Vieytes MR, Botana LM (2016) Evaluation of toxicity equivalent factors of Paralytic Shellfish Poisoning toxins in seven human sodium channels types by an automated high throughput electrophysiology system. Arch Toxicol 90:479. doi:10.1007/s00204-014-1444-y

    Article  CAS  PubMed  Google Scholar 

  • Al-Sammak MA, Hoagland KD, Cassada D, Snow DD (2014) Co-occurrence of the cyanotoxins BMAA, DABA and anatoxin-a in Nebraska reservoirs, fish, and aquatic plants. Toxins 6(2):488–508. doi:10.3390/toxins6020488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • AL-Tebrineh J, Merrick C, Ryan D, Humpage A, Bowling L, Neilan BA (2012) Community composition, toxigenicity, and environmental conditions during a cyanobacterial bloom occurring along 1,100 kilometers of the Murray River. Appl Environ Microbiol 78:263–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amé MV, Galanti LN, Menone ML, Gerpe MS, Moreno VJ, Wunderlin DA (2010) Microcystin-LR, -RR, -YR and -LA in water samples and fishes from a shallow lake in Argentina. Harmful Algae 9(1):66–73. doi:10.1016/j.hal.2009.08.001

    Article  CAS  Google Scholar 

  • Araoz R, Molgò J, Tandeau de Marsac N (2010) Neurotoxic cyanobacterial toxins. Toxicon 56:813–828

    Article  CAS  PubMed  Google Scholar 

  • Aronstam RS, Witkop B (1981) Anatoxin-a interactions with cholinergic synaptic molecules. Proc Natl Acad Sci USA 78:4639–4643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Astrachan NB, Archer BG, Hilbelink DR (1980) Evaluation of the sub-acute toxicity and teratogenicity of anatoxin-a. Toxicon 18:684–688

    Article  CAS  PubMed  Google Scholar 

  • Aune T (2001) Risk assessment of toxins associated with DSP, PSP and ASP in seafood. In: De Koe WJ, Samson RA, Van Egmond HP, Gilbert J, Sabino M (eds) Mycotoxins and phycotoxins in perspective at the turn of the millennium. Ponsen & Looyen Wageningen, The Netherlands, pp 515–526

    Google Scholar 

  • Azevedo SM, Carmichael WW, Jochimsen EM, Rinehart KL, Lau S, Shaw GR, Eaglesham GK (2002) Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil. Toxicology 181–182:441–446

    Article  PubMed  Google Scholar 

  • Babior BM (2000) Phagocytes and oxidative stress. Am J Med 109(1):33–44

    Article  CAS  PubMed  Google Scholar 

  • Backer LC, Carmichael W, Kirkpatrick B, Williams C, Irvin M, Zhou Y, Johnson TB, Nierenberg K et al (2008) Recreational exposure to microcystins during a Microcystis aeruginosa bloom in a small lake. Mar Drugs 6:389–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Backer LC, McNeel SV, Barber T, Kirkpatrick B, Williams C, Irvin M, Zhou Y et al (2010) Recreational exposure to microcystins during algal blooms in two California lakes. Toxicon 55:909–921

    Article  CAS  PubMed  Google Scholar 

  • Bácsi I, Vasas G, Surányi G et al (2006) Alteration of cylindrospermopsin production in sulfate- or phosphate-starved cyanobacterium Aphanizomenon ovalisporum. FEMS Microbiol Lett 259(2):303–310. doi:10.1111/j.1574-6968.2006.00282.x

    Article  PubMed  CAS  Google Scholar 

  • Bagu JR, Sykes BD, Craig MM, Holmes CF (1997) A molecular basis for different interactions of marine toxins with protein phosphatase-1. Molecular models for bound motuporin, microcystins, okadaic acid, and calyculin A. J Biol Chem 272(8):5087–5097

    Article  CAS  PubMed  Google Scholar 

  • Bain P, Shaw G, Patel B (2007) Induction of p53-regulated gene expression in human cell lines exposed to the cyanobacterial toxin cylindrospermopsin. J Toxicol Environ Health A 70:1687–1693

    Article  CAS  PubMed  Google Scholar 

  • Bajpai R, Sharma NK, Lawton LA, Edwards C, Rai AK (2009) Microcystin producing cyanobacterium Nostoc sp. BHU001 from a pond in India. Toxicon 53(5):587–590

    Article  CAS  PubMed  Google Scholar 

  • Ballot A, Krienitz L, Kotut K, Wiegand C, Metcalf JS, Codd GA, Pflugmacher S (2004) Cyanobacteria and cyanobacterial toxins in three alkaline Rift Valley lakes of Kenya—Lakes Bogoria, Nakuru and Elmenteita. J Plankton Res 26(8):925–935. doi:10.1093/plankt/fbh084

    Article  CAS  Google Scholar 

  • Ballot A, Fastner J, Lentz M, Wiedner C (2010) First report of anatoxin-a producing cyanobacterium Aphanizomenon issatschenkoi in northeastern Germany. Toxicon 56:964–971

    Article  CAS  PubMed  Google Scholar 

  • Ballot A, Sandvik M, Rundberget T, Botha CJ, Miles CO (2014) Diversity of cyanobacteria and cyanotoxins in Hartbeespoort Dam, South Africa. Mar Freshw Res 65:175–189

    Article  Google Scholar 

  • Banack SA, Cox PA (2003) Biomagnification of cycad neurotoxins in flying foxes: implications for ALS-PDC in Guam. Neurology 61(3):387–389

    Article  CAS  PubMed  Google Scholar 

  • Banack SA, Murch SJ, Cox PA (2006) Neurotoxic flying foxes as dietary items for the Chamorro people, Marianas Islands. J Ethnopharmacol 106(1):97–104

    Article  PubMed  Google Scholar 

  • Banack SA, Caller TA, Stommel EW (2010) The cyanobacteria derived toxin Beta-N-methylamino-l-alanine and amyotrophic lateral sclerosis. Toxins 2(12):2837–2850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banack SA, Caller T, Henegan P, Haney J, Murby A, Metcalf JS et al (2015) Detection of cyanotoxins, beta-N-methylamino-l-alanine and microcystins, from a lake surrounded by cases of amyotrophic lateral sclerosis. Toxins 7(2):322–336. doi:10.3390/toxins7020322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banker R, Carmeli S, Hadas O, Teltsch B, Porat R, Sukenik A (1997) Identification of cylindrospermopsin in Aphanizomenon ovalisporum (Cyanophyceae) isolated from Lake Kinneret, Israel. J Phycol 33(4):613–616. doi:10.1111/j.0022-3646.1997.00613.x

    Article  CAS  Google Scholar 

  • Banker R, Carmeli S, Teltsch B, Sukenik A (2000) 7-epicylindrospermopsin, a toxic minor metabolite of the cyanobacterium Aphanizomenon ovalisporum from Lake Kinneret. Isr J Nat Prod 63:387–389

    Article  CAS  Google Scholar 

  • Bautista AC, Moore CE, Lin Y, Cline MG, Benitah N, Puschner B (2015) Hepatopathy following consumption of a commercially available blue-green algae dietary supplement in a dog. BMC Vet Res 11:136. doi:10.1186/s12917-015-0453-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bazin E, Huet S, Jarry G, Le Hégarat L, Munday JS, Humpage AR, Fessard V (2010a) Cytotoxic and genotoxic effects of cylindrospermopsin in mice treated by gavage or intraperitoneal injection. Environ Toxicol 27(5):277–284

    Article  PubMed  CAS  Google Scholar 

  • Bazin E, Mourot A, Humpage AR, Fessard V (2010b) Genotoxicity of a freshwater cyanotoxin, Cylindrospermopsin, in two human cell lines: Caco-2 and HepaRG. Environ Mol Mutag 51(3):251–259

    CAS  Google Scholar 

  • Beattie KA, Kaya K, Codd GA (2000) The cyanobacterium Nodularia PCC 7804, of freshwater origin, produces [L-Har2]nodularin. Phytochemistry 54(1):57–61. doi:10.1016/S0031-9422(00)00045-5

    Article  CAS  PubMed  Google Scholar 

  • Beltran EC, Neilan BA (2000) Geographical segregation of the neurotoxin-producing cyanobacterium Anabaena circinalis. Appl Environ Microbiol 66(10):4468–4474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beltran E, Ibanez M, Sancho JV, Hernandez F (2012) Determination of six microcystins and nodularin in surface and drinking waters by on-line solid phase extraction-ultra high pressure liquid chromatography tandem mass spectrometry. J Chromatogr A 1266:61–68. doi:10.1016/j.chroma.2012.10.017

    Article  CAS  PubMed  Google Scholar 

  • Belykh OI, Tikhonova IV, Kuzmin AV et al (2016) First detection of benthic cyanobacteria in Lake Baikal producing paralytic shellfish toxins. Toxicon 121:36–40. doi:10.1016/j.toxicon.2016.08.015

    Article  CAS  PubMed  Google Scholar 

  • Benson JM, Hutt JA, Rein K, Boggs SE, Barr EB, Fleming LE (2005) The toxicity of microcystin LR in mice following 7 days of inhalation exposure. Toxicon 45(6):691–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein JA, Ghosh D, Levin LS, Zheng S, Charmichael W, Lummus Z, Bernstein IL (2011) Cyanobacteria: an unrecognized ubiquitous sensitizing allergen? Allergy Asthma Proc 32:106–110. doi:10.2500/aap.2011.32.3434

    Article  PubMed  Google Scholar 

  • Berry JP, Lind O (2010) First evidence of “paralytic shellfish toxins” and cylindrospermopsin in a Mexican freshwater system, Lago Catemaco, and apparent bioaccumulation of the toxins in “tegogolo” snails (Pomacea patula catemacensis). Toxicon 5:930–938. doi:10.1016/j.toxicon.2009.07.035

    Article  CAS  Google Scholar 

  • Berry JP, Jaja-Chimedza A, Davalos-Lind L, Lind O (2012) Apparent bioaccumulation of cylindrospermopsin and paralytic shellfish toxins by finfish in Lake Catemaco (Veracruz, Mexico). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 29(2):314–321. doi:10.1080/19440049.2011.597785

    Article  CAS  PubMed  Google Scholar 

  • Beversdorf LJ, Chaston SD, Miller TR, McMahon KD (2015) Microcystin mcyA and mcyE gene abundances are not appropriate indicators of microcystin concentrations in Lakes. PLoS ONE 10(5):e0125353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bittencourt-Oliveira Mdo C, Cordeiro-Araujo MK, Chia MA, Arruda-Neto JD, Oliveira ET, Santos FD (2016) Lettuce irrigated with contaminated water: photosynthetic effects, antioxidative response and bioaccumulation of microcystin congeners. Ecotoxicol Environ Saf 128:83–90. doi:10.1016/j.ecoenv.2016.02.014

    Article  PubMed  CAS  Google Scholar 

  • Blackburn SI, McCausland MA, Bolch CJS, Newman SJ, Jones GJ (1996) Effect of salinity on growth and toxin production in cultures of the bloom-forming cyanobacterium Nodularia spumigena from Australian waters. Phycologia 35(6):511–522. doi:10.2216/i0031-8884-35-6-511.1

    Article  Google Scholar 

  • Bláhová L, Babica P, Maršálková E, Maršálek B, Bláha L (2007) Concentrations and seasonal trends of extracellular microcystins in freshwaters of the Czech Republic—results of the national monitoring program. Clean Soil Air Water 35(4):348–354. doi:10.1002/clen.200700010

    Article  CAS  Google Scholar 

  • Borges HLF, Branco LHZ, Martins MD, Lima CS, Barbosa PT, Lira GAST et al (2015) Cyanotoxin production and phylogeny of benthic cyanobacterial strains isolated from the northeast of Brazil. Harmful Algae 43:46–57. doi:10.1016/j.hal.2015.01.003

    Article  CAS  Google Scholar 

  • Bormans M, Lengronne M, Brient L, Duval C (2014) Cylindrospermopsin accumulation and release by the benthic cyanobacterium Oscillatoria sp. PCC 6506 under different light conditions and growth phases. B Environ Contam Tox 92(2):243–247. doi:10.1007/s00128-013-1144-y

    Article  CAS  Google Scholar 

  • Botha N, van de Venter M, Downing TG, Shephard EG, Gehringer MM (2004) The effect of intraperitoneally administered microcystin-LR on the gastrointestinal tract of Balb/c mice. Toxicon 43(3):251–254

    Article  CAS  PubMed  Google Scholar 

  • Bouaïcha N, Maatouk I, Plessis MJ, Périn F (2005) Genotoxic potential of microcystin-LR and nodularin in vitro in primary cultured rat hepatocytes and in vivo in rat liver. Environ Toxicol 20(3):341–347

    Article  PubMed  CAS  Google Scholar 

  • Bouhaddada R, Nelieu S, Nasri H, Delarue G, Bouaicha N (2016) High diversity of microcystins in a Microcystis bloom from an Algerian lake. Environ Pollut 216:836–844. doi:10.1016/j.envpol.2016.06.055

    Article  CAS  PubMed  Google Scholar 

  • Bourke ATC, Hawes RB, Neilson A, Stallman ND (1983) An outbreak of hepato-enteritis (the Palm Island mystery disease) possibly caused by algal intoxication. Toxicon 21:45–48

    Article  Google Scholar 

  • Brenner ED, Stevenson DW, McCombie RW, Katari MS, Rudd SA, Mayer KFX, Palenchar PM et al (2003a) Expressed sequence tag analysis in Cycas, the most primitive living seed plant. Genome Biol 4:R78

    Article  PubMed  PubMed Central  Google Scholar 

  • Brenner ED, Stevenson DW, McCombie RW, Katari MS, Rudd SA, Mayer KFX, Palenchar PM, Runko SJ, Twigg RW, Dai G, Martienssen RA, Benfey PN, Coruzzi GM (2003b) Expressed sequence tag analysis in Cycas, the most primitive living seed plant. Genome Biol 4(12):R78

    Article  PubMed  PubMed Central  Google Scholar 

  • Briand JF, Jacquet S, Flinois C, Avois-Jacquet C, Maisonnette C, Leberre B, Humbert JF (2005) Variations in the microcystin production of Planktothrix rubescens (Cyanobacteria) assessed from a four-year survey of Lac du Bourget (France) and from laboratory experiments. Microbial Ecol 50:418–428

    Article  Google Scholar 

  • Briand E, Yéprémian C, Humbert J-F, Quiblier C (2008) Competition between microcystin- and non-microcystin-producing Planktothrix agardhii (cyanobacteria) strains under different environmental conditions. Environ Microbiol 10(12):3337–3348

    Article  CAS  PubMed  Google Scholar 

  • Brutemark A, Engström-Öst J, Vehmaa A, Gorokhova E (2015a) Growth, toxicity and oxidative stress of a cultured cyanobacterium (Dolichospermum sp.) during different pH and temperature conditions. Phycological Res 63:56–63

    Article  CAS  Google Scholar 

  • Brutemark A, Vandelannoote A, Engström-Öst J, Suikkanen S (2015b) A less saline baltic sea promotes cyanobacterial growth, hampers intracellular microcystin production, and leads to strain-specific differences in allelopathy. PLoS ONE 10(6):e0128904. doi:10.1371/journal.pone.0128904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buratti FM, Testai E (2015) Species- and congener-differences in microcystin-LR and -RR GSH conjugation in human, rat, and mouse hepatic cytosol. Toxicol Lett 232(1):133–140

    Article  CAS  PubMed  Google Scholar 

  • Buratti FM, Scardala S, Funari E, Testai E (2011) Human glutathione transferases catalyzing the conjugation of the hepatoxin microcystin-LR. Chem Res Toxicol 24(6):926–933

    Article  CAS  PubMed  Google Scholar 

  • Buratti FM, Scardala S, Funari E, Testai E (2013) The conjugation of microcystin-RR by human recombinant GSTs and hepatic cytosol. Toxicol Lett 219(3):231–238

    Article  CAS  PubMed  Google Scholar 

  • Burford MA, Beardall J, Willis A, Orr PT, Magalhaes VF, Rangel LM et al (2016) Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae 54:44–53. doi:10.1016/j.hal.2015.10.012

    Article  PubMed  Google Scholar 

  • Butler N, Carlisle J, Linville R (2012) Toxicological summary and suggested action levels to reduce potential adverse health effects of six cyanotoxins. Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento. 119 pages

  • Byth S (1980) Palm Island mystery disease. Med J Aust 2:40–42

    CAS  PubMed  Google Scholar 

  • Cadel-Six S, Peyraud-Thomas C, Brient L, de Marsac NT, Rippka R, Mejean A (2007) Different genotypes of anatoxin-producing cyanobacteria coexist in the Tarn River, France. Appl Environ Microbiol 73(23):7605–7614. doi:10.1128/aem.01225-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cadel-Six S, Iteman I, Peyraud-Thomas C, Mann S, Ploux O, Mejean A (2009) Identification of a polyketide synthase coding sequence specific for anatoxin-a-producing Oscillatoria cyanobacteria. Appl Environ Microbiol 75(14):4909–4912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai F, Liu J, Li C, Wang J (2015) Critical role of endoplasmic reticulum stress in cognitive impairment induced by Microcystin-LR. Int J Mol Sci 16(12):28077–28086. doi:10.3390/ijms161226083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callieri C, Bertoni R, Contesini M, Bertoni F (2014) Lake level fluctuations boost toxic cyanobacterial “oligotrophic blooms”. PLoS ONE 9(10):e109526. doi:10.1371/journal.pone.0109526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Campbell HF, Edwards OE, Elder JW, Kolt RJ (1979) Total synthesis of DL-anatoxin-a and DL-isoanatoxin-a. Pol J Chem 53:27–37

    CAS  Google Scholar 

  • Campos A, Vasconcelos V (2010) Molecular mechanisms of microcystin toxicity in animal cells. Int J Mol Sci 11(1):268–287. doi:10.3390/ijms11010268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos F, Durán R, Vidal L, Faro LRF, Alfonso M (2006) In vivo effects of the anatoxin-a on striatal dopamine release. Neuroch Res 31:491–501

    Article  CAS  Google Scholar 

  • Carmichael WW, Falconer IR (1993) Diseases related to freshwater algal blooms. In: Falconer IR (ed) Algal Toxins in Seafood and Drinking Water. Academic Press, London, pp 187–209

    Chapter  Google Scholar 

  • Carmichael WW, Biggs D, Gorham P (1975) Toxicology and pharmacological action of Anabaena flos-aquae toxin. Science 187:542–544

    Article  CAS  PubMed  Google Scholar 

  • Carmichael WW, Eschedor JT, Patterson GM, Moore RE (1988) Toxicity and partial structure of a hepatotoxic peptide produced by the cyanobacterium Nodularia spumigena Mertens emend. L575 from New Zealand. Appl Environ Microbiol 54(9):2257–2263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carmichael WW, Mahmood NA, Hyde EG (1990) Natural toxins from cyanobacteria (blue-green algae). In: Hall S, Strichartz G (eds) Marine toxins: origins, structure and molecular pharmacology. American Chemical Society, Washington, pp 87–106

    Chapter  Google Scholar 

  • Carmichael WW, Evans WR, Yin QQ, Bell P, Moczydlowski E (1997) Evidence for paralytic shellfish poisons in the freshwater cyanobacterium Lyngbya wollei (Farlow ex Gomont) comb. nov. Appl Environ Microbiol 63:3104–3110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carmichael WW, Azevedo SM, An JS, Molica RJ, Jochimsen EM, Lau S, Rinehart KL et al (2001) Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins. Environ Health Persp 109(7):663–668

    Article  CAS  Google Scholar 

  • Carvalho GM, Oliveira VR, Casquilho NV, Araujo AC, Soares RM, Azevedo SM, Pires KM, Valença SS, Zin WA (2016) Pulmonary and hepatic injury after sub-chronic exposure to sublethal doses of microcystin-LR. Toxicon 112:51–58. doi:10.1016/j.toxicon.2016.01.066

    Article  CAS  PubMed  Google Scholar 

  • Chatziefthimiou AD, Richer R, Rowles H, Powell JT, Metcalf JS (2014) Cyanotoxins as a potential cause of dog poisonings in desert environments. Vet Rec 174(19):484–485. doi:10.1136/vr.g3176

    Article  PubMed  Google Scholar 

  • Chatziefthimiou AD, Metcalf JS, Glover WB, Banack SA, Dargham SR, Richer RA (2016) Cyanobacteria and cyanotoxins are present in drinking water impoundments and groundwater wells in desert environments. Toxicon 114:75–84. doi:10.1016/j.toxicon.2016.02.016

    Article  CAS  PubMed  Google Scholar 

  • Chellappa NT, Chellappa SL, Chellappa S (2008) Harmful phytoplankton blooms and fish mortality in a eutrophicated reservoir of northeast Brazil Brazilian. Arch Biol Technol 51(4):831–844

    Article  Google Scholar 

  • Chen YM, Lee TH, Lee SJ, Huang HB, Huang R, Chou HN (2006) Comparison of protein phosphatase inhibition activities and mouse toxicities of microcystins. Toxicon 47(7):742–746

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Xie P, Li L, Xu J (2009) First identification of the hepatotoxic microcystins in the serum of a chronically exposed human population together with indication of hepatocellular damage. Toxicol Sci 108(1):81–89

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Xu J, Li Y, Han X (2011) Decline of sperm quality and testicular function in male mice during chronic low-dose exposure to microcystin-LR. Reprod Toxicol 31(4):551–557

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Han FX, Wang F, Zhang H, Shi Z (2012) Accumulation and phytotoxicity of microcystin-LR in rice (Oryza sativa). Ecotoxicol Environ Saf 76(2):193–199. doi:10.1016/j.ecoenv.2011.09.022

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Zhang X, Zhou W, Qiao Q, Liang H, Li G, Wang J, Cai F (2013a) The interactive effects of cytoskeleton disruption and mitochondria dysfunction lead to reproductive toxicity induced by microcystin-LR. PLoS ONE 8(1):e53949. doi:10.1371/journal.pone.0053949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Shen D, Fang D (2013b) Nodularins in poisoning. Clin Chim Acta 425:18–29. doi:10.1016/j.cca.2013.07.005

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Li S, Guo X, Xie P, Chen J (2016a) The role of GSH in microcystin-induced apoptosis in rat liver: involvement of oxidative stress and NF-κB. Environ Toxicol 31(5):552–560. doi:10.1002/tox.22068

    CAS  PubMed  Google Scholar 

  • Chen Q, Christiansen G, Deng L, Kurmayer R (2016b) Emergence of nontoxic mutants as revealed by single filament analysis in bloom-forming cyanobacteria of the genus Planktothrix. BMC Microbiol. doi:10.1186/s12866-016-0639-1

    Google Scholar 

  • Chernoff N, Hunter ES 3rd, Hall LL, Rosen MB, Brownie CF, Malarkey D, Marr M, Herkovits J (2002) Lack of teratogenicity of microcystin-LR in the mouse and toad. J Appl Toxicol 22(1):13–17

    Article  CAS  PubMed  Google Scholar 

  • Chernoff N, Rogers EH, Zehr RD, Gage MI, Malarkey DE, Bradfield CA, Liu Y et al (2011) Toxicity and recovery in the pregnant mouse after gestational exposure to the cyanobacterial toxin, cylindrospermopsin. J Appl Toxicol 31(3):242–254

    Article  CAS  PubMed  Google Scholar 

  • Chernoff N, Rogers EH, Zehr RD, Gage MI, Travlos GS, Malarkey DE, Brix A et al (2014) The course of toxicity in the pregnant mouse after exposure to the cyanobacterial toxin cylindrospermopsin: clinical effects, serum chemistries, hematology, and histopathology. J Toxicol Environ Health Part A 77(17):1040–1060

    Article  CAS  PubMed  Google Scholar 

  • Chiswell RK, Shaw GR, Eaglesham GK, Smith MJ, Norris RL, Seawright AA, Moore MR (1999) Stability of cylindrospermopsin, the toxin from the cyanobacterium Cylindrospermopsis raciborskii, effect of pH, temperature, and sunlight on decomposition. Environ Toxicol 14:155–165

    Article  CAS  Google Scholar 

  • Chong MWK, Wong BSF, Lam PKS, Shaw GR, Seawright AA (2002) Toxicity and uptake mechanism of cylindrospermopsin and lophyrotomin in primary rat hepatocytes. Toxicon 40:205–211

    Article  CAS  PubMed  Google Scholar 

  • Chorus I (2012) Current approaches to Cyanotoxin risk assessment, risk management and regulations in different countries. Compiled and edited by Dr. Ingrid Chorus, published by the Federal Environment Agency (Umweltbundesamt) Germany, 151 pages. http://www.uba.de/uba-info-medien-e/4390.html

  • Chorus I, Bartram J (eds) (1999) Toxic cyanobacteria in water—a guide to their public health consequences, monitoring and management. E & FN Spon, London

    Google Scholar 

  • Christen V, Meili N, Fent K (2013) Microcystin-LR induces endoplasmatic reticulum stress and leads to induction of NFκB, interferon-alpha, and tumor necrosis factor-alpha. Environ Sci Technol 47(7):3378–3385. doi:10.1021/es304886y

    CAS  PubMed  Google Scholar 

  • Christiansen G, Fastner J, Erhard M, Börner T, Dittmann E (2003) Microcystin biosynthesis in Planktothrix: genes, evolution, and manipulation. J Bacteriol 185(2):564–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christiansen G, Kurmayer R, Liu Q, Börner T (2006) Transposons inactivate biosynthesis of the nonribosomal peptide microcystin in naturally occurring Planktothrix spp. Appl Environ Microbiol 72(1):117–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christiansen G, Yoshida W, Blom J, Portmann C, Gademann K, Hemscheidt T, Kurmayer R (2008) Isolation and structure determination of two microcystins and sequence comparisons of McyABC adenylation domains in Planktothrix pecies. J Nat Prod 71(11):1881–1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cirés S, Ballot A (2016) A review of the phylogeny, ecology and toxin production of bloom-forming Planktothrix spp. and related species within the Nostocales (cyanobacteria). Harmful Algae 54:21–43. doi:10.1016/j.hal.2015.09.007

    Article  PubMed  CAS  Google Scholar 

  • Cirés S, Wörmer L, Timón Wiedner C, Quesada A (2011) Cylindrospermopsin production and release by the potentially invasive cyanobacterium Aphanizomenon ovalisporum under temperature and light gradients. Harmful Algae 10:668–675

    Article  Google Scholar 

  • Clemente Z, Busato RH, Oliveira Ribeiro CA et al (2010) Analyses of paralytic shellfish toxins and biomarkers in a southern Brazilian reservoir. Toxicon 55(2–3):396–406. doi:10.1016/j.toxicon.2009.09.003

    Article  CAS  PubMed  Google Scholar 

  • Codd GA, Edwards C, Beattie KA, Barr WM, Gunn GJ (1992) Fatal attraction to cyanobacteria? Nature 359(6391):110–111

    Article  CAS  PubMed  Google Scholar 

  • Combes A, El Abdellaoui S, Vial J, Lagrange E, Pichon V (2014) Development of an analytical procedure for quantifying the underivatized neurotoxin β-N-methylamino-l-alanine in brain tissues. BMAALS group. Anal Bioanal Chem 406(19):4627–4636

    Article  CAS  PubMed  Google Scholar 

  • Cook WO, Beasley VR, Dahlem AM, Dellinger JA, Harlin KS, Carmichael WW (1988) Comparison of effects of anatoxin-a(s) and paraoxon, physostigmine and pyridostigmine mouse brain cholinesterase activity. Toxicon 26(8):750–753

    Article  CAS  PubMed  Google Scholar 

  • Cook WO, Dellinger JA, Singh SS, Dahlem AM, Carmichael WW, Beasley VR (1989) Regional brain cholinesterase activity in rats injected intraperitoneally with anatoxin-a(s) or paraoxon. Toxicol Lett 49:29–34

    Article  CAS  PubMed  Google Scholar 

  • Copp JN, Roberts AA, Marahiel MA, Neilan BA (2007) Characterization of PPTNs, a cyanobacterial phosphopantetheinyl transferase from Nodularia spumigena NSOR10. J Bacteriol 189(8):3133–3139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbel S, Mougin C, Bouaïcha N (2014) Cyanobacterial toxins: modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops. Chemosphere 96:1–15. doi:10.1016/j.chemosphere.2013.07.056

    Article  CAS  PubMed  Google Scholar 

  • Costa IAS, Azevedo SMFO, Senna PAC, Bernardo RR, Costa SM, Chellappa NT (2006) Occurrence of toxin-producing cyanobacteria blooms in a Brazilian semiarid reservoir. Braz J Biol 66:211–219

    Article  CAS  PubMed  Google Scholar 

  • Cox PA, Banack SA, Murch SJ, Rasmussen U, Tien G, Bidigare RR, Metcalf JS et al (2005) Diverse taxa of cyanobacteria produce beta-Nmethylamino- l-alanine, a neurotoxic amino acid. Proc Natl Acad Sci USA 102:5074–5078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craig M, Luu HA, McCready TL, Williams D, Andersen RJ, Holmes CF (1996) Molecular mechanisms underlying he interaction of motuporin and microcystins with type-1 and type-2A protein phosphatases. Biochem Cell Biol 74:569–578

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Aguado R, Winkler D, Shaw CA (2006) Lack of behavioral and neuropathological effects of dietary beta-methylaminoalanine (BMAA) in mice. Pharmacol Biochem Behav 84:294–299

    Article  CAS  PubMed  Google Scholar 

  • D’Agostino PM, Song X, Neilan BA, Moffitt MC (2016) Proteogenomics of a saxitoxin-producing and non-toxic strain of Anabaena circinalis (cyanobacteria) in response to extracellular NaCl and phosphate depletion. Environ Microbiol 18(2):461–476. doi:10.1111/1462-2920.13131

    Article  PubMed  CAS  Google Scholar 

  • Davis TW, Orr PT, Boyer GL, Burford MA (2014) Investigating the production and release of cylindrospermopsin and deoxy-cylindrospermopsin by Cylindrospermopsis raciborskii over a natural growth cycle. Harmful Algae 31:18–25. doi:10.1016/j.hal.2013.09.007

    Article  CAS  PubMed  Google Scholar 

  • de Almeida C, Costa de Arruda AC, Caldas de Queiroz E, de Lima Matias, Costa HT, Barbosa PF, Araújo Moura Lemos TM, Oliveira CN et al (2013) Oral exposure to cylindrospermopsin in pregnant rats: reproduction and foetal toxicity studies. Toxicon 74:127–129

    Article  CAS  Google Scholar 

  • De Pace R, Vita V, Bucci Maria S, Gallo P, Bruno M (2014) Microcystin contamination in Sea Mussel Farms from the Italian Southern Adriatic Coast following Cyanobacterial Blooms in an artificial reservoir. J Ecosyst 2014:11. doi:10.1155/2014/374027

    Google Scholar 

  • Deblois CP, Aranda-Rodriguez R, Giani A, Bird DF (2008) Microcystin accumulation in liver and muscle of tilapia in two large Brazilian hydroelectric reservoirs. Toxicon 51(3):435–448

    Article  CAS  PubMed  Google Scholar 

  • Devlin JP, Edwards OE, Gorham PR, Hunter NR, Pike RK, Stavric B (1977) Anatoxin-a, a toxic alkaloid from Anabaena flos-aquae NRC-44 h. Can J Chem 55:1367–1371

    Article  CAS  Google Scholar 

  • Dias E, Louro H, Pinto M, Santos T, Antunes S, Pereira P, Silva MJ (2014) Genotoxicity of microcystin-LR in in vitro and in vivo experimental models. Biomed Res Int 2014:949521. doi:10.1155/2014/949521

    PubMed  PubMed Central  Google Scholar 

  • Dietrich DR, Ernst B, De Koe WJ (2007) Human consumer death and algal supplement consumption: a post mortem assessment of potential microcystin-intoxication via microcystin immunohistochemical (MC-ICH) analyses. 7th International Conference on Toxic Cyanobacteria (ICTC), 1-132 Brazil

  • Ding WX, Nam Ong C (2003) Role of oxidative stress and mitochondrial changes in cyanobacteria-induced apoptosis and hepatotoxicity. FEMS Microbiol Lett 220(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • Ding WX, Shen HM, Zhu HG, Lee BL, Ong CN (1999) Genotoxicity of microcystic cyanobacteria extract of a water source in China. Mutat Res-Gen Tox En 442(2):69–77

    Article  CAS  Google Scholar 

  • Dittmann E, Wiegand C (2006) Cyanobacterial toxins—occurrence, biosynthesis and impact on human affairs. Mol Nutr Food Res 50(1):7–17

    Article  CAS  PubMed  Google Scholar 

  • Dittmann E, Fewer DP, Neilan BA (2013) Cyanobacterial toxins: biosynthetic routes and evolutionary roots. FEMS Microbiol Rev 37(1):23–43

    Article  CAS  PubMed  Google Scholar 

  • Dong L, Zhang H, Duan L, Cheng X, Cui L (2008) Genotoxicity of testicle cell of mice induced by microcystin-LR. Life Sci J 5(1):43–45

    Google Scholar 

  • Doster E, Chislock MF, Roberts JF, Kottwitz JJ, Wilson AE (2014) Recognition of an important water quality issue at zoos: prevalence and potential threat of toxic cyanobacteria. J Zoo Wildl Med 45(1):165–168

    Article  PubMed  Google Scholar 

  • Douglas P, Moorhead GB, Ye R, Lees-Miller SP (2001) Protein phosphatases regulate DNA-dependent protein kinase activity. J Biol Chem 276(22):18992–18998

    Article  CAS  PubMed  Google Scholar 

  • Downing S, Banack SA, Metcalf JS, Cox PA, Downing TG (2011) Nitrogen starvation of cyanobacteria results in the production of b-N-methylamino-l-alanine. Toxicon 58:187–194

    Article  CAS  PubMed  Google Scholar 

  • Draisci R, Ferretti E, Palleschi L, Marchiafava C (2001) Identification of anatoxins in blue-green algae food supplements using liquid chromatography-tandem mass spectrometry. Food Addit Contam 18(6):525–531. doi:10.1080/02652030118558

    Article  CAS  PubMed  Google Scholar 

  • Dyble J, Tester PA, Litaker RW (2006) Effects of light intensity on cylindrospermopsin production in the cyanobacterial HAB species Cylindrospermopsis raciborskii. Afr J Marine Sci 28(2):309–312

    Article  Google Scholar 

  • Dziga D, Kokocinski M, Maksylewicz A, Czaja-Prokop U, Barylski J (2016) Cylindrospermopsin Biodegradation Abilities of Aeromonas sp. Isolated from Rusalka Lake. Toxins. doi:10.3390/toxins8030055

    Google Scholar 

  • EFSA (2009) Scientific opinion of the panel on contaminants in the food chain on a request from the European Commission on Marine Biotoxins in Shellfish—Saxitoxin. Group 1019:1–76

    Google Scholar 

  • Eguzozie K, Mavumengwana V, Nkosi D, Kayitesi E, Nnabuo-Eguzozie EC (2016) Bioaccumulation and quantitative variations of Microcystins in the swartspruit river, South Africa. Arch Environ Contam Toxicol 71:286–296. doi:10.1007/s00244-016-0269-5

    Article  CAS  PubMed  Google Scholar 

  • Engström-Öst J, Repka S, Mikkonen M (2011) Interactions between plankton and cyanobacterium Anabaena with focus on salinity, growth and toxin production. Harmful Algae 10:530–535

    Article  CAS  Google Scholar 

  • Eriksson JE, Meriluoto JA, Kujari HP, Osterlund K, Fagerlund K, Hällbom L (1988) Preliminary characterization of a toxin isolated from the cyanobacterium Nodularia spumigena. Toxicon 26(2):161–166

    Article  CAS  PubMed  Google Scholar 

  • Eriksson JE, Grönberg L, Nygård S, Slotte JP, Meriluoto JA (1990) Hepatocellular uptake of 3H-dihydromicrocystin-LR, a cyclic peptide toxin. Biochim Biophys Acta 1:60–66

    Google Scholar 

  • Faassen EJ (2014) Presence of the neurotoxin BMAA in aquatic ecosystems: what do we really know? Toxins 6(3):1109–1138. doi:10.3390/toxins6031109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Faassen EJ, Gillissen F, Lürling M (2012a) A comparative study on three analytical methods for the determination of the neurotoxin BMAA in cyanobacteria. PLoS ONE 7(5):1–8

    Article  CAS  Google Scholar 

  • Faassen EJ, Harkema L, Begeman L, Lurling M (2012b) First report of (homo)anatoxin-a and dog neurotoxicosis after ingestion of benthic cyanobacteria in The Netherlands. Toxicon 60(3):378–384. doi:10.1016/j.toxicon.2012.04.335

    Article  CAS  PubMed  Google Scholar 

  • Falconer IR (1989) Effects on human health of some toxic cyanobacteria (blue-green algae) in reservoirs, lakes and rivers. Tox Assess 4:175–184

    Article  CAS  Google Scholar 

  • Falconer IR (1994) Health problems from exposure to cyanobacteria and proposed safety guidelines for drinking and recreational water. In: Codd GA, Jefferies TM, Keevil CW, Potter E (eds) Detection methods for cyanobacterial toxins. Royal Society of Chemistry, London, pp 3–10

    Chapter  Google Scholar 

  • Falconer IR, Humpage AR (2001) Preliminary evidence for in vivo tumor initiation by oral administration of extracts of the blue-green alga Cylindrospermopsis raciborskii containing the toxin cylindrospermopsin. Environ Toxicol 16:192–195

    Article  CAS  PubMed  Google Scholar 

  • Falconer IR, Beresford AM, Runnegar MTC (1983) Evidence of liver damage by toxin from a bloom of the blue-green alga, Microcystis aeruginosa. Med J Australia 1(11):511–514

    CAS  PubMed  Google Scholar 

  • Falconer IR, Hardy SJ, Humpage AR, Froscio SM, Tozer GJ, Hawkins PR (1999) Hepatic and renal toxicity of the blue-green alga (cyanobacterium) Cylindrospermopsis raciborskii in male Swiss albino mice. Environ Toxicol 14(1):143–150

    Article  CAS  Google Scholar 

  • Faltermann S, Prétôt R, Pernthaler J, Fent K (2016) Comparative effects of nodularin and microcystin-LR in zebrafish: 1. Uptake by organic anion transporting polypeptide Oatp1d1 (Slco1d1). Aquat Toxicol 171:69–76. doi:10.1016/j.aquatox.2015.11.016

    Article  CAS  PubMed  Google Scholar 

  • Farrer D, Counter M, Hillwig R, Cude C (2015) Health-based cyanotoxin guideline values allow for cyanotoxin-based monitoring and efficient public health response to cyanobacterial blooms. Toxicon 7(2):457–477

    CAS  Google Scholar 

  • Fastner J, Heinze R, Humpage AR, Mischke U, Eaglesham GK, Chorus I (2003) Cylindrospermopsin occurrence in two German lakes and preliminary assessment of toxicity and toxin production of Cylindrospermopsis raciborskii (Cyanobacteria) isolates. Toxicon 42(3):313–321. doi:10.1016/S0041-0101(03)00150-8

    Article  CAS  PubMed  Google Scholar 

  • Fawell JK, Mitchell RE, Everett DJ, Hill RE (1999a) The toxicity of cyanobacterial toxins in the mouse: I. Microcystin–LR. Hum Exp Toxicol 18:162–167

    Article  CAS  PubMed  Google Scholar 

  • Fawell JK, Mitchell RE, Hill RE, Everett DJ (1999b) The toxicity of cyanobacterial toxins in the mouse: II Anatoxin-a. Hum Exp Toxicol 18:168–173

    Article  CAS  PubMed  Google Scholar 

  • Feng G, Li Y, Bai Y (2011) Induction of Fas receptor and Fas ligand by nodularin is mediated by NF-κB in HepG2 cells. Toxicol Appl Pharmacol 251(3):245–252. doi:10.1016/j.taap.2011.01.009

    Article  CAS  PubMed  Google Scholar 

  • Fernández DA, Louzao MC, Vilariño N, Fraga M, Espiña B, Vieytes MR, Botana LM (2014) Evaluation of the intestinal permeability and cytotoxic effects of cylindrospermopsin. Toxicon 91:23–34. doi:10.1016/j.toxicon.2014.08.072

    Article  PubMed  CAS  Google Scholar 

  • Fessard V, Bernard C (2003) Cell alterations but no DNA strand breaks induced in vitro by cylindrospermopsin in CHOK1 cells. Environ Toxicol 18(5):353–359

    Article  CAS  PubMed  Google Scholar 

  • Fetscher AE, Howard MDA, Stancheva R et al (2015) Wadeable streams as widespread sources of benthic cyanotoxins in California, USA. Harmful Algae 49:105–116. doi:10.1016/j.hal.2015.09.002

    Article  CAS  Google Scholar 

  • Feurstein D, Holst K, Fischer A, Dietrich DR (2009) Oatp-associated uptake and toxicity of microcystins in primary murine whole brain cells. Toxicol Appl Pharmacol 234(2):247–255

    Article  CAS  PubMed  Google Scholar 

  • Feurstein D, Stemmer K, Kleinteich J, Speicher T, Dietrich DR (2011) Microcystin congener– and concentration-dependent induction of murine neuron apoptosis and neurite degeneration. Toxicol Sci 124(2):424–431

    Article  CAS  PubMed  Google Scholar 

  • Fewer DP, Koykka M, Halinen K, Jokela J, Lyra C, Sivonen K (2009) Culture-independent evidence for the persistent presence and genetic diversity of microcystin-producing Anabaena (Cyanobacteria) in the Gulf of Finland. Environ Microbiol 11(4):855–866

    Article  CAS  PubMed  Google Scholar 

  • Filipič M, Žegura B, Sedmak B, Horvat-Žnidaršic I, Milutinovič A, Šuput D (2007) Subchronic exposure of rats to sublethal dose of microcystin-YR induces DNA damage in multiple organs. Radiol Oncol 41(1):15–22

    Article  CAS  Google Scholar 

  • Fischer WJ, Altheimer S, Cattori V, Meier PJ, Dietrich DR, Hagenbuch B (2005) Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin. Toxicol Appl Pharmacol 203(3):257–263

    Article  CAS  PubMed  Google Scholar 

  • Fischer A, Hoeger SJ, Stemmer K, Feurstein DJ, Knobeloch D, Nussler A, Dietrich DR (2010) The role of organic anion transporting polypeptides (OATPs/SLCOs) in the toxicity of different microcystin congeners in vitro: a comparison of primary human hepatocytes and OATP-transfected HEK293 cells. Toxicol Appl Pharmacol 245(1):9–20

    Article  CAS  PubMed  Google Scholar 

  • Fitzgeorge RB, Clark SA, Keevil CW (1994) Routes of intoxication. In: Codd GA, Jefferies TM, Keevil CW, Potter E (eds) Detection methods for cyanobacterial toxins. Royal Soc Chem, Cambridge, pp 69–74

    Chapter  Google Scholar 

  • Fleming LE, Rivero C, Stephan WB, Burns J, and Williams C (2001) Blue green algal exposure, drinking water and colorectal cancer study. The Florida Harmful Algal Bloom Taskforce Final Report, 1-44. St. Petersburg, Florida

  • Fleming LE, Rivero C, Burns J, William C, Bean JA, Shea KA, Stinn J (2002) Blue green algal (cyanobacterial) toxins, surface drinking water, and liver cancer in Florida. Harmful Algae 1(2):157–168

    Article  CAS  Google Scholar 

  • Foss AJ, Phlips EJ, Yilmaz M, Chapman A (2012) Characterization of paralytic shellfish toxins from Lyngbya wollei dominated mats collected from two Florida springs. Harmful Algae 16:98–107. doi:10.1016/j.hal.2012.02.004

    Article  CAS  Google Scholar 

  • Freitas M, Azevedo J, Pinto E, Neves J, Campos A, Vasconcelos V (2015) Effects of microcystin-LR, cylindrospermopsin and a microcystin-LR/cylindrospermopsin mixture on growth, oxidative stress and mineral content in lettuce plants (Lactuca sativa L.). Ecotoxicol Environ Safety 116:59–67. doi:10.1016/j.ecoenv.2015.02.002

    Article  CAS  PubMed  Google Scholar 

  • Fromme H, Koehler A, Krause R, Fuehrling D (2000) Occurrence of cyanobacterial toxins—microcystins and anatoxin-a—in Berlin water bodies with implications to human health and regulation. Environ Toxicol 15:120–130

    Article  CAS  Google Scholar 

  • Froscio SM, Humpage AR, Burcham PC, Falconer IR (2003) Cylindrospermopsin-induced protein synthesis inhibition and its dissociation from acute toxicity in mouse hepatocytes. Environ Toxicol 18:243–251

    Article  CAS  PubMed  Google Scholar 

  • Froscio SM, Cannon E, Lau HM, Humpage AR (2009a) Limited uptake of the cyanobacterial toxin cylindrospermopsin by Vero cells. Toxicon 54(6):862–868. doi:10.1016/j.toxicon.2009.06.019

    Article  CAS  PubMed  Google Scholar 

  • Froscio SM, Fanok S, Humpage AR (2009b) Cytotoxicity screening for the cyanobacterial toxin cylindrospermopsin. J Toxicol Environ Health A 72:345–349

    Article  CAS  PubMed  Google Scholar 

  • Fu WY, Chen JP, Wang XM, Xu LH (2005) Altered expression of p53, Bcl-2 and Bax induced by microcystin-LR in vivo and in vitro. Toxicon 46:171–177

    Article  CAS  PubMed  Google Scholar 

  • Fujiki H, Suganuma M (2011) Tumor promoters–microcystin-LR, nodularin and TNF-α and human cancer development. Anticancer Agents Med Chem 11(1):4–18 Review

    Article  CAS  PubMed  Google Scholar 

  • Funari E, Testai E (2008) Human health risk assessment related to cyanotoxins exposure. Crit Rev Toxicol 38(2):97–125

    Article  CAS  PubMed  Google Scholar 

  • Funari E, Manganelli M, Sinisi L (2012) Impact of climate change on waterborne diseases. Ann Ist Super Sanità 48(4):473–487. doi:10.4415/ANN_12_04_12

    Article  PubMed  Google Scholar 

  • Galvao JA, Oetterer M, Bittencourt-Oliveira Mdo C et al (2009) Saxitoxins accumulation by freshwater tilapia (Oreochromis niloticus) for human consumption. Toxicon 54(6):891–894. doi:10.1016/j.toxicon.2009.06.021

    Article  CAS  PubMed  Google Scholar 

  • Gantar M, Sekar R, Richardson LL (2009) Cyanotoxins from black band disease of corals and from other coral reef environments. Microb Ecol 58(4):856–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia C, del Carmen Bravo M, Lagos M, Lagos N (2004) Paralytic shellfish poisoning: post-mortem analysis of tissue and body fluid samples from human victims in the Patagonia fjords. Toxicon 43:149–158

    Article  CAS  PubMed  Google Scholar 

  • Gaudin J, Huet S, Jarry G, Fessard V (2008) In vivo DNA damage induced by the cyanotoxin microcystin-LR: comparison of intra-peritoneal and oral administrations by use of the comet assay. Mutat Res-Gen Tox En 652(1):65–71

    Article  CAS  Google Scholar 

  • Geh EN, Ghosh D, McKell M, de la Cruz AA, Stelma G, Bernstein JA (2015) Identification of Microcystis aeruginosa peptides responsible for allergic sensitization and characterization of functional interactions between cyanobacterial toxins and immunogenic peptides. Environ Health Perspect 123(11):1159–1166. doi:10.1289/ehp.1409065

    Article  PubMed  PubMed Central  Google Scholar 

  • Gehringer MM (2004) Microcystin-LR and okadaic acid-induced cellular effects: a dualistic response. FEBS Lett 557(1–3):1–8

    Article  CAS  PubMed  Google Scholar 

  • Gehringer MM, Adler L, Roberts AA, et al. (2012) Nodularin, a cyanobacterial toxin, is synthesized in planta by symbiotic Nostoc sp. ISME J. http://www.nature.com/ismej/journal/vaop/ncurrent/suppinfo/ismej201225s1.html

  • Giannuzzi L, Sedan D, Echenique R, Andrinolo D (2011) An acute case of intoxication with cyanobacteria and cyanotoxins in recreational water in Salto Grande Dam, Argentina. Mar Drugs 9:2164–2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gkelis S, Zaoutsos N (2014) Cyanotoxin occurrence and potentially toxin producing cyanobacteria in freshwaters of Greece: a multi-disciplinary approach. Toxicon 78:1–9. doi:10.1016/j.toxicon.2013.11.010

    Article  CAS  PubMed  Google Scholar 

  • Glover WB, Mash DC, Murch SJ (2014) The natural non-protein amino acid N-β-methylamino-l-alanine (BMAA) is incorporated into protein during synthesis. Amino Acids 46(11):2553–2559. doi:10.1007/s00726-014-1812-1

    Article  CAS  PubMed  Google Scholar 

  • Gorokhova E, Engstrom-Ost J (2009) Toxin concentration in Nodularia spumigena is modulated by mesozooplankton grazers. J Plankt Res 31(10):1235–1247. doi:10.1093/plankt/fbp060

    Article  CAS  Google Scholar 

  • Graham J, Loftin K, Meyer M, Ziegler A (2010) Cyanotoxin mixtures and taste-and-odor-compounds in cyanobacterial blooms from the midwestern United States. Environ Sci Technol 44:7361–7368

    Article  CAS  PubMed  Google Scholar 

  • Gugger M, Lenoir S, Berger C et al (2005) First report in a river in France of the benthic cyanobacterium Phormidium favosum producing anatoxin-a associated with dog neurotoxicosis. Toxicon 45(7):919–928. doi:10.1016/j.toxicon.2005.02.031

    Article  CAS  PubMed  Google Scholar 

  • Gupta N, Pant SC, Vijayaraghavan R, Rao PV (2003) Comparative toxicity evaluation of cyanobacterial cyclic peptide toxin microcystin variants (LR, RR, YR) in mice. Toxicology 188(2–3):285–296

    Article  CAS  PubMed  Google Scholar 

  • Gurbuz F, Uzunmehmetoglu OY, Diler O, Metcalf JS, Codd GA (2016) Occurrence of microcystins in water, bloom, sediment and fish from a public water supply. Sci Tot Environ 562:860–868. doi:10.1016/j.scitotenv.2016.04.027

    Article  CAS  Google Scholar 

  • Gutierrez-Praena D, Campos A, Azevedo J, Neves J, Freitas M, Guzmán-Guillén R, Cameán AM et al (2014) Exposure of lycopersicon esculentum to microcystin-LR: effects in the leaf proteome and toxin translocation from water to leaves and fruits. Toxins 6(6):1837–1854. doi:10.3390/toxins6061837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutiérrez-Praena D, Pichardo S, Jos A, Moreno FJ, Cameán AM (2012a) Biochemical and pathological toxic effects induced by the cyanotoxin Cylindrospermopsin on the human cell line Caco-2. Water Res 46(5):1566–1575. doi:10.1016/j.watres.2011.12.044

    Article  PubMed  CAS  Google Scholar 

  • Gutiérrez-Praena D, Pichardo S, Jos Á, Moreno FJ, Cameán AM (2012b) Alterations observed in the endothelial HUVEC cell line exposed to pure cylindrospermopsin. Chemosphere 89(9):1151–1160. doi:10.1016/j.chemosphere.2012.06.023

    Article  PubMed  CAS  Google Scholar 

  • Guzman RE, Solter PF (1999) Hepatic oxidative stress following prolonged sublethal microcystin LR exposure. Toxicol Pathol 27(5):582–588

    Article  CAS  PubMed  Google Scholar 

  • Guzman-Guillen R, Prieto AI, Moreno I, Eugenia Soria M, Camean AM (2011) Effects of thermal treatments during cooking, microwave oven and boiling, on the unconjugated microcystin concentration in muscle of fish (Oreochromis niloticus). Food Chem Toxicol 49(9):2060–2067. doi:10.1016/j.fct.2011.05.018

    Article  CAS  PubMed  Google Scholar 

  • Hackett JD, Wisecarver JH, Brosnahan ML, Kulis DM, Anderson DM, Bhattacharya D, Plumley FG, Erdner DL (2013) Evolution of saxitoxin synthesis in cyanobacteria and dinoflagellates. Mol Biol Evol 30:70–78

    Article  CAS  PubMed  Google Scholar 

  • Haddix PL, Hughley CJ, LeChevallier MW (2007) Occurrence of microcystins in 33 US water supplies. J Am Water Works Assoc 99(9):118–125+10

    CAS  Google Scholar 

  • Halinen K, Jokela J, Fewer DP, Wahlsten M, Sivonen K (2007) Direct evidence for production of microcystins by Anabaena strains from the Baltic Sea. Appl Environ Microbiol 73(20):6543–6550. doi:10.1128/aem.01377-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handeland K, Østensvik Ø (2010) Microcystin poisoning in roe deer (Capreolus capreolus). Toxicon 56(6):1076–1078. doi:10.1016/j.toxicon.2010.06.023

    Article  CAS  PubMed  Google Scholar 

  • Harada K, Matsuura K, Suzuki M, Watanabe MF, Oishi S, Dahlem AM, Beasley VR, Carmichael WW (1990) Isolation and characterization of the minor components associated with microcystins LR and RR in the cyanobacterium (blue-green algae). Toxicon 28(1):55–64

    Article  CAS  PubMed  Google Scholar 

  • Harada KI, Ohtani I, Iwamoto K, Suzuki M, Watanabe MF, Watanabe M, Terao K (1994) Isolation of cylindrospermopsin from a cyanobacterium Umezakia natans and its screening method. Toxicon 32(1):73–84. doi:10.1016/0041-0101(94)90023-X

    Article  CAS  PubMed  Google Scholar 

  • Harada K, Imanishi S, Kato H, Mizuno M, Ito E, Tsuji K (2004) Isolation of Adda from microcystin-LR by microbial degradation. Toxicon 44(1):107–109

    Article  CAS  PubMed  Google Scholar 

  • Harke MJ, Steffen MM, Gobler CJ et al (2016) A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54:4–20. doi:10.1016/j.hal.2015.12.007

    Article  PubMed  Google Scholar 

  • Hawkins PR, Runnegar MTC, Jackson ARB, Falconer IR (1985) Severe hepatotoxicity caused by the tropical cyanobacterium Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju isolated from a domestic water supply reservoir. Appl Environ Microbiol 50:1292–1295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayman J (1992) Beyond the Barcoo–probable human tropical cyanobacterial poisoning in outback Australia. Med J Aust 157(11–12):794–796

    CAS  PubMed  Google Scholar 

  • He J, Chen J, Wu L, Li G, Xie P (2012a) Metabolic response to oral microcystin-LR exposure in the rat by NMR-based metabonomic study. J Proteome Res 11(12):5934–5946. doi:10.1021/pr300685g

    CAS  PubMed  Google Scholar 

  • He J, Chen J, Xie P, Zhang D, Li G, Wu L, Zhang W, Guo X, Li S (2012b) Quantitatively evaluating detoxification of the hepatotoxic microcystins through the glutathione and cysteine pathway in the cyanobacteria-eating bighead carp. Aquat Toxicol 116–117:61–68

    Article  PubMed  CAS  Google Scholar 

  • Health Canada (2016) Cyanobacterial toxins in drinking water. http://www.healthycanadians.gc.ca/health-system-systeme-sante/consultations/cyanobacteria-cyanobacterie/document-eng.php

  • Heath MW, Wood SA, Ryan KG (2010) Polyphasic assessment of fresh-water benthic mat-forming cyanobacteria isolated from New Zealand. FEMS Microbiol Ecol 73(1):95–109. doi:10.1111/j.1574-6941.2010.00867.x

    CAS  PubMed  Google Scholar 

  • Heath M, Wood SA, Young RG, Ryan KG (2016) The role of nitrogen and phosphorus in regulating Phormidium sp. (cyanobacteria) growth and anatoxin production. FEMS Microbiol Ecol. doi:10.1093/femsec/fiw021

    PubMed  Google Scholar 

  • Heinze R (1999) Toxicity of the cyanobacterial toxin microcystin-LR to rats after 28 days intake with the drinking water. Environ Toxicol 14(1):57–60

    Article  CAS  Google Scholar 

  • Helbling EW, Banaszak AT, Villafañe VE (2015) Global change feed-back inhibits cyanobacterial photosynthesis. Sci Rep 5:14514. doi:10.1038/srep14514

    Article  CAS  Google Scholar 

  • Hemscheidt T, Burgoyne DL, Moore RE (1995) Biosynthesis of anatoxin-a(s), (2S,4S)-4-hydroxyarginine as an intermediate. J Chem Soc Chem Commun. doi:10.1039/C39950000205

    Google Scholar 

  • Henriksen P, Carmichael WW, An J, Moestrup Ø (1997) Detection of an anatoxin-a(s)-like anticholinesterase in natural blooms and cultures of cyanobacteria/blue-green algae from danish lakes and in the stomach contents of poisoned birds. Toxicon 35(6):901–913. doi:10.1016/S0041-0101(96)00190-0

    Article  CAS  PubMed  Google Scholar 

  • Hereman TC, Bittencourt-Oliveira MDC (2012) Bioaccumulation Of Microcystins In Lettuce. J Phycol 48(6):1535–1537. doi:10.1111/jpy.12006

    Article  CAS  PubMed  Google Scholar 

  • Heresztyn T, Nicholson BC (1997) Nodularin concentrations in Lakes Alexandrina and Albert, South Australia, during a bloom of the cyanobacterium (blue-green alga) Nodularia spumigena and degradation of the toxin. Environ Toxicol Water Quality 12(4):273–282. doi:10.1002/(sici)1098-2256

    Article  CAS  Google Scholar 

  • Heussner AH, Mazija L, Fastner J, Dietrich DR (2012) Toxin content and cytotoxicity of algal dietary supplements. Toxicol Appl Pharmacol 265(2):263–271. doi:10.1016/j.taap.2012.10.005

    Article  CAS  PubMed  Google Scholar 

  • Hilborn ED, Ward RA (2016) The risk of cyanobacterial toxins in dialysate: what do we know? Semin Dial 29(1):15–18. doi:10.1111/sdi.12420

    Article  PubMed  Google Scholar 

  • Hilborn ED, Carmichael WW, Soares RM, Yuan M, Servaites JC, Barton HA, Azevedo SMFO (2007) Serologic evaluation of human microcystin exposure. Environ Toxicol 22:459–463

    Article  CAS  PubMed  Google Scholar 

  • Hilborn ED, Soares RM, Servaites JC, Delgado AG, Magalhães VF, Carmichael WW, Azevedo SM (2013) Sublethal microcystin exposure and biochemical outcomes among hemodialysis patients. PLoS ONE 8(7):1–9

    Article  CAS  Google Scholar 

  • Hilborn ED, Roberts VA, Backer L, Deconno E, Egan JS, Hyde JB, Nicholas DC et al (2014) Algal bloom-associated disease outbreaks among users of freshwater lakes–United States, 2009–2010. Centers for Disease Control and Prevention (CDC). MMWR Morb Mortal Wkly Rep 63(1):11–15

    PubMed  Google Scholar 

  • H-j Zhang, J-y Zhang, Hong Y, Y-x Chen (2007) Evaluation of organ distribution of microcystins in the freshwater phytoplanktivorous fish Hypophthalmichthys molitrix. J Zhejiang Univ Sci B 8(2):116–120. doi:10.1631/jzus.2007.B0116

    Article  CAS  Google Scholar 

  • Hjørnevik LV, Fismen L, Young FM, Solstad T, Fladmark KE (2012) Nodularin exposure induces SOD1 phosphorylation and disrupts SOD1 co-localization with actin filaments. Toxins (Basel) 4(12):1482–1499. doi:10.3390/toxins4121482

    Article  CAS  Google Scholar 

  • Hobson P, Fallowfield H (2001) Effect of salinity on photosynthetic activity of Nodularia spumigena. J App Phycol 13:493–499

    Article  Google Scholar 

  • Hoeger SJ, Schmid D, Blom JF, Ernst B, Dietrich DR (2007) Analytical and functional characterization of microcystins [Asp(3)]MC-RR and [Asp(3), Dhb(7)]MC-RR: consequences for risk assessment? Environ Sci Technol 41(7):2609–2616

    Article  CAS  PubMed  Google Scholar 

  • Holtcamp W (2012) The emerging science of BMAA: do cyanobacteria contribute to neurodegenerative disease? Environ Health Perspect 120(A110–116):57

    Google Scholar 

  • Hooser SB, Kuhlenschmidt MS, Dahlem AM, Beasley VR, Carmichael WW, Haschek WM (1991) Uptake and subcellular localization of tritiated dihydro-microcystin-LR in rat liver. Toxicon 29(6):589–601

    Article  CAS  PubMed  Google Scholar 

  • Horne AJ, Galat DL (1985) Nitrogen fixation in an oligotrophic, saline desert lake: pyramid Lake, Nevada. Limn Oceanogr 30(6):1229–1239

    Article  CAS  Google Scholar 

  • Horst GP, Sarnellea O, Whitea JD, Hamiltonb SK, Kaula RB, Bressiec JD (2014) Nitrogen availability increases the toxin quota of a harmful cyanobacterium, Microcystis aeruginosa. Water Res 54:188–198

    Article  CAS  PubMed  Google Scholar 

  • Hu C, Rea C, Yu Z, Lee J (2016) Relative importance of Microcystis abundance and diversity in determining microcystin dynamics in Lake Erie coastal wetland and downstream beach water. J Appl Microbiol 120(1):138–151. doi:10.1111/jam.12983

    Article  CAS  PubMed  Google Scholar 

  • Huang WM, Xing W, Li DH, Liu YD (2008) The role of glutathione metabolism in tolerance of tobacco BY-2 suspension cells to microcystin-RR. Bull Environ l Contam Toxicol 80:215–219

    Article  CAS  Google Scholar 

  • Huang P, Zheng Q, Xu LH (2011) The apoptotic effect of oral administration of microcystin-RR on mice liver. Environ Toxicol 26(5):443–452. doi:10.1002/tox.20570

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Zhang Y, Xiao W, Ye X, Zhong Q, Gu K (2013) Comparison of response indices to toxic microcystin-LR in blood of mice. Chemosphere 92(5):563–569

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Bi Y, Hu Z (2014) Effects of fertilizer-urea on growth, photosynthetic activity and microcystins production of Microcystis aeruginosa isolated from Dianchi Lake. Bull Environ Contam Toxicol 92:514–519

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Xu S, Miao A-J, Xiao L, Yang L-Y (2015) Cadmium toxicity to Microcystis aeruginosa PCC 7806 and its microcystin-lacking mutant. PLoS ONE. doi:10.1371/journal.pone.0116659

    Google Scholar 

  • Huang P, Wang B, Wang X, Xing M, Guo Z, Xu L (2016) HEK293 cells exposed to microcystin-LR show reduced protein phosphatase 2A activity and more stable cytoskeletal structure when overexpressing α4 protein. Environ Toxicol. doi:10.1002/tox.22230

    Google Scholar 

  • Huber AL (1984) Nodularia (Cyanobacteriaceae) Akinetes in the Sediments of the Peel-Harvey Estuary, Western Australia: potential Inoculum Source for Nodularia Blooms. Appl Environ Microbiol 47(2):234–238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huguet A, Henri J, Petitpas M, Hogeveen K, Fessard V (2013) Comparative cytotoxicity, oxidative stress, and cytokine secretion induced by two cyanotoxin variants, microcystin LR and RR, in human intestinal Caco-2 cells. J Biochem Mol Toxicol 27(5):253–258. doi:10.1002/jbt.21482

    Article  CAS  PubMed  Google Scholar 

  • Huguet A, Hatton A, Villot R, Quenault H, Blanchard Y, Fessard V (2014) Modulation of chromatin remodelling induced by the freshwater cyanotoxin cylindrospermopsin in human intestinal caco-2 cells. PLoS ONE 9(6):e99121. doi:10.1371/journal.pone.0099121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Humpage AR, Falconer IR (2003) Oral toxicity of the cyanobacterial toxin cylindrospermopsin in male Swiss Albino mice: determination of no observed adverse effect level for deriving a drinking water guideline value. Environ Toxicol 18:94–103

    Article  CAS  PubMed  Google Scholar 

  • Humpage AR, Fontaine F, Froscio S, Burcham P, Falconer IR (2005) Cylindrospermopsin genotoxicity and cytotoxicity: role of cytochrome P450 and oxidative stress. J Toxicol Environ Health Part A 68:739–753

    Article  CAS  PubMed  Google Scholar 

  • IARC (2010) Ingested nitrate and nitrite, and cyanobacterial peptide toxins. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 94 v-vii, 1-412

  • Ibelings BW, Backer LC, Kardinaal WE, Chorus I (2015) Current approaches to cyanotoxin risk assessment and risk management around the globe. Harmful Algae 49:63–74. doi:10.1016/j.hal.2014.10.002

    PubMed  PubMed Central  Google Scholar 

  • Ikehara T, Nakashima J, Nakashima S, Yasumoto T (2015) Different responses of primary normal human hepatocytes and human hepatoma cells toward cyanobacterial hepatotoxin microcystin-LR. Toxicon 105:4–9. doi:10.1016/j.toxicon.2015.08.025

    Article  CAS  PubMed  Google Scholar 

  • Illinois Environmental Protection Agency (2012) Algal toxins in fish–Fish consumption guidance memo (Tom Hornshaw). 2 pages. http://www.epa.state.il.us/water/algal-bloom/docs/fish-toxin-advisory.pdf

  • Ito E, Kondo F, Terao K, Harada K (1997) Neoplastic nodular formation in mouse liver induced by repeated intraperitoneal injections of microcystin-LR. Toxicon 35(9):1453–1457

    Article  CAS  PubMed  Google Scholar 

  • Jackson AR, McInnes A, Falconer IR, Runnegar MT (1984) Clinical and pathological changes in sheep experimentally poisoned by the blue-green alga Microcystis aeruginosa. Vet Pathol 21(1):102–113

    Article  CAS  PubMed  Google Scholar 

  • Jarvenpaa S, Lundberg-Niinisto C, Spoof L, Sjovall O, Tyystjarvi E, Meriluoto J (2007) Effects of microcystins on broccoli and mustard, and analysis of accumulated toxin by liquid chromatography-mass spectrometry. Toxicon 49(6):865–874. doi:10.1016/j.toxicon.2006.12.008

    Article  PubMed  CAS  Google Scholar 

  • Jia J, Chen Q, Lauridsen TL (2016) A systematic investigation into the environmental fate of microcystins and the potential risk: study in lake Taihu. Toxins. doi:10.3390/toxins8060170

    Google Scholar 

  • Jiang Y, Xie P, Chen J, Liang G (2008) Detection of the hepatotoxic microcystins in 36 kinds of cyanobacteria Spirulina food products in China. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25(7):885–894. doi:10.1080/02652030701822045

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Xiao P, Yu G, Sano T, Pan Q, Li R (2012) Molecular basis and phylogenetic implications for deoxy-cylindrospermopsin biosynthesis in Raphidiopsis curvata (cyanobacteria). Appl Environ Microbiol 78(7):2256–2263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang L, Eriksson J, Lage S, Jonasson S, Shams S, Mehine M, Ilag LL, Rasmussen U (2014a) Diatoms: a novel source for the neurotoxin BMAA in aquatic environments. PLoS ONE 9(1):e84578. doi:10.1371/journal.pone.0084578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang L, Kiselova N, Rosén J, Ilag LL (2014b) Quantification of neurotoxin BMAA (β-N-methylamino-l-alanine) in seafood from Swedish markets. Sci Rep 4:6931

    Article  CAS  PubMed  Google Scholar 

  • Jiao Y, Chen Q, Chen X, Wang X, Liao X, Jiang L, Wu J, Yang L (2014) Occurrence and transfer of a cyanobacterial neurotoxin β-methylamino-l-alanine within the aquatic food webs of Gonghu Bay (Lake Taihu, China) to evaluate the potential human health risk. Sci Total Environ 468–469:457–463

    Article  PubMed  CAS  Google Scholar 

  • Jochimsen EM, Carmichael WW, An J, Cardo DM, Cookson ST, Holmes CEM, DeC Antunes MB et al (1998) Liver failure and death after exposure to Microcystin at a hemodialysis center in Brazil. N Engl J Med 338:873–878

    Article  CAS  PubMed  Google Scholar 

  • Jonasson S, Vintila S, Sivonen K, El-Shehawy R (2008) Expression of the nodularin synthetase genes in the Baltic Sea bloom-former cyanobacterium Nodularia spumigena strain AV1. FEMS Microbiol Ecol 65:31–39

    Article  CAS  PubMed  Google Scholar 

  • Jones GJ, Blackburn SI, Parker NS (1994) A Toxic Bloom of Nodularia spumigena Mertens in Orielton Lagoon, Tasmania. Aust J Mar Freshw Res 45:787–800

    Article  CAS  Google Scholar 

  • Kankaanpää HT, Sjövall O, Huttunen M et al (2009) Production and sedimentation of peptide toxins nodularin-R and microcystin-LR in the northern Baltic Sea. Environ Pollut 157(4):1301–1309. doi:10.1016/j.envpol.2008.11.044

    Article  PubMed  CAS  Google Scholar 

  • Kao CY (1993) Paralytic shellfish poisoning. In: Falconer IR (ed) Algal toxins in seafood and drinking water. CA Academic Press, San Diego, pp 75–86

    Chapter  Google Scholar 

  • Karamyan VT, Speth RC (2008) Animal models of BMAA neurotoxicity: a critical review. Life Sci 82(5–6):233–246

    Article  CAS  PubMed  Google Scholar 

  • Karjalainen M, Reinikainen M, Spoof L, Meriluoto JAO, Sivonen K, Viitasalo M (2005) Trophic transfer of cyanobacterial toxins from zooplankton to planktivores: consequences for pike larvae and mysid shrimps. Environ Toxicol 20(3):354–362. doi:10.1002/tox.20112

    Article  CAS  PubMed  Google Scholar 

  • Karlsson O, Berg C, Brittebo EB, Lindquist NG (2009a) Retention of the cyanobacterial neurotoxin beta-N-methylamino-l-alanine in melanin and neuromelanin-containing cells—a possible link between Parkinson-dementia complex and pigmentary retinopathy. Pigment Cell Melanoma Res 22:120–130. doi:10.1111/j.1755-148X.2008.00508.x

    Article  CAS  PubMed  Google Scholar 

  • Karlsson O, Lindquist NG, Brittebo EB, Roman E (2009b) Selective brain uptake and behavioral effects of the cyanobacterial toxin BMAA (beta-Nmethylamino-l-alanine) following neonatal administration to rodents. Toxicol Sci 109:286–295

    Article  CAS  PubMed  Google Scholar 

  • Kellmann R, Kaan Mihali T, Jae Jeon Y, Pickford R, Pomati F, Neilan BA (2008) Biosynthetic intermediate analysis and functional homology reveal a Saxitoxin gene cluster in cyanobacteria. Appl Environ Microbiol 74:4044–4053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kellmann R, Ploux O, Neilan BA (2013) Neurotoxic Alkaloids from Cyanobacteria. In: Ramawat KG, Mérillon JM (eds) Natural Products. Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes. Springer, pp 39–83

    Chapter  Google Scholar 

  • Kerbrat AS, Darius HT, Pauillac S, Chinain M, Laurent D (2010) Detection of ciguatoxin-like and paralysing toxins in Trichodesmium spp. from New Caledonia lagoon. Mar Pollut Bull 61:360–366

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Kottuparambil S, Moh S et al (2014) Potential applications of nuisance microalgae blooms. J Appl Phycol. doi:10.1007/s10811-014-0410-7

    Google Scholar 

  • Kittler K, Schreiner M, Krumbein A et al (2012) Uptake of the cyanobacterial toxin cylindrospermopsin in Brassica vegetables. Food Chem 133(3):875–879. doi:10.1016/j.foodchem.2012.01.107

    Article  CAS  Google Scholar 

  • Kittler K, Hurtaud-Pessel D, Maul R, Kolrep F, Fessard V (2016) In vitro metabolism of the cyanotoxin cylindrospermopsin in HepaRGcells and liver tissue fractions. Toxicon 110:47–50

    Article  CAS  PubMed  Google Scholar 

  • Kiviranta J, Namikoshi M, Sivonen K, Evans WR, Carmichael WW, Rinehart KL (1992) Structure determination and toxicity of a new microcystin from Microcystis aeruginosa strain 205. Toxicon 30(9):1093–1098

    Article  CAS  PubMed  Google Scholar 

  • Kleppe R, Herfindal L, Døskeland SO (2015) Cell death inducing microbial protein phosphatase inhibitors–mechanisms of action. Mar Drugs 13(10):6505–6520. doi:10.3390/md13106505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokociński M, Mankiewicz-Boczek J, Jurczak T et al (2013) Aphanizomenon gracile (Nostocales), a cylindrospermopsin-producing cyanobacterium in Polish lakes. Environ Sci Pollut Res 20(8):5243–5264. doi:10.1007/s11356-012-1426-7

    Article  CAS  Google Scholar 

  • Kondo F, Ikai Y, Oka H, Okumura M, Ishikawa N, Harada K, Matsuura K, Murata H, Suzuki M (1992) Formation, characterization, and toxicity of the glutathione and cysteine conjugates of toxic heptapeptide microcystins. Chem Res Toxicol 5(5):591–596

    Article  CAS  PubMed  Google Scholar 

  • Kondo F, Matsumoto H, Yamada S, Ishikawa N, Ito E, Nagata S, Ueno Y, Suzuki M, Harada K (1996) Detection and identification of metabolites of microcystins formed in vivo in mouse and rat livers. Chem Res Toxicol 9(8):1355–1359

    Article  CAS  PubMed  Google Scholar 

  • Koskenniemi K, Lyra C, Rajaniemi-Wacklin P, Jokela J, Sivonen K (2007) Quantitative real-time pcr detection of toxic Nodularia cyanobacteria in the Baltic Sea. Appl Environ Microbiol 73(7):2173–2179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosol S, Schmidt J, Kurmayer R (2009) Variation in peptide net production and growth among strains of the toxic cyanobacterium Planktothrix spp. Eur J Phycol 44(1):49–62. doi:10.1080/09670260802158659

    Article  CAS  Google Scholar 

  • Kounnis V, Chondrogiannis G, Mantzaris MD, Tzakos AG, Fokas D, Papanikolaou NA, Galani V, Sainis I, Briasoulis E (2015) microcystin lr shows cytotoxic activity against pancreatic cancer cells expressing the membrane OATP1B1 and OATP1B3 transporters. Anticancer Res 35(11):5857–5865

    CAS  PubMed  Google Scholar 

  • Kozdęba M, Borowczyk J, Zimoląg E, Wasylewski M, Dziga D, Madeja Z, Drukala J (2014) Microcystin-LR affects properties of human epidermal skin cells crucial for regenerative processes. Toxicon 80:38–46. doi:10.1016/j.toxicon.2014.01.003

    Article  PubMed  CAS  Google Scholar 

  • Krishnamurthy T, Carmichael WW, Sarver EW (1986) Toxic peptides from freshwater cyanobacteria (blue-green algae). I. Isolation, purification and characterization of peptides from Microcystis aeruginosa and Anabaena flos-aquae. Toxicon 24(9):865–873. doi:10.1016/0041-0101(86)90087-5

    Article  CAS  PubMed  Google Scholar 

  • Krüger T, Hölzel N, Luckas B (2012) Influence of cultivation parameters on growth and microcystin production of Microcystis aeruginosa (Cyanophyceae) isolated from Lake Chao (China). Microb Ecol 63:199–209

    Article  PubMed  Google Scholar 

  • Krzton W, Pudas K, Pociecha A, Strzesak M, Kosiba J, Walusiak E, Szarek-Gwiazda E, Wilk-Woźniak E (2016) Microcystins affect zooplankton biodiversity in oxbow lakes. Environ Toxicol Chem. doi:10.1002/etc.3519

    PubMed  Google Scholar 

  • Kujbida P, Hatanaka E, Vinolo MA, Waismam K, Cavalcanti DM, Curi R, Farsky SH, Pinto E (2009) Microcystins -LA, -YR, and -LR action on neutrophil migration. Biochem Biophys Res Commun 382(1):9–14. doi:10.1016/j.bbrc.2009.02.009

    Article  CAS  PubMed  Google Scholar 

  • Kurland LT, Mulder DW (1954) Epidemiologic investigations of amyotrophic lateral sclerosis. I. Preliminary report on geographic distribution and special reference to the Mariana Islands, including clinical and pathologic observations. Neurology 4(6):438–448

    Article  CAS  PubMed  Google Scholar 

  • Kurmayer R (2011) The toxic cyanobacterium Nostoc sp. strain 152 produces highest amounts of microcystin and nostophycin under stress conditions. J Phycol 47:200–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurmayer R, Kutzenberger T (2003) Application of real-time PCR for quantification of microcystin genotypes in a population of the toxic cyanobacterium Microcystis sp. Appl Environ Microbiol 69:6723–6730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurmayer R, Christiansen G, Fastner J, Börner T (2004) Abundance of active and inactive microcystin genotypes in populations of the toxic cyanobacterium Planktothrix spp. Environ Microbiol 6(8):831–841

    Article  CAS  PubMed  Google Scholar 

  • Kurmayer R, Christiansen G, Gumpenberger M, Fastner J (2005) Genetic identification of microcystin ecotypes in toxic cyanobacteria of the genus Planktothrix. Microbiol 151(5):1525–1533

    Article  CAS  Google Scholar 

  • Kurmayer R, Deng L, Entfellner E (2016) Role of toxic and bioactive secondary metabolites in colonization and bloom formation by filamentous cyanobacteria Planktothrix. Harmful Algae 54:69–86. doi:10.1016/j.hal.2016.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kushnir MM, Bergquist J (2009) Beta-methylamino-l-alanine analysis by liquid chromatography tandem mass spectrometry with iTRAQ as the derivative. Eur J Mass Spectrom (Chichester) 15(3):439–443

    Article  CAS  Google Scholar 

  • Labine M, Minuk GY (2014) Long-term, low-dose exposure to microcystin toxin does not increase the risk of liver tumor development or growth in mice. Hepatol Res 45(6):683–692

    Article  PubMed  CAS  Google Scholar 

  • Labine MA, Green C, Mak G, Xue L, Nowatzki J, Griffith J, Minuk GY (2015) The geographic distribution of liver cancer in Canada does not associate with cyanobacterial toxin exposure. Int J Environ Res Public Health 12(12):15143–15153. doi:10.3390/ijerph121214969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lage S, Costa PR, Moita T, Eriksson J, Rasmussen U, Rydberg SJ (2014) BMAA in shellfish from two Portuguese transitional water bodies suggests the marine dinoflagellate Gymnodinium catenatum as a potential BMAA source. Aquat Toxicol 152:131–138

    Article  CAS  PubMed  Google Scholar 

  • Lage S, Annadotter H, Rasmussen U, Rydberg S (2015) Biotransfer of beta-N-methylamino-l-alanine (BMAA) in a eutrophicated freshwater lake. Mar Drugs 13(3):1185–1201. doi:10.3390/md13031185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagos N, Onodera H, Zagatto P, Andrinolo D, Azevedo S, Oshima Y (1999) The first evidence of paralytic shellfish toxins in the fresh water cyanobacterium Cylindrospermopsis raciborskii, isolated from Brazil. Toxicon 37:1359–1373

    Article  CAS  PubMed  Google Scholar 

  • Lajeunesse A, Segura PA, Gelinas M et al (2012) Detection and confirmation of saxitoxin analogues in freshwater benthic Lyngbya wollei algae collected in the St. Lawrence River (Canada) by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1219:93–103. doi:10.1016/j.chroma.2011.10.092

    Article  CAS  PubMed  Google Scholar 

  • Lankoff A, Kolataj A (2000) Influence of microcystine-YR and nodularin on the activity of some glucosidases in mouse liver. Toxicology 146(2–3):177–185

    Article  CAS  PubMed  Google Scholar 

  • Lankoff A, Kolataj A (2001) Influence of microcystin-YR and nodularin on the activity of some proteolytic enzymes in mouse liver. Toxicon 39(2–3):419–423

    Article  CAS  PubMed  Google Scholar 

  • Lankoff A, Wojcik A, Fessard V, Meriluoto J (2006) Nodularin-induced genotoxicity following oxidative DNA damage and aneuploidy in HepG2 cells. Toxicol Lett 164(3):239–248

    Article  CAS  PubMed  Google Scholar 

  • Lankoff A, Wojcik A, Lisowska H, Bialczyk J, Dziga D, Carmichael WW (2007) No induction of structural chromosomal aberrations in cylindrospermopsin-treated CHO-K1 cells without and with metabolic activation. Toxicon 50(8):1105–1115

    Article  CAS  PubMed  Google Scholar 

  • Lankoff A, Sochacki J, Spoof L, Meriluoto J, Wojcik A, Wegierek A, Verschaeve L (2008) Nucleotide excision repair impairment by nodularin in CHO cell lines due to ERCC1/XPF inactivation. Toxicol Lett 179(2):101–107. doi:10.1016/j.toxlet.2008.04.008

    Article  CAS  PubMed  Google Scholar 

  • Lau N-S, Matsui M, Abdullah AA-A (2015) Cyanobacteria: photoautotrophic microbial factories for the sustainable synthesis of industrial products. BioMed Res Int 2015:9. doi:10.1155/2015/754934

    Google Scholar 

  • Laurent D, Kerbrat AS, Darius HT, Girard E, Golubic S, Benoit E, Sauvial M-P et al (2008) Are cyanobacteria involved in ciguatera fish poisoning-like outbreaks in New Caledonia? Harmful Algae 7:827–838

    Article  CAS  Google Scholar 

  • LeBlanc Renaud S, Pick FR, Forti N (2011) Effect of light intensity on the relative dominance of toxigenic and non toxigenic strains of Microcystis aeruginosa. Appl Environ Microbiol 19:7016–7022

    Article  CAS  Google Scholar 

  • Lehtimäki J, Sivonen K, Luukkainen R, Niemilä SI (1994) The effects of incubation time, temperature, light, salinity and phosphorus on growth and hepatoxin production by Nodularia strains. Arch Hydrobiol 130:269–282

    Google Scholar 

  • Lehtimäki J, Moisander P, Sivonen K, Kononen K (1997) Growth, nitrogen fixation and nodularin production by two Baltic Sea cyanobacteria. Appl Environ Microbiol 63:1647–1656

    PubMed  PubMed Central  Google Scholar 

  • Lehtimäki N, Shunmugam S, Jokela J, Wahlsten M, Carmel D, Keränen M, Sivonen K, Aro EM, Allahverdiyeva Y, Mulo P (2011) Nodularin uptake and induction of oxidative stress in spinach (Spinachia oleracea). J Plant Physiol 168(6):594–600. doi:10.1016/j.jplph.2010.09.013

    Article  PubMed  CAS  Google Scholar 

  • Lei L, Peng L, Huang X, Han BP (2014) Occurrence and dominance of Cylindrospermopsis raciborskii and dissolved cylindrospermopsin in urban reservoirs used for drinking water supply, South China. Environ Monit Assess 186(5):3079–3090. doi:10.1007/s10661-013-3602-8

    Article  CAS  PubMed  Google Scholar 

  • Lévesque B, Gervais MC, Chevalier P, Gauvin D, Anassour-Laouan-Sidi E, Gingras S, Fortin N et al (2014) Prospective study of acute health effects in relation to exposure to cyanobacteria. Sci Total Environ 466–467:397–403

    Article  PubMed  CAS  Google Scholar 

  • Li R, Carmichael W, Brittain S et al (2001) First report of the cyanotoxins cylindrospermopsin and deoxycylindrospermopsin from Raphidiopsis curvata Cyanobacteria). J Phycol 37:1–6

    Article  Google Scholar 

  • Li Y, Sheng J, Sha J, Han X (2008) The toxic effects of microcystin-LR on the reproductive system of male rats in vivo and in vitro. Reprod Toxicol 26(3–4):239–245

    Article  CAS  PubMed  Google Scholar 

  • Li H, Xie P, Li G, Hao L, Xiong Q (2009) In vivo study on the effects of microcystin extracts on the expression profiles of proto-oncogenes (c-fos, c-jun and c-myc) in liver, kidney and testis of male Wistar rats injected i.v. with toxins. Toxicon 53(1):169–175. doi:10.1016/j.toxicon.2008.10.027

    Article  CAS  PubMed  Google Scholar 

  • Li GY, Xie P, Li HY, Hao L, Xiong Q, Qiu T (2011a) Involment of p53, Bax, and Bcl-2 pathway in microcystins-induced apoptosis in rat testis. Environ Toxicol 26(2):111–117. doi:10.1002/tox.20532

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Chen JA, Zhao Q, Pu C, Qiu Z, Zhang R, Shu W (2011b) A cross-sectional investigation of chronic exposure to microcystin in relationship to childhood liver damage in the three Gorges reservoir region, China. Environ Health Persp 119(10):1483–1488

    Article  CAS  Google Scholar 

  • Li G, Cai F, Yan W, Li C, Wang J (2012a) A proteomic analysis of MC-LR-induced neurotoxicity: implications for Alzheimer’s disease. Toxicol Sci 127(2):485–495

    Article  CAS  PubMed  Google Scholar 

  • Li G, Yan W, Cai F, Li C, Chen N, Wang J (2012b) Spatial learning and memory impairment and pathological change in rats induced by acute exposure to microcystin-LR. Environ Toxicol 29(3):261–268

    Article  PubMed  CAS  Google Scholar 

  • Li G, Yan W, Qiao Q, Chen J, Cai F, He Y, Zhang X (2012c) Global effects of subchronic treatment of microcystin-LR on rat splenetic protein levels. J Proteomics 77:383–393

    Article  CAS  PubMed  Google Scholar 

  • Li L, Xie P, Lei H, Zhang X (2013) Renal accumulation and effects of intraperitoneal injection of extracted microcystins in omnivorous crucian carp (Carassius auratus). Toxicon 70:62–69. doi:10.1016/j.toxicon.2013.03.022

    Article  CAS  PubMed  Google Scholar 

  • Li YW, Zhan XJ, Xiang L, Deng ZS, Huang BH, Wen HF, Sun TF et al (2014) Analysis of trace microcystins in vegetables using solid-phase extraction followed by high performance liquid chromatography triple-quadrupole mass spectrometry. J Agric Food Chem 62(49):11831–11839. doi:10.1021/jf5033075

    Article  CAS  PubMed  Google Scholar 

  • Li S, Chen J, Xie P, Guo X, Fan H, Yu D, Zeng C, Chen L (2015a) The role of glutathione detoxification pathway in MCLR-induced hepatotoxicity in SD rats. Environ Toxicol 30(12):1470–1480. doi:10.1002/tox.22017

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhang X, Ju J, Li Y, Yin L, Pu Y (2015b) Maternal repeated oral exposure to microcystin-LR affects neurobehaviors in developing rats. Environ Toxicol Chem 34(1):64–69. doi:10.1002/etc.2765

    Article  PubMed  CAS  Google Scholar 

  • Li X, Zhao Q, Zhou W, Xu L, Wang Y (2015c) Effects of chronic exposure to microcystin-LR on hepatocyte mitochondrial DNA replication in mice. Environ Sci Technol 49(7):4665–4672. doi:10.1021/es5059132

    Article  CAS  PubMed  Google Scholar 

  • Li X, Dreher TW, Li R (2016a) An overview of diversity, occurrence, genetics and toxin production of bloom-forming Dolichospermum (Anabaena) species. Harmful Algae 54:54–68. doi:10.1016/j.hal.2015.10.015

    Article  CAS  PubMed  Google Scholar 

  • Li X, Xu L, Zhou W, Zhao Q, Wang Y (2016b) Chronic exposure to microcystin-LR affected mitochondrial DNA maintenance and caused pathological changes of lung tissue in mice. Environ Pollut 210:48–56. doi:10.1016/j.envpol.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  • Lian M, Liu Y, Yu SZ, Qian GS, Wan SG, Dixon KR (2006) Hepatitis B virus x gene and cyanobacterial toxins promote aflatoxin B-1-induced hepatotumorigenesis in mice. World J Gastroentero 12(19):3065–3072

    Article  CAS  Google Scholar 

  • Liang G, Xie P, Chen J, Yu T (2011) Comparative studies on the pH dependence of DOW of microcystin-RR and -LR using LC-MS. Sci World J 11:20–26. doi:10.1100/tsw.2011.17

    Article  CAS  Google Scholar 

  • Liebel S, de Oliveira Ribeiro CA, de Magalhães VF, da Silva Rde C, Rossi SC, Randi MA, Filipak Neto F (2015) Low concentrations of cylindrospermopsin induce increases of reactive oxygen species levels, metabolism and proliferation in human hepatoma cells (HepG2). Toxicol In Vitro 29(3):479–488. doi:10.1016/j.tiv.2014.12.022

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Liu W, Zeng H, Pu C, Zhang R, Qiu Z, Chen JA et al (2016) Determination of environmental exposure to microcystin and aflatoxin as a risk for renal function based on 5493 rural people in Southwest China. Environ Sci Technol 50(10):5346–5356. doi:10.1021/acs.est.6b01062

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Scott PM (2011) Determination of the cyanobacterial toxin cylindrospermopsin in algal food supplements. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 28(6):786–790. doi:10.1080/19440049.2010.501824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Sun Y (2015) The role of PP2A-associated proteins and signal pathways in microcystin-LR toxicity. Toxicol Lett 236(1):1–7. doi:10.1016/j.toxlet.2015.04.010

    Article  CAS  PubMed  Google Scholar 

  • Liu XQ, Rush T, Ciske J, Lobner D (2010) Selective death of cholinergic neurons induced by beta-methylamino-l-alanine. NeuroReport 21(1):55–58

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhang J, Gao B, Fen S (2014) Combined effects of two antibiotic contaminants on Microcystis aeruginosa. J Hazard Mater 279:148–155

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Wang H, Wang B, Chen T, Wang X, Huang P, Xu L, Guo Z (2016) Microcystin-LR promotes proliferation by activating Akt/S6K1 pathway and disordering apoptosis and cell cycle associated proteins phosphorylation in HL7702 cells. Toxicol Lett 240(1):214–225. doi:10.1016/j.toxlet.2015.10.015

    Article  CAS  PubMed  Google Scholar 

  • Llewellyn LE (2006) Saxitoxin, a toxic marine natural product that targets a multitude of receptors. Nat Prod Rep 23:200–222

    Article  CAS  PubMed  Google Scholar 

  • Lobner D, Piana PMT, Salous AK, and Peoples RW (2007) β-N-Methylamino-L-alanine enhances neurotoxicity through multiple mechanisms. Neurobiol Dis 25:360–366

    Article  CAS  Google Scholar 

  • Loftin KA, Clark JM, Journey CA, Kolpin DW, Van Metre PC, Bradley PM (2016a) Spatial and temporal variation in microcystins occurrence in wadeable streams in the southeastern USA. Environ Toxicol Chem. doi:10.1002/etc.3391

    PubMed  Google Scholar 

  • Loftin KA, Graham JL, Hilborn ED et al (2016b) Cyanotoxins in inland lakes of the United States: occurrence and potential recreational health risks in the EPA National Lakes Assessment 2007. Harmful Algae 56:77–90. doi:10.1016/j.hal.2016.04.001

    Article  CAS  PubMed  Google Scholar 

  • Lone Y, Bhide M, Koiri RK (2016) Microcystin-LR induced immunotoxicity in mammals. J Toxicol 2016:8048125. doi:10.1155/2016/8048125

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopez-Alonso H, Rubiolo JA, Vega F, Vieytes MR, Botana LM (2013) Protein synthesis inhibition and oxidative stress induced by cylindrospermopsin elicit apoptosis in primary rat hepatocytes. Chem Res Toxicol 26:203–212

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Rodas V, Costas E (1999) Preference of mice to consume Microcystis aeruginosa (toxin–producing cyanobacteria): a possible explanation for numerous fatalities of livestock and wildlife. Res Vet Sci 67(1):107–110

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Rodas V, Maneiro E, Lanzarot MP, Perdigones N, Costas E (2008) Mass wildlife mortality due to cyanobacteria in the Donana National Park, Spain. Vet Rec 162(10):317–318

    Article  CAS  PubMed  Google Scholar 

  • Lovell RA, Schaeffer DJ, Hooser SB, Haschek WM, Dahlem AM, Carmichael WW, Beasley VR (1989) Toxicity of intraperitoneal doses of microcystin-LR in two strains of male mice. J Environ Pathol Toxicol Oncol 9(3):221–237

    CAS  PubMed  Google Scholar 

  • Lu H, Choudhuri S, Ogura K, Csanaky IL, Lei X, Cheng X, Song PZ, Klaassen CD (2008) Characterization of organic anion transporting polypeptide 1b2-null mice: essential role in hepatic uptake/toxicity of phalloidin and microcystin-LR. Toxicol Sci 103(1):35–45. doi:10.1093/toxsci/kfn038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundren V, Granéli E, Pflugmacher S (2012) Influence of Acartia cf. bifilosa (Copepoda) on morphology and toxicity of Nodularia spumigena (Cyanophyceae). Harmuf Algae 18:35–46

    Article  Google Scholar 

  • Lürling M, Faassen EJ (2013) Dog poisonings associated with a Microcystis aeruginosa bloom in the Netherlands. Toxins (Basel) 5(3):556–567. doi:10.3390/toxins5030556

    Article  CAS  Google Scholar 

  • Maatouk I, Bouaïcha N, Plessis MJ, Périn F (2004) Detection by 32P-postlabelling of 8-oxo-7,8-dihydro-2’-deoxyguanosine in DNA as biomarker of microcystin-LR- and nodularin-induced DNA damage in vitro in primary cultured rat hepatocytes and in vivo in rat liver. Mutat Res 564(1):9–20

    Article  CAS  PubMed  Google Scholar 

  • MacKintosh C, Beattie KA, Klumpp S, Cohen P, Codd GA (1990) Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett 264:187–192

    Article  CAS  PubMed  Google Scholar 

  • Maejima K, Muraoka T, Park H-D (2014) Accumulation and inhibitory effects of microcystin on the growth of rice and broccoli. Korean J Ecol Environ 47:19–30

    Google Scholar 

  • Mahmood WA, Carmichael WW (1987) Anatoxin-a(s), an anticholinesterase from the cyanobacterium Anabaena flos-aquae NRC-525-17. Toxicon 25:1211–1227

    Article  Google Scholar 

  • Maire MA, Bazin E, Fessard V, Rast C, Humpage AR, Vasseur P (2010) Morphological cell transformation of Syrian hamster embryo (SHE) cells by the cyanotoxin, cylindrospermopsin. Toxicon 55(7):1317–1322

    Article  CAS  PubMed  Google Scholar 

  • Manganelli M, Scardala S, Stefanelli M, Vichi S, Mattei D, Bogialli S, Ceccarelli P, Corradetti E, Petrucci I, Gemma S, Testai E, Funari E (2010) Health risk evaluation associated to Planktothrix rubescens: an integrated approach to design tailored monitoring programs for human exposure to cyanotoxins. Water Res 44(5):1297–1306

    Article  CAS  PubMed  Google Scholar 

  • Manganelli M, Scardala S, Stefanelli M et al (2012) Emerging health issues of cyanobacterial blooms. Ann Ist Super Sanità 48(4):415–428

    Article  PubMed  Google Scholar 

  • Manganelli M, Stefanelli M, Vichi S, Andreani P, Nascetti G, Scialanca F, Scardala S, Testai E, Funari E (2016) Cyanobacteria biennal dynamic in a volcanic mesotrophic lake in central Italy: strategies to prevent dangerous human exposures to cyanotoxins. Toxicon 115:28–40. doi:10.1016/j.toxicon.2016.03.004

    Article  CAS  PubMed  Google Scholar 

  • Mankiewicz J, Walter Z, Tarczynska M, Palyvoda O, Wojtysiak-Staniaszczyk M, Zalewski M (2002) Genotoxicity of cyanobacterial extracts containing microcystins from Polish water reservoirs as determined by SOS chromotest and comet assay. Environ Toxicol 17(4):341–350

    Article  CAS  PubMed  Google Scholar 

  • Mann S, Lombard B, Loew D, Mejean A, Ploux O (2011) Insights into the reaction mechanism of the 1748 prolyl-acyl carrier protein oxidase involved in anatoxin-a and homoanatoxin-a biosynthesis. Biochemistry 50(33):7184–7197. doi:10.1021/bi200892a

    Article  CAS  PubMed  Google Scholar 

  • Marler TE, Snyder LR, Shaw CA (2010) Cycas micronesica (Cycadales) plants devoid of endophytic cyanobacteria increase in beta-methylamino-L-alanine. Toxicon 56(4):563–568

    Article  CAS  PubMed  Google Scholar 

  • Masango MG, Myburgh JG, Labuschagne L, Govender D, Bengis RG, Naicker D (2010) Assessment of Microcystis bloom toxicity associated with wildlife mortality in the kruger national park, South Africa. J Wildl Dis 46(1):95–102

    Article  PubMed  Google Scholar 

  • Mazur H, Pliński M (2003) Nodularia spumigena blooms and the occurrence of hepatotoxin in the Gulf of Gdańsk. Oceanologia 45(1):305–316

    Google Scholar 

  • Mazur-Marzec H, Zeglínska L, Plínski M (2005) The effect of salinity on the growth, toxin production and morphology of Nodularia spumigena isolated from the Gulf of Gdánsk, southern Baltic Sea. J Appl Phycol 17:171–179

    Article  CAS  Google Scholar 

  • Mazur-Marzec H, Meriluoto J, Pliński M (2006a) The degradation of the cyanobacterial hepatotoxin nodularin (NOD) by UV radiation. Chemosphere 65(8):1388–1395. doi:10.1016/j.chemosphere.2006.03.072

    Article  CAS  PubMed  Google Scholar 

  • Mazur-Marzec H, Meriluoto J, Pliński M, Szafranek J (2006b) Characterization of nodularin variants in Nodularia spumigena from the Baltic Sea using liquid chromatography/mass spectrometry/mass spectrometry. Rapid Commun Mass Spectrom 20(13):2023–2032

    Article  CAS  PubMed  Google Scholar 

  • Mazur-Marzec H, Toruńska A, Błońska MJ, Moskot M, Plinski M, Jakobkiewicz-Banecka J et al (2009) Biodegradation of nodularin and effects of the toxin on bacterial isolates from the Gulf of Gdańsk. Water Res 43(11):2801–2810. doi:10.1016/j.watres.2009.03.042

    Article  CAS  PubMed  Google Scholar 

  • Mazur-Marzec H, Browarczyk-Matusiak G, Forycka K, Kobos G, Pliński M (2010) Morphological genetic chemical and ecophysiological characterisation of two Microcystis aeruginosa isolates from the Vistula Lagoon, southern Baltic. Oceanologia 52(1):127–146

    Article  Google Scholar 

  • Mazur-Marzec H, Sutryk K, Kobos J, Hebel A, Hohlfeld N, Blaszczyk A et al (2013) Occurrence of cyanobacteria and cyanotoxin in the Southern Baltic Proper. Filamentous cyanobacteria versus single-celled picocyanobacteria. Hydrobiologia 701(1):235–252. doi:10.1007/s10750-012-1278-7

    Article  CAS  Google Scholar 

  • Mazur-Marzec H, Sutryk K, Hebel A, Hohlfeld N, Pietrasik A, Błaszczyk A (2015) Nodularia spumigena Peptides-Accumulation and Effect on Aquatic Invertebrates. Toxins 7(11):4404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mbukwa E, Msagati TAM, Mamba BB, Boussiba S, Wepener V, Leu S, Kaye Y (2015) Toxic Microcystis novacekii T20-3 from Phakalane ponds, Botswana: pCR amplifications of microcystin synthetase (mcy) genes, extraction and LCESI-MS identification of Microcystins. J Environ Anal Toxicol S7:010. doi:10.4172/2161-0525.S7-010

    Google Scholar 

  • McAllister TG, Wood SA, Hawes I (2016) The rise of toxic benthic Phormidium proliferations: a review of their taxonomy, distribution, toxin content and factors regulating prevalence and increased severity. Harmful Algae 55:282–294. doi:10.1016/j.hal.2016.04.002

    Article  CAS  PubMed  Google Scholar 

  • McGregor GB, Sendall BC (2015) Phylogeny and toxicology of Lyngbya wollei (Cyanobacteria, Oscillatoriales) from north-eastern Australia, with a description of Microseira gen. nov. J Phycol 51(1):109–119. doi:10.1111/jpy.12256

    Article  CAS  PubMed  Google Scholar 

  • McGregor GB, Stewart I, Sendall BC, Sadler R, Reardon K, Carter S, Wruck D, Wickramasinghe W (2012) First report of a toxic Nodularia spumigena (Nostocales/Cyanobacteria) bloom in sub-tropical Australia. I. Phycological and public health investigations. Int J Environ Res Public Health 9(7):2396–2411. doi:10.3390/ijerph9072396

    Article  PubMed  PubMed Central  Google Scholar 

  • MDH Minnesota Department of Health (2015) Health Based Guidance for Water Toxicological Summary for: Microcystin-LR. http://www.health.state.mn.us/divs/eh/risk/guidance/gw/microcystin.pdf

  • Meili N, Christen V, Fent K (2016) Nodularin induces tumor necrosis factor-alpha and mitogen-activated protein kinases (MAPK) and leads to induction of endoplasmic reticulum stress. Toxicol Appl Pharmacol 300:25–33. doi:10.1016/j.taap.2016.03.014

    Article  CAS  PubMed  Google Scholar 

  • Mejean A, Mann S, Maldiney T, Vassiliadis G, Lequin O, Ploux O (2009) Evidence that biosynthesis of the neurotoxic alkaloids anatoxin-a and homoanatoxin-a in the cyanobacterium Oscillatoria PCC 6506 occurs on a modular polyketide synthase initiated by l-proline. J Am Chem Soc 131(22):7512–7513

    Article  CAS  PubMed  Google Scholar 

  • Mejean A, Mann S, Vassiliadis G, Lombard B, Loew D, Ploux O (2010a) In vitro reconstitution of the first steps of anatoxin-a biosynthesis in Oscillatoria PCC 6506: from free L-proline to acyl carrier protein bound dehydroproline. Biochemistry 49(1):103–113

    Article  CAS  PubMed  Google Scholar 

  • Mejean A, Mazmouz R, Mann S, Calteau A, Medigue C, Ploux O (2010b) The genome sequence of the cyanobacterium Oscillatoria sp. PCC 6506 reveals several gene clusters responsible for the biosynthesis of toxins and secondary metabolites. J Bacteriol 192:5264–5265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mejean A, Paci G, Gautier V, Ploux O (2014) Biosynthesis of anatoxin-a and analogues (anatoxins) in cyanobacteria. Toxicon 91:15–22

    Article  CAS  PubMed  Google Scholar 

  • Méjean A, Peyraud-Thomas C, Kerbrat AS et al (2010) First identification of the neurotoxin homoanatoxin-a from mats of Hydrocoleum lyngbyaceum (marine cyanobacterium) possibly linked to giant clam poisoning in New Caledonia. Toxicon 56(5):829–835. doi:10.1016/j.toxicon.2009.10.029

    Article  PubMed  CAS  Google Scholar 

  • Meng G, Liu J, Lin S, Guo Z, Xu L (2015) Microcystin-LR-caused ROS generation involved in p38 activation and tau hyperphosphorylation in neuroendocrine (PC12) cells. Environ Toxicol 30(3):366–374. doi:10.1002/tox.21914

    Article  CAS  PubMed  Google Scholar 

  • Merel S, Villarín MC, Chung K, Snyder S (2013a) Spatial and thematic distribution of research on cyanotoxins. Toxicon 76:118–131. doi:10.1016/j.toxicon.2013.09.008

    Article  CAS  PubMed  Google Scholar 

  • Merel S, Walker D, Chicana R, Snyder S, Baures E, Thomas O (2013b) State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ Int 59:303–327. doi:10.1016/j.envint.2013.06.013

    Article  CAS  PubMed  Google Scholar 

  • Meriluoto JAO, Sandström A, Eriksson JE, Remaud G, Craig AG, Chattopadhyaya J (1989) Structure and toxicity of a peptide hepatotoxin from the cyanobacterium Oscillatoria agardhii. Toxicon 27(9):1021–1034

    Article  CAS  PubMed  Google Scholar 

  • Meriluoto JAO, Nygard S, Dahlelm AM, Eriksson JE (1990) Synthesis, organotropism and hepatocellular uptake of two tritium-labeled epimers of dihydro-microcystin-LR, a cyanobacterial peptide toxin analog. Toxicon 29:1439–1446

    Article  Google Scholar 

  • Metcalf J, Codd G (2012) Cyanotoxins. In: Whitton B (ed) Ecology of cyanobacteria II: their diversity in space and time. Springer, Dordrecht, pp 651–675

    Chapter  Google Scholar 

  • Metcalf JS, Richer R, Cox PA, Codd GA (2012) Cyanotoxins in desert environments may present a risk to human health. Sci Total Environ 421–422:118–123. doi:10.1016/j.scitotenv.2012.01.053

    Article  PubMed  CAS  Google Scholar 

  • Mez K, Beattie KA, Codd GA, Hanselmann K, Hauser B, Naegeli H, Preisig HR (1997) Identification of a microcystin in benthic cyanobacteria linked to cattle deaths on alpine pastures in Switzerland. Eur J Phycol 32:111–117

    Article  Google Scholar 

  • Mihali TK, Kellmann R, Muenchhoff J, Barrow KD, Neilan BA (2008) Characterization of the gene cluster responsible for cylindrospermopsin biosynthesis. Appl Environ Microbiol 74(3):716–722

    Article  CAS  PubMed  Google Scholar 

  • Mihali TK, Kellmann R, Neilan BA (2009) Characterisation of the paralytic shellfish toxin biosynthesis gene clusters in Anabaena circinalis AWQC131C and Aphanizomenon sp. NH-5. BMC Biochem. doi:10.1186/1471-2091-10-8

    PubMed  PubMed Central  Google Scholar 

  • Miller MA, Kudela RM, Mekebri A, Crane D, Oates SC, Tinker MT, Staedler M et al (2010) Evidence for a novel marine harmful algal bloom: cyanotoxin (microcystin) transfer from land to sea otters. PLoS ONE. doi:10.1371/journal.pone.0012576

    Google Scholar 

  • Milutinović A, Zivin M, Zorc-Pleskovic R, Sedmak B, Suput D (2003) Nephrotoxic effects of chronic administration of microcystins -LR and -YR. Toxicon 42(3):281–288

    Article  PubMed  CAS  Google Scholar 

  • Miura GA, Robinson NA, Lawrence WB, Pace JG (1991) Hepatotoxicity of microcystin-LR in fed and fasted rats. Toxicon 29(3):337–346

    Article  CAS  PubMed  Google Scholar 

  • Moffitt MC, Neilan BA (2004) Characterization of the nodularin synthetase gene cluster and proposed theory of the evolution of cyanobacterial hepatotoxins. Appl Environ Microbiol 70(11):6353–6362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Møgelhøj MK, Hansen PJ, Peter H, Lundholm N (2006) High pH and not allelopathy may be responsible for negative effects of Nodularia spumigena on other algae. Aquat Microb Ecol 43(1):43–54

    Article  Google Scholar 

  • Mohamed ZA (2008) Toxic cyanobacteria and cyanotoxins in public hot springs in Saudi Arabia. Toxicon 51(1):17–27. doi:10.1016/j.toxicon.2007.07.007

    Article  CAS  PubMed  Google Scholar 

  • Mohamed ZA, Al Shehri AM (2007) Cyanobacteria and their toxins in treated-water storage reservoirs in Abha city, Saudi Arabia. Toxicon 50(1):75–84. doi:10.1016/j.toxicon.2007.02.021

    Article  CAS  PubMed  Google Scholar 

  • Mohamed ZA, Al Shehri AM (2009) Microcystin-producing blooms of Anabaenopsis arnoldi in a potable mountain lake in Saudi Arabia. FEMS Microbiol Ecol 69(1):98–105. doi:10.1111/j.1574-6941.2009.00683.x

    Article  CAS  PubMed  Google Scholar 

  • Mohamed ZA, Al-Shehri AM (2013) Assessment of cylindrospermopsin toxin in an arid Saudi lake containing dense cyanobacterial bloom. Environ Monit Assess 185(3):2157–2166. doi:10.1007/s10661-012-2696-8

    Article  CAS  PubMed  Google Scholar 

  • Mohamed ZA, Al-Shehri AM (2015) Biodiversity and toxin production of cyanobacteria in mangrove swamps in the Red Sea off the southern coast of Saudi Arabia. Bot Mar 58(1):23–34. doi:10.1515/bot-2014-0055

    Article  CAS  Google Scholar 

  • Mohamed ZA, Deyab MA, Abou-Dobara MI, El-Raghi WM (2016) Occurrence of toxic cyanobacteria and microcystin toxin in domestic water storage reservoirs, Egypt. J Water Supply Res Technol Aqua. doi:10.2166/aqua.2016.115

    Google Scholar 

  • Monks NR, Liu S, Xu Y, Yu H, Bendelow AS, Moscow JA (2007) Potent cytotoxicity of the phosphatase inhibitor microcystin LR and microcystin analogues in OATP1B1- and OATP1B3-expressing HeLa cells. Mol Cancer Ther 6(2):587–598

    Article  CAS  PubMed  Google Scholar 

  • Mons MN, Van Egmond HP and Speijers GJA (1998) Paralytic shellfish poisoning: A review. Report 388802 005. RIVM. http://rivm.openrepository.com/rivm/bitstream/10029/10000/1/388802005.pdf

  • Montine TJ, Li K, Perl DP, Galasko D (2005) Lack of β-methylamino-l-alanine in brain from controls, AD, or Chamorros with PDC. Neurology 65:768–769

    Article  CAS  PubMed  Google Scholar 

  • Moore BS, Ohtani I, Moore RE, Carmichael WW (1992) Biosynthesis of anatoxin-a (s): origin of the carbons. Tetrahed Lett 33:6595–6598

    Article  CAS  Google Scholar 

  • Moreno I, Pichardo S, Jos A, Gómez-Amores L, Mate A, Vazquez CM, Cameán AM (2005) Antioxidant enzyme activity and lipid peroxidation in liver and kidney of rats exposed to microcystin-LR administered intraperitoneally. Toxicon 45(4):395–402

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Gonzalez I, Soto C (2011) Misfolded protein aggregates: mechanisms, structures and potential for disease transmission. Semin Cell Dev Biol 22:482–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mowe M, Mitrovic S, Lim R, Furey A, Yeo D (2015) Tropical cyanobacterial blooms: a review of prevalence, problem taxa, toxins and influencing environmental factors. J Limnol 74(2):205–224. doi:10.4081/jlimnol.2014.1005

    Google Scholar 

  • Mulvenna V, Dale K, Priestly B, Mueller U, Humpage A, Shaw G, Allinson G, Falconer I (2012) Health risk assessment for cyanobacterial toxins in seafood. Int J Environ Res Public Health 9:807–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munday R, Thomas K, Gibbs R, Murphy C, Quilliam MA (2013) Acute toxicities of saxitoxin, neosaxitoxin, decarbamoyl saxitoxin and gonyautoxins 1&4 and 2&3 to mice by various routes of administration. Toxicon 76:77–83

    Article  CAS  PubMed  Google Scholar 

  • Murch SJ, Cox PA, Banack SA, Steele JC, Sacks OW (2004) Occurrence of beta-methylamino-l-alanine (BMAA) in ALS/PDC patients from Guam. Acta Neurol Scand 110:267–269

    Article  CAS  PubMed  Google Scholar 

  • Namikoshi M, Choi BW, Sun F, Rinehart KL, Evans WR, Carmichael WW (1993) Chemical characterization and toxicity of dihydro derivatives of nodularin and microcystin-LR, potent cyanobacterial cyclic peptide hepatotoxins. Chem Res Toxicol 6(2):151–158

    Article  CAS  PubMed  Google Scholar 

  • Naselli-Flores L, Barone R, Chorus I, Kurmayer R (2007) Toxic cyanobacterial blooms in reservoirs under a semiarid mediterranean climate: the magnification of a problem. Environ Toxicol 22(4):399–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasri H, El Herry S, Bouaicha N (2008) First reported case of turtle deaths during a toxic Microcystis spp. bloom in Lake Oubeira, Algeria. Ecotoxicol Environ Saf 71(2):535–544. doi:10.1016/j.ecoenv.2007.12.009

    Article  CAS  PubMed  Google Scholar 

  • Nehring S (1993) Mortality of dogs associated with a mass development of Nodularia spumigena (Cyanophyceae) in a brackish lake at the German North Sea coast. J Plankton Res 15(7):867–872. doi:10.1093/plankt/15.7.867

    Article  Google Scholar 

  • Neilan BA, Pearson LA, Muenchhoff J, Moffitt MC, Dittmann E (2012) Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environ Microbiol 15:1239–1253

    Article  PubMed  CAS  Google Scholar 

  • Niamien-Ebrottie JE, Bhattacharyya S, Deep PR, Nayak B (2015) Cyanobacteria and cyanotoxins in the world: review. Inter J App Res 1(8):563–569

    Google Scholar 

  • Nishiwaki R, Ohta T, Sueoka E, Suganuma M, Harada K, Watanabe MF, Fujiki H (1994) Two significant aspects of microcystin-LR: specific binding and liver specificity. Cancer Lett 83(1–2):283–289

    Article  CAS  PubMed  Google Scholar 

  • Nishiwaki-Matsushima R, Ohta T, Nishiwaki S, Suganuma M, Kohyama K, Ishikawa T, Carmichael WW, Fujiki H (1992) Liver tumor promotion by the cyanobacterial cyclic peptide toxin microcystin-LR. J Cancer Res Clin Oncol 118(6):420–424

    Article  CAS  PubMed  Google Scholar 

  • Norris RLG, Eaglesham GK, Pierens G, Shaw GR, Smith MJ, Chiswell RK, Seawright AA, Moore MR (1999) Deoxycylindropermopsin, an analog of cylindropermopsin from Cylindrospermopsis raciborskii. Environ Toxicol 14:163–165

    Article  CAS  Google Scholar 

  • Norris RL, Seawright AA, Shaw GR, Smith MJ, Chiswell RK, Moore MR (2001) Distribution of 14C cylindrospermopsin in vivo in the mouse. Environ Toxicol 16:498–505

    Article  CAS  PubMed  Google Scholar 

  • Norris RL, Seawright AA, Shaw GR, Senogles P, Eaglesham GK, Smith MJ, Chiswell RK, Moore MR (2002) Hepatic xenobiotic metabolism of cylindrospermopsin in vivo in the mouse. Toxicon 40(4):471–476

    Article  CAS  PubMed  Google Scholar 

  • Oberholster PJ, Myburgh JG, Govender D, Bengis R, Botha AM (2009) Identification of toxigenic Microcystis strains after incidents of wild animal mortalities in the Kruger National Park, South Africa. Ecotoxicol Environ Saf 72(4):1177–1182. doi:10.1016/j.ecoenv.2008.12.014

    Article  CAS  PubMed  Google Scholar 

  • Ohio (2010) State Of Ohio, Cooperative Fish Tissue Monitoring Program, Sport Fish Tissue Consumption Advisory Program. 26 pages. http://www.epa.state.oh.us/portals/35/fishadvisory/FishAdvisoryProcedure.pdf

  • Ohio Environmental Protection Agency (2015a) Public Water System Harmful Algal Bloom Response Strategy. http://epa.ohio.gov/Portals/28/documents/HABs/PWS_HAB_Response_Strategy.pdf

  • Ohio Environmental Protection Agency (2015b) State of Ohio Harmful Algal Bloom response strategy for recreational waters; http://epa.ohio.gov/portals/35/hab/HABResponseStrategy.pdf

  • Ohta T, Sueoka E, Iida N, Komori A, Suganuma M, Nishiwaki R, Tatematsu M, Kim SJ, Carmichael WW, Fujiki H (1994) Nodularin, a potent inhibitor of protein phosphatases 1 and 2A, is a new environmental carcinogen in male F344 rat liver. Cancer Res 54(24):6402–6406

    CAS  PubMed  Google Scholar 

  • Ohtani I, Moore RE, Runnegar MTC (1992) Cylindrospermopsin—A potent hepatotoxin from the bluegreen alga Cylindrospermopsis raciborskii. J Am Chem Soc 114:7941–7942

    Article  CAS  Google Scholar 

  • Oksanen I, Jokela J, Fewer DP, Wahlsten M, Rikkinen J, Sivonen K (2004) Discovery of rare and highly toxic microcystins from lichen-associated cyanobacterium Nostoc sp. Strain IO-102-I. Appl Environ Microbiol 70(10):5756–5763. doi:10.1128/aem.70.10.5756-5763.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira VR, Carvalho GMC, Avila MB, Soares RM, Avezedo SMFO, Ferreira TS, Valença SS, Faffe DS, Araujo Zin W (2012) Time-dependence of lung injury in mice acutely exposed to cylindrospermopsin. Toxicon 60:764–772

    Article  CAS  PubMed  Google Scholar 

  • Oliveira VR, Avila MB, Carvalho GM, Azevedo SM, Lima LM, Barreiro EJ, Carvalho AR, Zin WA (2015a) Investigating the therapeutic effects of LASSBio-596 in an in vivo model of cylindrospermopsin-induced lung injury. Toxicon 94:29–35. doi:10.1016/j.toxicon.2014.12.004

    Article  CAS  PubMed  Google Scholar 

  • Oliveira VR, Mancin VG, Pinto EF, Soares RM, Azevedo SM, Macchione M, Carvalho AR, Zin WA (2015b) Repeated intranasal exposure to microcystin-LR affects lungs but not nasal epithelium in mice. Toxicon 104:14–18. doi:10.1016/j.toxicon.2015.07.331

    Article  CAS  PubMed  Google Scholar 

  • Ongley SE, Pengelly JJL, Neilan BA (2016) Elevated Na + and pH influence the production and transport of saxitoxin in the cyanobacteria Anabaena circinalis AWQC131C and Cylindrospermopsis raciborskii T3. Environ Microbiol 18(2):427–438. doi:10.1111/1462-2920.13048

    Article  CAS  PubMed  Google Scholar 

  • Orr PT, Jones GJ, Hunter RA, Berger K (2003) Exposure of beef cattle in sub-clinical doses of Microcystis aeruginosa: toxin bioaccumulation, physiological effects and human health risk assessment. Toxicon 41:613–620

    Article  CAS  PubMed  Google Scholar 

  • Orr PT, Rasmussen JP, Burford MA, Eaglesham GK, Lennox SM (2010) Evaluation of quantitative real-time PCR to characterise spatial and temporal variations in cyanobacteria, Cylindrospermopsis raciborskii (Woloszynska) Seenaya et Subba Raju and cylindrospermopsin concentrations in three subtropical Australian reservoirs. Harmful Algae 9(3):243–254

    Article  CAS  Google Scholar 

  • Ostermaier V, Kurmayer R (2010) Application of real-time PCR to estimate toxin production by the cyanobacterium Planktothrix sp. Appl Environ Microbiol 76(11):3495–3502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostermaier V, Schanz F, Köster O, Kurmayer R (2012) Stability of toxin gene proportion in red-pigmented populations of the cyanobacterium Planktothrix during 29 years of re-oligotrophication of Lake Zürich. BMC Biol 10:100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oziol L, Bouaïcha N (2010) First evidence of estrogenic potential of the cyanobacterial heptotoxins the nodularin-R and the microcystin-LR in cultured mammalian cells. J Hazard Mater 174(1–3):610–615. doi:10.1016/j.jhazmat.2009.09.095

    Article  CAS  PubMed  Google Scholar 

  • Pablo J, Banack SA, Cox PA, Johnson TE, Papapetropoulos S, Bradley WG, Buck A, Mash DC (2009) Cyanobacterial neurotoxin BMAAin ALS and Alzheimer’s disease. Acta Neurol Scand 120(4):216–225

    Article  CAS  PubMed  Google Scholar 

  • Pace JG, Robinson NA, Miura GA, Matson CF, Geisbert TW, White JD (1991) Toxicity and kinetics of [3H]microcystin-LR in isolated perfused rat livers. Toxicol Appl Pharmacol 107(3):391–401

    Article  CAS  PubMed  Google Scholar 

  • Paerl HW (2014) Mitigating harmful cyanobacterial blooms in a human- and climatically-impacted world. Life (Basel, Switzerland) 4(4):988–1012. doi:10.3390/life4040988

    Google Scholar 

  • Paerl HW, Huisman J (2009) Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environm Microbiol Rep 1(1):27–37. doi:10.1111/j.1758-2229.2008.00004.x

    Article  CAS  Google Scholar 

  • Paerl HW, Otten TG (2013) Blooms Bite the Hand That Feeds Them. Science 342(6157):433–434. doi:10.1126/science.1245276

    Article  CAS  PubMed  Google Scholar 

  • Park TJ, Song KY, Sohn SH, Lim IK (2002) Marked inhibition of testosterone biosynthesis by the hepatotoxin nodularin due to apoptosis of Leydig cells. Mol Carcinog 34(3):151–163

    Article  CAS  PubMed  Google Scholar 

  • Pattanaik P, Wulff A, Roleda MY, Garde K, Mohlin M (2010) Production of the cyanotoxin nodularin-A multifactorial approach. Harmful Algae 10:30–38

    Article  CAS  Google Scholar 

  • Pearson L, Mihali T, Moffitt M, Kellmann R, Neilan B (2010) On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Mar Drugs 8(5):1650–1680. doi:10.3390/md8051650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson LA, Dittmann E, Mazmouz R, Ongley SE, D’Agostino PM, Neilan BA (2016) The genetics, biosynthesis and regulation of toxic specialized metabolites of cyanobacteria. Harmful Algae 54:98–111. doi:10.1016/j.hal.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  • Pekar H, Westerberg E, Bruno O, Lääne A, Persson KM, Sundström LF, Thim AM (2016) Fast, rugged and sensitive ultra high pressure liquid chromatography tandem mass spectrometry method for analysis of cyanotoxins in raw water and drinking water–First findings of anatoxins, cylindrospermopsins and microcystin variants in Swedish source waters and infiltration ponds. J Chromatogr A 1429:265–276. doi:10.1016/j.chroma.2015.12.049

    Article  CAS  PubMed  Google Scholar 

  • Penna A, Perini F, Dell’Aversano C, Capellacci S, Tartaglione L, Giacobbe MG, Casabianca S, Fraga S, Ciminiello P, Scardi M (2015) The sxt Gene and paralytic shellfish poisoning toxins as markers for the monitoring of toxic alexandrium species blooms. Environ Sci Technol 49(24):14230–14238

    Article  CAS  PubMed  Google Scholar 

  • Pereira DA, Pimenta AMC, Giani A (2012) Profiles of toxic and non-toxic oligopeptides of Radiocystis fernandoii (Cyanobacteria) exposed to three different light intensities. Microbiol Res 167:413–421

    Article  CAS  PubMed  Google Scholar 

  • Pereira DA, Pimentel JSM, Bird DF, Giani A (2015) Changes in oligopeptide production by toxic cyanobacterial strains under iron deficiency. Aquat Microb Ecol 74:205–214

    Article  Google Scholar 

  • Pflugmacher S, Wiegand C, Werner S, Schröder H, Kankaanpää H (2005) Activity and substrate specificity of cytosolic and microsomal glutathione S-transferase in Australian black tiger prawns (Penaeus monodon) after exposure to cyanobacterial toxins. Environ Toxicol 20:301–307

    Article  CAS  PubMed  Google Scholar 

  • Pflugmacher S, Aulhorn M, Grimm B (2007) Influence of a cyanobacterial crude extract containing microcystin-LR on the physiology and antioxidative defence systems of different spinach variants. New Phytol 175(3):482–489. doi:10.1111/j.1469-8137.2007.02144.x

    Article  CAS  PubMed  Google Scholar 

  • Pierangelini M, Sinha R, Willis A, Burford MA, Orr PT, Beardall J, Neilan BA (2015) Constitutive cylindrospermopsin pool size in Cylindrospermopsis raciborskii under different light and CO2 partial pressure conditions. Appl Environ Microbiol 81(9):3069–3076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilotto LS, Douglas RM, Burch MD, Cameron S, Beers M, Rouch GJ, Robinson P et al (1997) Health effects of exposure to cyanobacteria (blue-gree algae) during recreational water-related activities. Aust N Z J Public Health 21:562–566

    Article  CAS  PubMed  Google Scholar 

  • Pilotto L, Hobson P, Burch MD, Ranmuthugala G, Attewell R, Weightman W (2004) Acute skin irritant effects of cyanobacteria (blue-green algae) in healthy volunteers. Aust N Z J Public Health 28(3):220–224

    Article  PubMed  Google Scholar 

  • Pineda-Mendoza R, Zúñiga G, Martínez Jerónimo F (2014) Infochemicals released by Daphnia magna fed on Microcystis aeruginosa affect mcyA gene expression. Toxicon 80:78–86

    Article  CAS  PubMed  Google Scholar 

  • Piyathilaka MA, Pathmalal MM, Tennekoon KH, De Silva BG, Samarakoon SR, Chanthirika S (2015) Microcystin-LR-induced cytotoxicity and apoptosis in human embryonic kidney and human kidney adenocarcinoma cell lines. Microbiology 161(Pt 4):819–828. doi:10.1099/mic.0.000046

    Article  CAS  PubMed  Google Scholar 

  • Ploug H (2008) Cyanobacterial surface blooms formed by Aphanizomenon sp. and Nodularia spumigena in the Baltic Sea: small-scale fluxes, pH, and oxygen microenvironments. Limnol Oceanogr 53(3):914–921

    Article  CAS  Google Scholar 

  • Poniedziałek B, Rzymski P, Wiktorowicz K (2012) First report of cylindrospermopsin effect on human peripheral blood lymphocytes proliferation in vitro Central-European. J Immunol 37(4):314–317. doi:10.5114/ceji.2012.32717

    Google Scholar 

  • Poniedziałek B, Rzymski P, Karczewski J (2014a) Cylindrospermopsin decreases the oxidative burst capacity of human neutrophils. Toxicon 87:113–119. doi:10.1016/j.toxicon.2014.05.004

    Article  PubMed  CAS  Google Scholar 

  • Poniedziałek B, Rzymski P, Wiktorowicz K (2014b) Toxicity of cylindrospermopsin in human lymphocytes: proliferation, viability and cell cycle studies. Toxicol In Vitro 28(5):968–974. doi:10.1016/j.tiv.2014.04.015

    Article  PubMed  CAS  Google Scholar 

  • Poniedziałek B, Rzymski P, Karczewski J (2015) The role of the enzymatic antioxidant system in cylindrospermopsin-induced toxicity in human lymphocytes. Toxicol In Vitro 29(5):926–932. doi:10.1016/j.tiv.2015.03.023

    Article  PubMed  CAS  Google Scholar 

  • Pouria S, de Andrade A, Barbosa J, Cavalcanti RL, Barreto VT, Ward CJ, Preiser W et al (1998) Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil. Lancet 352(9121):21–26

    Article  CAS  PubMed  Google Scholar 

  • Preece EP, Moore BC, Hardy FJ (2015a) Transfer of microcystin from freshwater lakes to Puget Sound, WA and toxin accumulation in marine mussels (Mytilus trossulus). Ecotoxicol Environ Saf 122:98–105. doi:10.1016/j.ecoenv.2015.07.013

    Article  CAS  PubMed  Google Scholar 

  • Preece EP, Moore BC, Hardy FJ, Deobald LA (2015b) First detection of microcystin in Puget Sound, Washington, mussels (Mytilus Trossulus). Lake Reserv Manage 31(1):50–54. doi:10.1080/10402381.2014.998398

    Article  CAS  Google Scholar 

  • Preußel K, Stüken A, Wiedner C, Chorus I, Fastner J (2006) First report on cylindrospermopsin producing Aphanizomenon flos-aquae (Cyanobacteria) isolated from two German lakes. Toxicon 47(2):156–162

    Article  PubMed  CAS  Google Scholar 

  • Preußel K, Wessel G, Fastner J, Chorus I (2009) Response of cylindrospermopsin production and release in Aphanizomenon flos-aquae (Cyanobacteria) to varying light and temperature conditions. Harmful Algae 8(5):645–650. doi:10.1016/j.hal.2008.10.009

    Article  CAS  Google Scholar 

  • Preußel K, Chorus I, Fastner J (2014) Nitrogen limitation promotes accumulation and suppresses release of cylindrospermopsins in cells of Planktothrix sp. Toxins 6(10):2932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Proença LAO, Tamanaha MS, Fonseca RS (2009) Screening the toxicity and toxin content of blooms of the cyanobacterium Trichodesmium erythraeum (Ehrenberg) in northeast brazil. J Venom Anim Toxins incl Trop Dis 15(2):204–215

    Article  CAS  Google Scholar 

  • Puddick J, Prinsep MR, Wood SA, Cary SC, Hamilton DP, Holland PT (2015) Further characterization of glycine-containing microcystins from the McMurdo dry Valleys of Antarctica. Toxins 7(2):493–515. doi:10.3390/toxins7020493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puschner B, Hoff B, Tor ER (2008) Diagnosis of anatoxin-a poisoning in dogs from North America. J Vet Diagn Invest 20(1):89–92. doi:10.1177/104063870802000119

    Article  PubMed  Google Scholar 

  • Qian H, Hu B, Yu S, Pan X, Wu T, Fu Z (2012) The effects of hydrogen peroxide on the circadian rhythms of Microcystis aeruginosa. PLoS ONE 7(3):e33347. doi:10.1371/journal.pone.0033347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin W, Zhang X, Yang L, Xu L, Zhang Z, Wu J, Wang Y (2015) Microcystin-LR altered mRNA and protein expression of endoplasmic reticulum stress signaling molecules related to hepatic lipid metabolism abnormalities in mice. Environ Toxicol Pharmacol 40(1):114–121. doi:10.1016/j.etap.2015.05.002

    Article  CAS  PubMed  Google Scholar 

  • Quiblier C, Wood S, Echenique-Subiabre I, Heath M, Villeneuve A, Humbert J-F (2013) A review of current knowledge on toxic benthic freshwater cyanobacteria–ecology, toxin production and risk management. Water Res 47(15):5464–5479. doi:10.1016/j.watres.2013.06.042

    Article  CAS  Google Scholar 

  • Rantala-Ylinen A, Kana S, Wang H, Rouhiainen L, Wahlsten M, Rizzi E, Berg K, Gugger M, Sivonen K (2011) Anatoxin-a synthetase gene cluster of the cyanobacterium Anabaena sp. strain 37 and molecular methods to detect potential producers. Appl Environ Microbiol 77:7271–7278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao PVL, Bhattacharya R, Parida MM, Jana AM, Bhaskar ASB (1998) Freshwater cyanobacterium Microcystis aeruginosa (UTEX 2385) induced DNA damage in vivo and in vitro. Environ Toxicol Pharmacol 5:1–6

    Article  Google Scholar 

  • Rao PVL, Gupta N, Jayaraj R, Bhaskar AS, Jatav PC (2005) Age-dependent effects on biochemical variables and toxicity induced by cyclic peptide toxin microcystin-LR in mice. Comp Biochem Physiol C Pharmacol Toxicol 140(1):11–19

    Article  CAS  Google Scholar 

  • Rapala J, Sivonen K, Lyra C, Niemela SI (1997) Variation of microcystins, cyanobacterial hepatotoxins, in Anabaena spp. as a function of growth stimuli. Appl Environ Microbiol 63:2206–2212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rastogi RP, Sinha RP (2009) Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol Adv 27(4):521–539. doi:10.1016/j.biotechadv.2009.04.009

    Article  CAS  PubMed  Google Scholar 

  • Rastogi RP, Sinha RP, Incharoensakdi A (2014) The cyanotoxin-microcystins: current overview. Rev Environ Sci Bio 13(2):215–249. doi:10.1007/s11157-014-9334-6

    Article  CAS  Google Scholar 

  • Rawn DFK, Saker M, Lau BPY, Niedzwiadek B (2007) Anatoxin-a and its metabolites in blue-green algae food supplements from Canada and Portugal. J Food Prot 70(3):776–779

    Article  CAS  PubMed  Google Scholar 

  • Reid KJ, Lang K, Froscio S, Humpage AJ, Young FM (2015) Undifferentiated murine embryonic stem cells used to model the effects of the blue-green algal toxin cylindrospermopsin on preimplantation embryonic cell proliferation. Toxicon 106:79–88. doi:10.1016/j.toxicon.2015.09.022

    Article  CAS  PubMed  Google Scholar 

  • Reisner M, Carmeli S, Werman M, Sukenik A (2004) The cyanobacterial toxin cylindrospermopsin inhibits pyrimidine nucleotide synthesis and alters cholesterol distribution in mice. Toxicol Sci 82(2):620–627

    Article  CAS  PubMed  Google Scholar 

  • Rellan S, Osswald J, Saker M, Gago-Martinez A, Vasconcelos V (2009) First detection of anatoxin-a in human and animal dietary supplements containing cyanobacteria. Food Chem Toxicol 47(9):2189–2195. doi:10.1016/j.fct.2009.06.004

    Article  CAS  PubMed  Google Scholar 

  • Repka S, Mehtonen J, Vaitomaa J, Saari L, Sivonen K (2001) Effects of nutrients on growth and nodularin production of Nodularia strain GR8b. Microbiol Ecol 42:606–613

    Article  CAS  Google Scholar 

  • Reveillon D, Abadie E, Sechet V, Masseret E, Hess P, Amzil Z (2015) beta-N-methylamino-l-alanine (BMAA) and isomers: distribution in different food web compartments of Thau lagoon, French Mediterranean Sea. Mar Environ Res 110:8–18. doi:10.1016/j.marenvres.2015.07.015

    Article  CAS  PubMed  Google Scholar 

  • Reveillon D, Sechet V, Hess P, Amzil Z (2016) Systematic detection of BMAA (beta-N-methylamino-l-alanine) and DAB (2,4-diaminobutyric acid) in mollusks collected in shellfish production areas along the French coasts. Toxicon 110:35–46. doi:10.1016/j.toxicon.2015.11.011

    Article  CAS  PubMed  Google Scholar 

  • Richardson LL, Sekar R, Myers JL et al (2007) The presence of the cyanobacterial toxin microcystin in black band disease of corals. FEMS Microbiol Lett 272(2):182–187. doi:10.1111/j.1574-6968.2007.00751.x

    Article  CAS  PubMed  Google Scholar 

  • Rivetti C, Gomez-Canela C, Lacorte S, Diez S, Lazaro WL, Barata C (2015) Identification of compounds bound to suspended solids causing sub-lethal toxic effects in Daphnia magna. A field study on re-suspended particles during river floods in Ebro River. Aquat Toxicol (Amsterdam, Netherlands) 161:41–50. doi:10.1016/j.aquatox.2015.01.021

    Article  CAS  Google Scholar 

  • Robinson NA, Miura GA, Matson CF, Dinterman RE, Pace JG (1989) Characterization of chemically tritiated microcystin-LR and its distribution in mice. Toxicon 27:1035–1042

    Article  CAS  PubMed  Google Scholar 

  • Robinson NA, Pace JG, Matson CF, Miura GA, Lawrence WB (1991) Tissue distribution, excretion and hepatic biotransformation of microcystin-LR in mice. J Pharmacol Exp The 256:176–182

    CAS  Google Scholar 

  • Rogers EH, Zehr RD, Gage MI, Humpage AR, Falconer IR, Marr M, Chernoff N (2007) The cyanobacterial toxin, cylindrospermopsin, induces fetal toxicity in the mouse after exposure late in gestation. Toxicon 49(6):855–864

    Article  CAS  PubMed  Google Scholar 

  • Rohrlack T, Hyenstrand P (2007) Fate of intracellular microcystins in the cyanobacterium Microcystis aeruginosa (Chroococcales, Cyanophyceae). Phycologia 46(3):277–283. doi:10.2216/06-14.1

    Article  Google Scholar 

  • Romero-Oliva CS, Contardo-Jara V, Block T, Pflugmacher S (2014) Accumulation of microcystin congeners in different aquatic plants and crops—a case study from lake Amatitlan, Guatemala. Ecotoxicol Environ Saf 102:121–128. doi:10.1016/j.ecoenv.2014.01.031

    Article  CAS  PubMed  Google Scholar 

  • Rosen J, Westerberg E, Schmiedt S, Hellenas KE (2016) BMAA detected as neither free nor protein bound amino acid in blue mussels. Toxicon 109:45–50. doi:10.1016/j.toxicon.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  • Ross SM, Seelig M, Spencer PS (1987) Specific antagonism of excitotoxic action of ‘uncommon’ amino acids assayed in organotypic mouse cortical cultures. Brain Res 425:120–127

    Article  CAS  PubMed  Google Scholar 

  • Rouhiainen L, Vakkilainen T, Siemer BL, Buikema W, Haselkorn R, Sivonen K (2004) Genes coding for hepatotoxic heptapeptides (microcystins) in the cyanobacterium Anabaena strain 90. Appl Environ Microbiol 70(2):686–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy-Lachapelle A, Solliec M, Sauve S (2015a) Determination of BMAA and three alkaloid cyanotoxins in lake water using dansyl chloride derivatization and high-resolution mass spectrometry. Anal Bioanal Chem 407(18):5487–5501. doi:10.1007/s00216-015-8722-2

    Article  CAS  PubMed  Google Scholar 

  • Roy-Lachapelle A, Solliec M, Sinotte M, Deblois C, Sauve S (2015b) Total analysis of microcystins in fish tissue using laser thermal desorption-atmospheric pressure chemical ionization-high-resolution mass spectrometry (LDTD-APCI-HRMS). J Agric Food Chem 63(33):7440–7449. doi:10.1021/acs.jafc.5b02318

    Article  CAS  PubMed  Google Scholar 

  • Rücker J, Stüken A, Nixdorf B, Fastner J, Chorus I, Wiedner C (2007) Concentrations of particulate and dissolved cylindrospermopsin in 21 Planktothrix-dominated temperate lakes. Toxicon 50(6):800–809. doi:10.1016/j.toxicon.2007.06.019

    Article  PubMed  CAS  Google Scholar 

  • Ruiz M, Galanti L, Ruibal AL, Rodriguez MI, Wunderlin DA, Amé MV (2013) First Report of Microcystins and Anatoxin-a Co-occurrence in San Roque Reservoir (Córdoba, Argentina). Wat Air Soil Pollut 224(6):1593. doi:10.1007/s11270-013-1593-2

    Article  CAS  Google Scholar 

  • Runnegar MT, Jackson AR, Falconer IR (1988) Toxicity of the cyanobacterium Nodularia spumigena Mertens. Toxicon 26(2):143–151

    Article  CAS  PubMed  Google Scholar 

  • Runnegar MT, Kong SM, Zhong YZ, Lu SC (1995) Inhibition of reduced glutathione synthesis by cyanobacterial alkaloid cylindrospermopsin in cultured rat hepatocytes. Biochem Pharmacol 49:219–225

    Article  CAS  PubMed  Google Scholar 

  • Sabart M, Pobel D, Briand E, Combourieu B, Salencon MJ, Humbert JF et al (2010) Spatiotemporal variations in microcystin concentrations and in the proportions of microcystin-producing cells in several Microcystis aeruginosa populations. Appl Environ Microbiol 76(14):4750–4759. doi:10.1128/aem.02531-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabart M, Misson B, Descroix A, Duffaud E, Combourieu B, Salencon M-J et al (2013) The importance of small colonies in sustaining Microcystis population exposed to mixing conditions: an exploration through colony size, genotypic composition and toxic potential. Environ Microbiol Rep 5(5):747–756. doi:10.1111/1758-2229.12077

    PubMed  Google Scholar 

  • Sacilotto Detoni AM, Fonseca Costa LD, Pacheco LA, Yunes JS (2016) Toxic Trichodesmium bloom occurrence in the southwestern South Atlantic Ocean. Toxicon 110:51–55. doi:10.1016/j.toxicon.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  • Saker ML, Griffiths DJ (2000) The effect of temperature on growth and cylindrospermopsin content of seven isolates of Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) from water bodies in northern Australia. Phycologia 39(4):349–354. doi:10.2216/i0031-8884-39-4-349.1

    Article  Google Scholar 

  • Saker ML, Thomas AD, Norton JH (1999) Cattle mortality attributed to the toxic cyanobacterium Cylindrospermopsis raciborskii in an outback region of north Queensland. Environ Toxicol 14(1):179–182

    Article  CAS  Google Scholar 

  • Salmaso N, Buzzi F, Garibaldi L, Morabito G, Simona M (2012) Effects of nutrient availability and temperature on phytoplankton development: a case study from large lakes south of the Alps. Aquat Sci 74:555–570

    Article  CAS  Google Scholar 

  • Salmaso N, Cerasino L, Boscaini A, Capelli C (2016) Planktic Tychonema (Cyanobacteria) in the large lakes south of the Alps: phylogenetic assessment and toxigenic potential. FEMS Microbiol Ecol. doi:10.1093/femsec/fiw155

    PubMed  Google Scholar 

  • Savela H, Spoof L, Perälä N, Preede M, Lamminmäki U, Nybom S, Häggqvist K et al (2015) Detection of cyanobacterial sxt genes and paralytic shellfish toxins in freshwater lakes and brackish waters on Åland Islands, Finland. Harmful Algae 46:1–10. doi:10.1016/j.hal.2015.04.005

    Article  CAS  Google Scholar 

  • Savichtcheva O, Debroas D, Kurmayer R, Villar C, Jenny JP, Fabien A, Perga ME, Domaizon I (2011) Quantitative PCR enumeration of total and toxic Planktothrix rubescens/agardhii and other cyanobacteria in preserved DNA isolated from lake sediments. Appl Environ Microbiol 77:8744–8753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaeffer DJ, Malpas PB, Barton LL (1999) Risk assessment of microcystin in dietary Aphanizomenon flos-aquae. Ecotoxicol Environ Saf 44:73–80

    Article  CAS  PubMed  Google Scholar 

  • Schopf J (2002) The fossil record: tracing the roots of the cyanobacterial lineage. In: Whitton B, Potts M (eds) The ecology of cyanobacteria Their diversity in time and space. Kluwer, New York, pp 13–35

    Chapter  Google Scholar 

  • Seawright AA, Nolan CC, Shaw GR, Chiswell RK, Norris RL, Moore MR, Smith MJ (1999) The oral toxicity for mice of the tropical cyanobacterium Cylindrospermopsis raciborskii (Woloszynska). Environ Toxicol 14(1):135–142

    Article  CAS  Google Scholar 

  • Sedan D, Laguens M, Copparoni G, Aranda JO, Giannuzzi L, Marra CA, Andrinolo D (2015) Hepatic and intestine alterations in mice after prolonged exposure to low oral doses of Microcystin-LR. Toxicon 104:26–33. doi:10.1016/j.toxicon.2015.07.011

    Article  CAS  PubMed  Google Scholar 

  • Sedda T, Baralla E, Varoni MV, Pasciu V, Lorenzoni G, Demontis MP (2016) Determination of microcystin-LR in clams (Tapes decussatus) of two Sardinian coastal ponds (Italy). Mar Pollut Bull 108(1–2):317–320. doi:10.1016/j.marpolbul.2016.04.022

    Article  CAS  PubMed  Google Scholar 

  • Seifert M, McGregor G, Eaglesham G, Wickramasinghe W, Shaw G (2007) First evidence for the production of cylindrospermopsin and deoxy-cylindrospermopsin by the freshwater benthic cyanobacterium, Lyngbya wollei (Farlow ex Gomont) Speziale and Dyck. Harmful Algae 6(1):73–80. doi:10.1016/j.hal.2006.07.001

    Article  CAS  Google Scholar 

  • Sekijima M, Tsutsumi T, Yoshida T, Harada T, Tashiro F, Chen G, Yu SZ, Ueno Y (1999) Enhancement of glutathione S-transferase placental-form positive liver cell foci development by microcystin-LR in aflatoxin B1-initiated rats. Carcinogenesis 20(1):161–165

    Article  CAS  PubMed  Google Scholar 

  • Senogles P, Shaw G, Smith M, Norris R, Chiswell R, Mueller J, Sadler R, Eaglesham G (2000) Degradation of the cyanobacterial toxin cylindrospermopsin, from Cylindrospermopsis raciborskii, by chlorination. Toxicon 38(9):1203–1213

    Article  CAS  PubMed  Google Scholar 

  • Šetlíková I, Wiegand C (2009) Hepatic and branchial glutathione S-transferases of two fish species: substrate specificity and biotransformation of microcystin-LR. Comp Biochem Physiol C Pharmacol Toxicol 149:515–523

    Article  CAS  Google Scholar 

  • Shams S, Capelli C, Cerasino L, Ballot A, Dietrich DR, Sivonen K, Salmaso N (2015) Anatoxin-a producing Tychonema (Cyanobacteria) in European waterbodies. Water Res 69:68–79

    Article  CAS  PubMed  Google Scholar 

  • Shang L, Feng M, Liu F, Xu X, Ke F, Chen X, Li W (2015) The establishment of preliminary safety threshold values for cyanobacteria based on periodic variations in different microcystin congeners in Lake Chaohu, China. Environ Sci Process Impacts 17(4):728–739. doi:10.1039/c5em00002e

    Article  CAS  PubMed  Google Scholar 

  • Shaw GR, Seawright AA, Moore MR, Lam PK (2000) Cylindrospermopsin, a cyanobacterial alkaloid: evaluation of its toxicologic activity. Ther Drug Monit 22(1):89–92

    Article  CAS  PubMed  Google Scholar 

  • Shih PM, Wu D, Latifi A, Axen SD, Fewer DP, Talla E, Calteau A et al (2013) Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci USA 110:1053–1058

    Article  CAS  PubMed  Google Scholar 

  • Shimizu Y (1986) Toxigenesis and biosynthesis of saxitoxin analogues. Pure Appl Chem 58:257–262

    Article  CAS  Google Scholar 

  • Shimizu Y, Norte M, Hori A, Genenah A, Kobayashi M (1984) Biosynthesis of saxitoxin analogs: the unexpected pathway. J Am Chem Soc 106:6433–6434

    Article  CAS  Google Scholar 

  • Sieroslawska A (2013) Assessment of the mutagenic potential of cyanobacterial extracts and pure cyanotoxins. Toxicon 74:76–82

    Article  CAS  PubMed  Google Scholar 

  • Sieroslawska A, Rymuszka A (2010) Evaluation of genotoxic potential of neurotoxin anatoxin-a with the use of umuC test. Neuro Endocrinol Lett 31:16–20

    CAS  PubMed  Google Scholar 

  • Simola O, Wiberg M, Jokela J, Wahlsten M, Sivonen K, Syrjä P (2012) Pathologic findings and toxin identification in cyanobacterial (Nodularia spumigena) intoxication in a dog. Vet Pathol 49(5):755–759. doi:10.1177/0300985811415703

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Asthana R (2014) Assessment of microcystin concentration in carp and catfish: a case study from Lakshmikund Pond, Varanasi, India. Bull Environ Contam Toxicol 92(6):687–692. doi:10.1007/s00128-014-1277-7

    Article  CAS  PubMed  Google Scholar 

  • Sinha R, Pearson LA, Davis TW, Muenchhoff J, Pratama R, Jex A, Burford MA, Neilan BA (2014) Comparative genomics of Cylindrospermopsis raciborskii strains with differential toxicities. BMC Genom. doi:10.1186/1471-2164-15-83

    Google Scholar 

  • Sipiä VO, Kankaanpää HT, Pflugmacher S, Flinkman J, Furey A, James KJ (2002) Bioaccumulation and detoxication of nodularin in tissues of flounder (Platichthys flesus), Mussels (Mytilus edulis, Dreissena polymorpha), and Clams (Macoma balthica) from the Northern Baltic Sea. Ecotoxicol Environ Saf 53(2):305–311

    Article  PubMed  CAS  Google Scholar 

  • Sipiä VO, Kankaanpaa H, Peltonen H, Vinni M, Meriluoto J (2007) Transfer of nodularin to three-spined stickleback (Gasterosteus aculeatus L.), herring (Clupea harengus L.), and salmon (Salmo salar L.) in the northern Baltic Sea. Ecotoxicol Environ Saf 66(3):421–425. doi:10.1016/j.ecoenv.2006.02.006

    Article  PubMed  CAS  Google Scholar 

  • Sivonen K (1999) Effect of light, temperature, nitrate, orthophosphate, and bacteria on growth and hepatotoxin production by Oscillatoria agradhi strains. Appl Environ Microbiol 56:2658–2666

    Google Scholar 

  • Sivonen K, Jones G (1999) Cyanobacterial toxins. In: Chorus I, Bartram J (eds) Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management. E & FN Spon, London, pp 41–111

    Google Scholar 

  • Sivonen K, Himberg K, Luukkainen R, Niemelä S, Poon G, Codd G (1989) Preliminary characterization of neurotoxic cyanobacteria blooms and strains from Finland. Toxic Assess 4:339–352

    Article  CAS  Google Scholar 

  • Sivonen K, Namikoshi M, Evans WR, Carmichael WW, Sun F, Rouhiainen L et al (1992) Isolation and characterization of a variety of microcystins from seven strains of the cyanobacterial genus Anabaena. Appl Environ Microbiol 58(8):2495–2500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith FM, Wood SA, van Ginkel R, Broady PA, Gaw S (2011) First report of saxitoxin production by a species of the freshwater benthic cyanobacterium, Scytonema Agardh. Toxicon 57(4):566–573. doi:10.1016/j.toxicon.2010.12.020

    Article  CAS  PubMed  Google Scholar 

  • Snyder LR, Cruz-Aguado R, Sadilek M, Galasko D, Shaw CA, Montine TJ (2009) Lack of cerebral BMAA in human cerebral cortex. Neurology 72:1360–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder LR, Hoggard JC, Montine TJ, Synovec RE (2010) Development and application of a comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry method for the analysis of L-β-methylamino-alanine in human tissue. J Chromatogr A 1217:4639–4647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soares RM, Yuan M, Servaites JC, Delgado A, Magalhães VF, Hilborn ED, Carmichael WW, Azevedo SM (2006) Sublethal exposure from microcystins to renal insufficiency patients in Rio de Janeiro, Brazil. Environ Toxicol 21(2):95–103

    Article  CAS  PubMed  Google Scholar 

  • Soares RM, Cagido VR, Ferraro RB, Meyer-Fernandes JR, Rocco PR, Zin WA, Azevedo SM (2007) Effects of microcystin-LR on mouse lungs. Toxicon 50(3):330–338

    Article  CAS  PubMed  Google Scholar 

  • Solstad T, Fismen L, Garberg H, Fladmark KE (2008) Identification of a novel phosphorylation site of acyl-CoA binding protein (ACBP) in nodularin-induced apoptotic hepatocytes. Exp Cell Res 314(10):2141–2149. doi:10.1016/j.yexcr.2008.03.014

    Article  CAS  PubMed  Google Scholar 

  • Solter PF, Wollenberg GK, Huang X, Chu FS, Runnegar MT (1998) Prolonged sublethal exposure to the protein phosphatase inhibitor microcystin-LR results in multiple dose-dependent hepatotoxic effects. Toxicol Sci 44(1):87–96

    Article  CAS  PubMed  Google Scholar 

  • Song KY, Lim IK, Park SC, Lee SO, Park HS, Choi YK, Hyun BH (1999) Effect of nodularin on the expression of glutathione S-transferase placental form and proliferating cell nuclear antigen in N-nitrosodiethylamine initiated hepatocarcinogenesis in the male Fischer 344 rat. Carcinogenesis 20(8):1541–1548

    Article  CAS  PubMed  Google Scholar 

  • Spencer PS, Hugon J, Ludolph A, Nunn PB, Ross SM, Roy DN, Schaumburg HH (1987) Discovery and partial characterization of primate motor-system toxins. Ciba Found Symp 126:221–238

    CAS  PubMed  Google Scholar 

  • Spencer PS, Garner CE, Palmer VS, Kisby GE (2016) Vervets and macaques: similarities and differences in their responses to l-BMAA. Neurotoxicology 56:284–286

    Article  CAS  PubMed  Google Scholar 

  • Spoof L, Berg KA, Rapala J et al (2006) First observation of cylindrospermopsin in Anabaena lapponica isolated from the boreal environment (Finland). Environ Toxicol 21(6):552–560. doi:10.1002/tox.20216

    Article  CAS  PubMed  Google Scholar 

  • Srivastava A, Ahn C-Y, Asthana RK, Lee H-G, Oh H-M (2015) Status, alert system, and prediction of cyanobacterial bloom in South Korea. Biomed Res Int 2015:584–696. doi:10.1155/2015/584696

    Google Scholar 

  • Stal LJ, Albertano P, Bergman B et al (2003) BASIC: baltic Sea cyanobacteria. An investigation of the structure and dynamics of water blooms of cyanobacteria in the Baltic Sea–responses to a changing environment. Cont Shelf Res 23(17–19):1695–1714

    Article  Google Scholar 

  • Stevens DK, Krieger RI (1991) Effect of route of exposure and repeated doses on the acute toxicity in mice of the cyanobacterial nicotinic alkaloid anatoxin-a. Toxicon 29:134–138

    Article  CAS  PubMed  Google Scholar 

  • Stewart I, Robertson IM, Webb PM, Schluter PJ, Shaw GR (2006a) Cutaneous hypersensitivity reactions to freshwater cyanobacteria–human volunteer studies. BMC Dermatol 6:1–9

    Article  Google Scholar 

  • Stewart I, Seawright AA, Schluter PJ, Shaw GR (2006b) Primary irritant and delayed-contact hypersensitivity reactions to the freshwater cyanobacterium Cylindrospermopsis raciborskii and its associated toxin cylindrospermopsin. BMC Dermatol 6:1–12

    Article  Google Scholar 

  • Stewart I, Webb PM, Schluter PJ, Fleming LE, Burns JW, Gantar M, Backe LC, Shaw GR (2006c) Epidemiology of recreational exposure to freshwater cyanobacteria- an international prospective cohort study. BMC Public Health 6:93

    Article  PubMed  PubMed Central  Google Scholar 

  • Stewart I, Webb PM, Schluter PJ, Shaw GR (2006d) Recreational and occupational field exposure to freshwater cyanobacteria: a review of anecdotal and case reports, epidemiological studies and the challenges for epidemiologic assessment. Environ Health A Global Access Science Source 5:6

    Google Scholar 

  • Stewart I, Seawright AA, Shaw GR (2008) Cyanobacterial poisoning in livestock, wild mammals and birds-an overview. Adv Exp Med Biol 619:613–637. doi:10.1007/978-0-387-75865-7_28

    Article  CAS  PubMed  Google Scholar 

  • Stewart I, Eaglesham GK, McGregor GB, Chong R, Seawright AA, Wickramasinghe WA, Sadler R, Hunt L, Graham G (2012) First report of a toxic Nodularia spumigena (Nostocales/Cyanobacteria) bloom in sub-tropical Australia. II. Bioaccumulation of nodularin in isolated populations of mullet (Mugilidae). Int J Environ Res Public Health 9(7):2412–2443. doi:10.3390/ijerph9072412

    Article  PubMed  PubMed Central  Google Scholar 

  • Stolte W, Karlsson C, Carlsson P, Granéli E (2002) Modeling the increase of nodularin content in Baltic Sea Nodularia spumigena during stationary phase in phosphorus-limited batch cultures. FEMS Microbiol Ecol 41:211–220

    Article  CAS  PubMed  Google Scholar 

  • Stoner RD, Adams WH, Slatkin DN, Siegelman HW (1989) The effects of single L-amino acid substitutions on the lethal potencies of the microcystins. Toxicon 27(7):825–828

    Article  CAS  PubMed  Google Scholar 

  • Stotts RR, Namikoshi M, Haschek WM, Rinehart KL, Carmichael WW, Dahlem AM, Beasley VR (1993) Structural modifications imparting reduced toxicity in microcystins from Microcystis spp. Toxicon 31(6):783–789

    Article  CAS  PubMed  Google Scholar 

  • Štraser A, Filipič M, Žegura B (2013a) Cylindrospermopsin induced transcriptional responses in human hepatoma HepG2 cells. Toxicol In Vitro 27(6):1809–1819. doi:10.1016/j.tiv.2013.05.012

    Article  PubMed  CAS  Google Scholar 

  • Štraser A, Filipič M, Gorenc I, Žegura B (2013b) The influence of cylindrospermopsin on oxidative DNA damage and apoptosis induction in HepG2 cells. Chemosphere 92(1):24–30. doi:10.1016/j.chemosphere.2013.03.023

    Article  PubMed  CAS  Google Scholar 

  • Štraser A, Filipič M, Novak M, Žegura B (2013c) Double strand breaks and cell-cycle arrest induced by the cyanobacterial toxin cylindrospermopsin in HepG2 cells. Mar Drugs 11(8):3077–3090. doi:10.3390/md11083077

    Article  PubMed Central  CAS  Google Scholar 

  • Stucken K, Murillo AA, Soto-Liebe K, Fuentes-Valdes JJ, Mendez MA, Vasquez M (2009) Toxicity phenotype does not correlate with phylogeny of Cylindrospermopsis raciborskii strains. Syst Appl Microbiol 32(1):37–48

    Article  CAS  PubMed  Google Scholar 

  • Stucken K, John U, Cembella A, Soto-Liebe K, Vásquez M (2014) Impact of nitrogen sources on gene expression and toxin production in the diazotroph Cylindrospermopsis raciborskii CS-505 and non-diazotroph Raphidiopsis brookii D9. Toxins 6:2932–2947

    Article  CAS  Google Scholar 

  • Stuken A, Jakobsen KS (2010) The cylindrospermopsin gene cluster of Planktothrix sp. strain 10E6: organization and recombination. Microbiol 156:2438–2451

    Article  CAS  Google Scholar 

  • Stuken A, Campbell RJ, Quesada A, Sukenik A, Dadheech PK, Wiedner C (2009) Genetic and morphologic characterization of four putative cylindrospermopsin producing species of the cyanobacterial genera Anabaena and Planktothrix. J Plankton Res 31(5):465–480

    Article  CAS  Google Scholar 

  • Stuken A, Orr RJS, Kellmann R, Murray SA, Neilan BA, Jakobsen KS (2011) Discovery of nuclear-encoded genes for the neurotoxin saxitoxin in dinoflagellates. PLoS One. doi:10.1371/journal.pone.0020096

    PubMed  PubMed Central  Google Scholar 

  • Su Z, Sheets M, Ishida H, Li FH, Barry WH (2004) Saxitoxin blocks L-type ICa. J Pharmacol Exp Ther 308:324–329

    Article  CAS  PubMed  Google Scholar 

  • Suda S, Watanabe MM, Otsuka S et al (2002) Taxonomic revision of water-bloom-forming species of oscillatorioid cyanobacteria. Int J Syst Evol Microbiol 52(5):1577–1595. doi:10.1099/ijs.0.01834-0

    CAS  PubMed  Google Scholar 

  • Sukenik A, Reisner M, Carmeli S, Werman M (2006) Oral toxicity of the cyanobacterial toxin cylindrospermopsin in mice: long-term exposure to low doses. Environ Toxicol 21:575582

    Article  CAS  Google Scholar 

  • Sulcius S, Pilkaityte R, Mazur-Marzec H et al (2015) Increased risk of exposure to microcystins in the scum of the filamentous cyanobacterium Planktothrix flos-aquae accumulated on the western shoreline of the Curonian Lagoon. Mar Pollut Bull 99(1–2):264–270. doi:10.1016/j.marpolbul.2015.07.057

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Zheng Q, Sun YT, Huang P, Guo ZL, Xu LH (2014) Microcystin-LR induces protein phosphatase 2A alteration in a human liver cell line. Environ Toxicol 29(11):1236–1244. doi:10.1002/tox.21854

    CAS  PubMed  Google Scholar 

  • Sun Y, Liu JH, Huang P, Guo ZL, Xu LH (2015) Alterations of tau and VASP during microcystin-LR-induced cytoskeletal reorganization in a human liver cell line. Environ Toxicol 30(1):92–100. doi:10.1002/tox.21898

    Article  CAS  PubMed  Google Scholar 

  • Svirčev Z, Krstic S, Miladinov-Mikov M, Baltić V, Vidović M (2009) Freshwater cyanobacterial blooms and primary liver cancer epidemiological studies in Serbia. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27(1):36–55. doi:10.1080/10590500802668016

    Article  PubMed  CAS  Google Scholar 

  • Svirčev Z, Drobac D, Tokodi N, Vidović M, Simeunovic J, Miladinov-Mikov M, Baltić V (2013) Epidemiology of Primary Liver Cancer in Serbia and possible connection with cyanobacterial blooms. J Environ Sciand Health Part C Environ Carcinogen Ecotoxicol Rev 31:181–200

    Article  CAS  Google Scholar 

  • Szlag DC, Sinclair JL, Southwell B, Westrick JA (2015) Cyanobacteria and cyanotoxins occurrence and removal from five high-risk conventional treatment drinking water plants. Toxins 7(6):2198–2220. doi:10.3390/toxins7062198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi T, Umehara A, Tsutsumi H (2014) Diffusion of microcystins (cyanobacteria hepatotoxins) from the reservoir of Isahaya Bay, Japan, into the marine and surrounding ecosystems as a result of large-scale drainage. Mar Pollut Bull 89(1–2):250–258. doi:10.1016/j.marpolbul.2014.09.052

    Article  CAS  PubMed  Google Scholar 

  • Takenaka S (2001) Covalent glutathione conjugation to cyanobacterial hepatotoxin microcystin LR by F344 rat cytosolic and microsomal glutathione S-transferases. Environ Toxicol Pharmacol 9(4):135–139

    Article  CAS  PubMed  Google Scholar 

  • Takumi S, Komatsu M, Furukawa T, Ikeda R, Sumizawa T, Akenaga H, Maeda Y et al (2010) p53 Plays an important role in cell fate determination after exposure to microcystin-LR. Environ Health Perspect 118(9):1292–1298. doi:10.1289/ehp.1001899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takumi S, Ikema S, Hanyu T, Shima Y, Kurimoto T, Shiozaki K, Sugiyama Y et al (2015) Naringin attenuates the cytotoxicity of hepatotoxin microcystin-LR by the curious mechanisms to OATP1B1- and OATP1B3-expressing cells. Environ Toxicol Pharmacol 39(2):974–981. doi:10.1016/j.etap.2015.02.021

    Article  CAS  PubMed  Google Scholar 

  • Teixera MGLC, Costa MNC, Carvalho VLP, Pereira MS, Hage E (1993) Gastroenteritis epidemic in the area of the Itaparica Dam, Bahia, Brazil. Bull Pan Am Health Organ 27:244–253

    Google Scholar 

  • Teneva I, Klaczkowska D, Batsalova T, Kostova Z, Dzhambazov B (2016) Influence of captopril on the cellular uptake and toxic potential of microcystin-LR in non-hepatic adhesive cell lines. Toxicon 111:50–57. doi:10.1016/j.toxicon.2015.12.006

    Article  CAS  PubMed  Google Scholar 

  • Terao K, Ohmori S, Igarashi K, Ohtani I, Watanabe MF, Harada KI, Ito E, Watanabe M (1994) Electron-microscopic studies on experimental poisoning in mice induced by cylindrospermopsin isolated from blue-green-alga Umezakia natans. Toxicon 32(7):833–843

    Article  CAS  PubMed  Google Scholar 

  • Testai E, Buratti FM, Funari E, Manganelli M, Vichi S, Arnich A, Biré R et al (2016a) Review and analysis of occurrence, exposure and toxicity of cyanobacteria toxins in food. EFSA Supporting Publications 13(2):998E. doi:10.2903/sp.efsa.2016.EN-998

    Google Scholar 

  • Testai E, Scardala S, Vichi S, Buratti FM, Funari E (2016b) Risk to human health associated with the environmental occurrence of cyanobacterial neurotoxic alkaloids anatoxins and saxitoxins. Crit Rev Toxicol. doi:10.3109/10408444.2015.1137865

    PubMed  Google Scholar 

  • Thomas AD, Saker ML, Norton JH, Olsen RD (1998) Cyanobacterium Cylindrospermopsis raciborskii as a probable cause of death in cattle in northern Queensland. Aust Vet J 76(9):592–594

    Article  CAS  PubMed  Google Scholar 

  • Tillett D, Dittmann E, Erhard M, von Döhren H, Börner T, Neilan BA (2000) Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. Chem Biol 7(10):753–764

    Article  CAS  PubMed  Google Scholar 

  • Tomitani A, Knoll AH, Cavanaugh CM, Ohno T (2006) The evolutionary diversification of cyanobacteria: molecular–phylogenetic and paleontological perspectives. Proc Natl Acad Sci USA 103(14):5442–5447. doi:10.1073/pnas.0600999103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tonk L, van de Waal DB, Slot P, Huisman J, Matthijs HCP, Visser PM (2008) Amino acid availability determines the ratio of microcystin variants in the cyanobacterium Planktothrix agardhii. FEMS Microbiol Ecol 65:383–390

    Article  CAS  PubMed  Google Scholar 

  • Torokne A, Palovics A, Banckine M (2001) Allergenic (sensitization, skin and eye irritation) effects of freshwater cyanobacteria: experimental evidence. Environ Toxicol 32:512–516

    Article  Google Scholar 

  • Trainer VL, Hardy FJ (2015) Integrative monitoring of marine and freshwater harmful algae in washington state for public health protection. Toxins 7:1206–1234. doi:10.3390/toxins7041206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trevino-Garrison I, DeMent J, Ahmed FS, Haines-Lieber P, Langer T, Ménager H, Neff J et al (2015) Human illnesses and animal deaths associated with freshwater harmful algal blooms—kansas. Toxins 7(2):353–366. doi:10.3390/toxins7020353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trout-Haney JV, Wood ZT, Cottingham KL (2016) Presence of the cyanotoxin microcystin in Arctic Lakes of Southwestern Greenland. Toxins. doi:10.3390/toxins8090256

    PubMed  PubMed Central  Google Scholar 

  • Tsuchiya S, Cho Y, Konoki K, Nagasawa K, Oshima Y, Yotsu-Yamashita M (2016) Biosynthetic route towards saxitoxin and shunt pathway. Sci Rep 6:20340. doi:10.1038/srep20340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner PC, Gammie AJ, Hollinrake K, Codd GA (1990) Pneumonia associated with cyanobacteria. British Med J 300:1440–1441

    Article  CAS  Google Scholar 

  • Ueno Y, Nagata S, Tsutsumi T, Hasegawa A, Watanabe MF, Park HD, Chen GC, Yu SH (1996) Detection of microcystins, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay. Carcinogenesis 17:1317–1321

    Article  CAS  PubMed  Google Scholar 

  • Ueno Y, Makita Y, Nagata S, Tsutsumi T, Yoshida F, Tamura S, Sekijima M et al (1999) No chronic oral toxicity of a low dose of microcystin-LR, a cyanobacterial hepatotoxin, in female BALB/c mice. EnvironToxicol 14(1):45–55

    CAS  Google Scholar 

  • Ufelmann H, Schrenk D (2015) Nodularin-triggered apoptosis and hyperphosphorylation of signaling proteins in cultured rat hepatocytes. Toxicol In Vitro 29(1):16–26. doi:10.1016/j.tiv.2014.08.008

    Article  CAS  PubMed  Google Scholar 

  • Ufelmann H, Krüger T, Luckas B, Schrenk D (2012) Human and rat hepatocyte toxicity and protein phosphatase 1 and 2A inhibitory activity of naturally occurring desmethyl-microcystins and nodularins. Toxicology 293(1–3):59–67. doi:10.1016/j.tox.2011.12.011

    Article  CAS  PubMed  Google Scholar 

  • US EPA (United States Environmental Protection Agency) (2015a) Drinking Water Health Advisory for the Cyanobacterial Microcystin Toxin, EPA-820R15100. 75 pages. http://www2.epa.gov/sites/production/files/2015-06/documents/microcystins-report-2015.pdf. Accessed 26 October 2016

  • US EPA (United States Environmental Protection Agency) (2015b) Drinking Water Health Advisory for the Cyanobacterial Toxin Cylindrospermopsin, EPA- 820R15101. 52 pages. https://www.epa.gov/sites/production/files/2015-06/documents/cylindrospermopsin-report-2015.pdf. Accessed 26 October 2016

  • US EPA (United States Environmental Protection Agency) (2015c) Health effects support document for the cyanobacterial toxin anatoxin-a. EPA 820R15104, Washington, DC, p 58. https://www.epa.gov/sites/production/files/2015-06/documents/anatoxin-a-report-2015.pdf. Accessed 26 Oct 2016

  • Valentine WM, Schaeffer DJ, Beasley VR (1991) Electromyographic assessment of the neuromuscular blockade produced in vivo by anatoxin-a in the rat. Toxicon 29:347–357

    Article  CAS  PubMed  Google Scholar 

  • Van de Waal DB, Ferreruela G, Tonk L, Van Donk E, Huisman J, Visser PM, Matthijs HCP (2010) Pulsed nitrogen supply induces dynamic changes in the amino acid composition and microcystin production of the harmful cyanobacterium Planktothrix agardhii. FEMS Microbiol Ecol 74:430–438

    Article  PubMed  CAS  Google Scholar 

  • Van de Waal DB, Verspagen JMH, Finke JF, Vournazou V, Immers AK, Kardinaal WEA, Tonk L et al (2011) Reversal in competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising CO2. ISME J 5:1438–1450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Merwe D, Sebbag L, Nietfeld JC, Aubel MT, Foss A, Carney E (2012) Investigation of a Microcystis aeruginosa cyanobacterial freshwater harmful algal bloom associated with acute microcystin toxicosis in a dog. J Vet Diagn Invest 24(4):679–687. doi:10.1177/1040638712445768

    Article  PubMed  Google Scholar 

  • Vesterkvist PSM, Misiorek JO, Spoof LEM, Toivola DM, Meriluoto JAO (2012) Comparative cellular toxicity of hydrophilic and hydrophobic microcystins on Caco-2 cells. Toxins 4:1008–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vichi S, Lavorini P, Funari E, Scardala S, Testai E (2012) Contamination by Microcystis and microcystins of blue-green algae food supplements (BGAS) on the Italian market and possible risk for the exposed population. Food Chem Toxicol 50:4493–4499

    Article  CAS  PubMed  Google Scholar 

  • Vichi S, Buratti FM, Testai E (2016) Microcystins: toxicological profile. In: Gopalakrishnakone P et al (eds) Marine and freshwater toxins. Toxinology, Springer Science + Business Media Dordrecht, pp 219–238

    Chapter  Google Scholar 

  • Vijayakumar S, Menakha M (2015) Pharmaceutical applications of cyanobacteria: a review. J Acute Med 5(1):15–23. doi:10.1016/j.jacme.2015.02.004

    Article  Google Scholar 

  • Voß B, Bolhuis H, Fewer DP et al (2013) Insights into the physiology and ecology of the brackish-water-adapted cyanobacterium Nodularia spumigena CCY9414 based on a genome-transcriptome analysis. PLoS ONE 8(3):e60224. doi:10.1371/journal.pone.0060224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, Salata JJ, Bennett PB (2003) Saxitoxin is a gating modifier of hERG KC channels. J Gen Physiol 121:583–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Xie P, Chen J, Liang G (2008) Distribution of microcystins in various organs (heart, liver, intestine, gonad, brain, kidney and lung) of Wistar rat via intravenous injection. Toxicon 52(6):721–727

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Ying F, Chen Y, Han X (2012) Microcystin (-LR) affects hormones level of male mice by damaging hypothalamic-pituitary system. Toxicon 59(2):205–214

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Chen Y, Zuo X, Ding N, Zeng H, Zou X, Han X (2013) Microcystin (-LR) induced testicular cell apoptosis via up-regulating apoptosis-related genes in vivo. Food Chem Toxicol 60:309–317. doi:10.1016/j.fct.2013.07.039

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Huang P, Liu Y, Du H, Wang X, Wang M, Wang Y et al (2015) Role of nitric oxide in the genotoxic response to chronic microcystin-LR exposure in human-hamster hybrid cells. J Environ Sci (China) 29:210–218. doi:10.1016/j.jes.2014.07.036

    Article  Google Scholar 

  • Wang C, Gu S, Yin X, Yuan M, Xiang Z, Li Z, Cao H et al (2016) The toxic effects of microcystin-LR on mouse lungs and alveolar type II epithelial cells. Toxicon 115:81–88. doi:10.1016/j.toxicon.2016.03.007

    Article  CAS  PubMed  Google Scholar 

  • Weng D, Lu Y, Wei Y, Liu Y, Shen P (2007) The role of ROS in microcystin-LR-induced hepatocyte apoptosis and liver injury in mice. Toxicology 232:15–23

    Article  CAS  PubMed  Google Scholar 

  • Whitton BA (2012) Ecology of cyanobacteria II. Their Diversity in Space and Time. Springer. Dordrecht, Heidelberg, New York, London, p 760

    Book  Google Scholar 

  • WHO (World Health Organization) (2003a) Cyanobacterial toxins: Microcystin-LR in Drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality. WHO/SDE/WSH/03.04/57. 18 pages. http://www.who.int/water_sanitation_health/dwq/chemicals/cyanobactoxins.pdf?ua=1

  • WHO (World Health Organization) (2003b) Guidelines for safe recreational water environments—Volume 1: coastal and fresh waters. Geneva: World Health Organization, 253 pages. http://www.who.int/water_sanitation_health/bathing/srwe1/en

  • WHO (World Health Organization) (2004) Guidelines for Drinking-water Quality. Third edition http://www.who.int/water_sanitation_health/dwq/GDWQ2004web.pdf?ua=1

  • Williams DE, Dawe SC, Kent ML, Andersen RJ, Craig M, Holmes CFB (1997) Bioaccumulation and clearance of microcystins from salt water, mussels, Mytilus edulis, and in vivo evidence for covalently bound microcystins in mussel tissues. Toxicon 35(11):1617–1625

    Article  CAS  PubMed  Google Scholar 

  • Willis A, Adams MP, Chuang AW, Orr PT, O’Brien KR, Burford MA (2015) Constitutive toxin production under various nitrogen and phosphorus regimes of three ecotypes of Cylindrospermopsis raciborskii (Woloszyriska) Seenayya et Subba Raju). Harmful Algae 47:27–34. doi:10.1016/j.hal.2015.05.011

    Article  CAS  Google Scholar 

  • Willis A, Chuang AW, Woodhouse JN, Neilan BA, Burford MA (2016) Intraspecific variation in growth, morphology and toxin quotas for the cyanobacterium, Cylindrospermopsis raciborskii. Toxicon 119:307–310. doi:10.1016/j.toxicon.2016.07.005

    Article  CAS  PubMed  Google Scholar 

  • Wimmer KM, Strangman W K, and Wright J LC (2014) 7-Deoxy-desulfocylindrospermopsin and 7-deoxy-desulfo-12-acetylcylindrospermopsin: Two new cylindrospermopsin analogs isolated from a Thai strain of Cylindrospermopsis raciborskii. Harmful Algae 37: 203–206

    Article  CAS  Google Scholar 

  • Wood SA, Selwood AI, Rueckert A et al (2007) First report of homoanatoxin-a and associated dog neurotoxicosis in New Zealand. Toxicon 50(2):292–301

    Article  CAS  PubMed  Google Scholar 

  • Wood SA, Heath MW, Holland PT, Munday R, McGregor GB, Ryan KG (2010a) Identification of a benthic microcystin-producing filamentous cyanobacterium (Oscillatoriales) associated with a dog poisoning in New Zealand. Toxicon 55(4):897–903. doi:10.1016/j.toxicon.2009.12.019

    Article  CAS  PubMed  Google Scholar 

  • Wood SA, Heath MW, Kuhajek J, Ryan KG (2010b) Fine-scale spatial variability in anatoxin-a and homoanatoxin-a concentrations in benthic cyanobacterial mats: implication for monitoring and management. J Appl Microbiol 109:2011–2018

    Article  CAS  PubMed  Google Scholar 

  • Wood SA, Rueckert A, Hamilton DP, Cary SC, Dietrich DR (2011) Switching toxin production on and off: intermittent microcystin synthesis in a Microcystis bloom. Environ Microbiol Rep 3(1):118–124. doi:10.1111/j.1758-2229.2010.00196.x

    Article  CAS  PubMed  Google Scholar 

  • Wood SA, Dietrich DR, Cary SC, Hamilton DP (2012a) Increasing Microcystis cell density enhances microcystin synthesis: a mesocosm study. Inland Waters 2:17–22. doi:10.5268/IW-2.1.424

    Article  CAS  Google Scholar 

  • Wood SA, Smith FMJ, Heath MW, Palfroy T, Gaw S, Young RG et al (2012b) Within-mat variability in anatoxin-a and homoanatoxin-a production among benthic phormidium (Cyanobacteria) strains. Toxins 4(10):900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood S, Wagenhoff A, Young R (2014) The effect of flow and nutrients on Phormidium abundance and toxin production in rivers in the Manawatu-Whanganui region Cawthron Report. Prepared for Horizons Regional Council, Nelson, New Zealand

    Google Scholar 

  • Wormer L, Cirés S, Carrasco D, Quesada A (2008) Cylindrospermopsin is not degraded by co-occurring natural bacterial communities during a 40-day study. Harmful Algae 7(2):206–213

    Article  Google Scholar 

  • Wormer L, Huerta-Fontela M, Cires S, Carrasco D, Quesada A (2010) Natural photodegradation of the cyanobacterial toxins microcystin and cylindrospermopsin. Environ Sci Technol 44(8):3002–3007. doi:10.1021/es9036012

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Xie P, Chen J, Zhang D, Liang G (2010) Development and validation of a liquid chromatography–tandem mass spectrometry assay for the simultaneous quantitation of microcystin-RR and its metabolites in fish liver. J Chromatogr A 1217:1455–1462

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Shao S, Zhou F, Wen S, Chen F, Han X (2014) Reproductive toxicity on female mice induced by microcystin-LR. Environ l Toxicol Pharmacol 37(1):1–6

    Article  CAS  Google Scholar 

  • Wu J, Yuan M, Song Y, Sun F, Han X (2015) MC-LR exposure leads to subfertility of female mice and induces oxidative stress in granulosa cells. Toxins (Basel) 7(12):5212–5223. doi:10.3390/toxins7124872

    Article  CAS  Google Scholar 

  • Xiao FG, Zhao XL, Tang J, Gu XH, Zhang JP, Niu WM (2009) Necessity of screening water chestnuts for microcystins after cyanobacterial blooms break out. Arch Environ Contam Toxicol 57(2):256–263. doi:10.1007/s00244-008-9275-6

    Article  CAS  PubMed  Google Scholar 

  • Xing Y, Xu Y, Chen Y, Jeffrey PD, Chao Y, Lin Z, Li Z, Strack S, Stock JB, Shi Y (2006) Structure of protein phosphatase 2A core enzyme bound to tumor- inducing toxins. Cell 127:341–353

    Article  CAS  PubMed  Google Scholar 

  • Xing ML, Wang XF, Xu LH (2008) Alteration of proteins expression in apoptotic FL cells induced by MCLR. Environ Toxicol 23:451–458

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Li Z-K, Qiu B-S, Juneau P (2013a) Different responses to high light stress of toxic and non-toxic Microcystis aeruginosa acclimated under two light intensities and zinc concentrations. Toxicol Environ Chem 95(7):1145–1156. doi:10.1080/02772248.2013.849347

    Article  CAS  Google Scholar 

  • Xu P, Zhang XX, Miao C, Fu Z, Li Z, Zhang G, Zheng M et al (2013b) Promotion of melanoma cell invasion and tumor metastasis by microcystin-LR via phosphatidylinositol 3-kinase/AKT pathway. Environ Sci Technol 47(15):8801–8808. doi:10.1021/es4007228

    CAS  PubMed  Google Scholar 

  • Xue L, Li J, Li Y, Chu C, Xie G, Qin J, Yang M et al (2015) N-acetylcysteine protects Chinese Hamster ovary cells from oxidative injury and apoptosis induced by microcystin-LR. Int J Clin Exp Med 8(4):4911–4921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Kong F (2015) UV-B exposure affects the biosynthesis of microcystin in toxic Microcystis aeruginosa cells and its degradation in the extracellular space. Toxins 7:4238–4252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasumoto T, Nakajima I, Bagnis R, Adachi R (1977) Finding of a dinoflagellate as a likely culprit of ciguatera. Bull Jpn Soc Sci Fish 43:1021–1026

    Article  Google Scholar 

  • Yea SS, Kim HM, Jeon YJ, Oh HM, Jeong HG, Yang KH (2000) Suppression of IL-2 and IL-4 gene expression by nodularin through the reduced NF-AT binding activity. Toxicol Lett 114(1–3):215–224

    Article  CAS  PubMed  Google Scholar 

  • Yen HK, Lin TF, Liao PC (2011) Simultaneous detection of nine cyanotoxins in drinking water using dual solid-phase extraction and liquid chromatography-mass spectrometry. Toxicon 58(2):209–218. doi:10.1016/j.toxicon.2011.06.003

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Makita Y, Nagata S, Tsutsumi T, Yoshida F, Sekijima M, Tamura S, Ueno Y (1997) Acute oral toxicity of microcystin-LR, a cyanobacterial hepatotoxin, in mice. Nat Toxins 5(3):91–95

    Article  CAS  PubMed  Google Scholar 

  • Young FM, Micklem J, Humpage AR (2008) Effects of blue-green algal toxin cylindrospermopsin (CYN) on human granulosa cells in vitro. Reprod Toxicol 25(3):374–380. doi:10.1016/j.reprotox.2008.02.006

    Article  CAS  PubMed  Google Scholar 

  • Young FM, Zebian D, Froscio S, Humpage A (2012) Cylindrospermopsin, a blue-green algal toxin, inhibited human luteinised granulosa cell protein synthesis in vitro. Toxicol In Vitro 26(5):656–662. doi:10.1016/j.tiv.2012.03.001

    Article  CAS  PubMed  Google Scholar 

  • Yu G, Zhu M, Li R, Tan W, Jiang Y, Song G (2014) Variation of Microcystis and microcystins coupling nitrogen and phosphorus nutrients in Lake Erhai, a drinking-water source in Southwest Plateau, China [electronic resource]. Environ Sci Pollut Res Int 21(16):9887–9898. doi:10.1007/s11356-014-2937-1

    Article  CAS  PubMed  Google Scholar 

  • Žegura B, Filipič M, Šuput D, Lah T, Sedmak B (2002) In vitro genotoxicity of microcystin-RR on primary cultured rat hepatocites and Hep G2 cell line detected by Comet assay. Radiol Oncol 36(2):159–161

    Google Scholar 

  • Žegura B, Lah TT, Filipič M (2004) The role of reactive oxygen species in microcystin-LR-induced DNA damage. Toxicology 200(1):59–68

    Article  PubMed  CAS  Google Scholar 

  • Žegura B, Volčič M, Lah TT, Filipič M (2008) Different sensitivities of human colon adenocarcinoma (CaCo-2), astrocytoma (IPDDC-A2) and lymphoblastoid (NCNC) cell lines to microcystin-LR induced reactive oxygen species and DNA damage. Toxicon 52(3):518–525

    Article  PubMed  CAS  Google Scholar 

  • Žegura B, Štraser A, Filipic M (2011) Genotoxicity and potential carcinogenicity of cyanobacterial toxins. A review. Mut Res 727:16–41

    Article  CAS  Google Scholar 

  • Zeller P, Quenault H, Huguet A, Blanchard Y, Fessard V (2012) Transcriptomic comparison of cyanotoxin variants in a human intestinal model revealed major differences in oxidative stress response: effects of MC-RR and MC-LR on Caco-2 cells. Ecotoxicol Environ Saf 82:13–21. doi:10.1016/j.ecoenv.2012.05.001

    Article  CAS  PubMed  Google Scholar 

  • Zeng J, Tu WW, Lazar L, Chen DN, Zhao JS, Xu J (2015) Hyperphosphorylation of microfilament-associated proteins is involved in microcystin-LR-induced toxicity in HL7702 cells. Environ Toxicol 30(8):981–988. doi:10.1002/tox.21974

    Article  CAS  PubMed  Google Scholar 

  • Zervou SK, Christophoridis C, Kaloudis T, Triantis TM, Hiskia A (2016) New SPE-LC-MS/MS method for simultaneous determination of multi-class cyanobacterial and algal toxins. J Hazard Mater. doi:10.1016/j.jhazmat.2016.07.020

    PubMed  Google Scholar 

  • Zhan L, Sakamoto H, Sakuraba M, Wu D-S, Zhang L-S, Suzuki T, Hayashi M, Honma M (2004) Genotoxicity of microcystin-LR in human lymphoblastoid TK6 cells. Mut Res 557:1–6

    Article  CAS  Google Scholar 

  • Zhang D, Chen J, Xie P (2010) Effects of temperature on the stability of microcystins in muscle of fish and its consequences for food safety [electronic resource]. Bull Environ Contam Toxicol 84(2):202–207. doi:10.1007/s00128-009-9910-6

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Chen J, Xia Z (2013) Microcystin-LR exhibits immunomodulatory role in mouse primary hepatocytes through activation of the NF-κB and MAPK signaling pathways. Toxicol Sci 136(1):86–96. doi:10.1093/toxsci/kft180

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Liu Y, Li X (2015) Alteration in the expression of cytochrome P450 s (CYP1A1, CYP2E1, and CYP3A11) in the liver of mouse induced by microcystin-LR. Toxins (Basel) 7(4):1102–1115. doi:10.3390/toxins7041102

    Article  CAS  Google Scholar 

  • Zhao Y, Xie P, Fan H (2012) Genomic profiling of microRNAs and proteomics reveals an early molecular alteration associated with tumorigenesis induced by MC-LR in mice. Environ Sci Technol 46(1):34–41. doi:10.1021/es201514h

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Li G, Chen J (2015a) A proteomic analysis of prenatal transfer of microcystin-LR induced neurotoxicity in rat offspring. J Proteomics 114:197–213. doi:10.1016/j.jprot.2014.11.015

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Xue Q, Su X, Xie L, Yan Y, Steinman AD (2015b) Microcystin-LR induced thyroid dysfunction and metabolic disorders in mice. Toxicology 328:135–141

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Xie P, Chen J, Liu L, Fan H (2016) A proteomic study on liver impairment in rat pups induced by maternal microcystin-LR exposure. Environ Pollut 212:197–207. doi:10.1016/j.envpol.2015.12.055

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Yu H, Chen K (2002) Relationship between microcystin in drinking water and colorectal cancer. Biomed Environ Sci 15(2):166–171

    PubMed  Google Scholar 

  • Zhou Y, Yuan J, Wu J, Han X (2012) The toxic effects of microcystin-LR on rat spermatogonia in vitro. Toxicol Lett 212(1):48–56. doi:10.1016/j.toxlet.2012.05.001

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Zhang X, Xie P, Liang H, Zhang X (2013) The suppression of hematopoiesis function in Balb/c mice induced by prolonged exposure of microcystin-LR. Toxicol Lett 219(2):194–201

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Tu WW, Xu J (2015) Mechanisms of microcystin-LR-induced cytoskeletal disruption in animal cells. Toxicon 101:92–100. doi:10.1016/j.toxicon.2015.05.005

    Article  CAS  PubMed  Google Scholar 

  • Zurawell RW, Chen H, Burke JM, Prepas EE (2005) Hepatotoxic cyanobacteria: a review of the biological importance of microcystins in freshwater environments. J Toxicol Environ Health Part B 8(1):1–37. doi:10.1080/10937400590889412

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuela Testai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buratti, F.M., Manganelli, M., Vichi, S. et al. Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch Toxicol 91, 1049–1130 (2017). https://doi.org/10.1007/s00204-016-1913-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1913-6

Keywords

Navigation