Skip to main content
Log in

A review of thermoregulation and physiological performance in reptiles: what is the role of phenotypic flexibility?

  • Review
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Biological functions are dependent on the temperature of the organism. Animals may respond to fluctuation in the thermal environment by regulating their body temperature and by modifying physiological and biochemical rates. Phenotypic flexibility (reversible phenotypic plasticity, acclimation, or acclimatisation) in rate functions occurs in all major taxonomic groups and may be considered as an ancestral condition. Within the Reptilia, representatives from all major groups show phenotypic flexibility in response to long-term or chronic changes in the thermal environment. Acclimation or acclimatisation in reptiles are most commonly assessed by measuring whole animal responses such as oxygen consumption, but whole animal responses are comprised of variation in individual traits such as enzyme activities, hormone expression, and cardiovascular functions. The challenge now lies in connecting the changes in the components to the functioning of the whole animal and its fitness. Experimental designs in research on reptilian thermal physiology should incorporate the capacity for reversible phenotypic plasticity as a null-hypothesis, because the significance of differential body temperature–performance relationships (thermal reaction norms) between individuals, populations, or species cannot be assessed without testing that null-hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Sadoon MK, Spellerberg IF (1985) Comparison of thermal acclimation effects on the metabolism of Chalcides ocellatus (desert lizard) and Lacerta vivipara (cool-temperate lizard). Comp Biochem Physiol 81A:939–943

    Article  CAS  Google Scholar 

  • Angilletta MJ, Niewiarowski PH, Navas CA (2002) The evolution of thermal physiology in ectotherms. J Therm Biol 27:249–268

    Article  Google Scholar 

  • Bailey DM, Johnston IA (2005) Temperature acclimatisation of swimming performance in the European queen scallop. J Therm Biol 30:119–124

    Article  Google Scholar 

  • Bale JS (2002) Insects and low temperatures: from molecular biology to distributions and abundance. Phil Trans R Soc Lond B 357:849–861

    Article  CAS  Google Scholar 

  • Bennett AF (1990) Thermal dependence of locomotor capacity. Am J Physiol 250:R253–R258

    Google Scholar 

  • Bennett AF (2004) Thermoregulation in African chameleons. Int Congr Ser 1275:234–241

    Article  Google Scholar 

  • Bennett AF, Dawson WR (1976) Metabolism. In: Gans C, Dawson WR (eds) Biology of the reptilia, vol 5. Academic, New York, pp 127–223

  • Birkedal R, Gesser H (2004) Effects of hibernation on mitochondrial regulation and metabolic capacities in myocardium of painted turtles (Chrysemys picta). Comp Biochem Physiol A 139:285–291

    Article  CAS  Google Scholar 

  • Blem CR, Blem KL (1990) Metabolic acclimation in three species of sympatric, semi-aquatic snakes. Comp Biochem Physiol 97A:259–264

    Article  Google Scholar 

  • Bouchard P, Guderley H (2003) Time course of the response of mitochondria from oxidative muscle during thermal acclimation of rainbow trout, Onchorhynchus mykiss. J Exp Biol 206:3455–3465

    Article  PubMed  CAS  Google Scholar 

  • Bowler K (2005) Acclimation, heat shock and hardening. J Therm Biol 30:125–130

    Article  Google Scholar 

  • Buckley BA, Hofman GE (2002) Thermal acclimation changes DNA-binding activity of heat shock factor 1 (HSF1) in the goby Gillichthys mirabilis: implications for plasticity in the heat-shock response in natural populations. J Exp Biol 205:3231–3240

    PubMed  CAS  Google Scholar 

  • Case TJ (1976) Seasonal aspects of thermoregulatory behavior in the Chuckawalla, Sauromalus obesus (Reptilia, Lacertilia, Iguanidae). J Herpetol 10:85–95

    Article  Google Scholar 

  • Christian KA, Tracy CR, Porter WP (1983) Seasonal shifts in body temperature and use of microhabitats by Galapagos land iguanas (Conolophus pallidus). Ecology 64:463–468

    Article  Google Scholar 

  • Christian KA, Green B, Bedford G, Newgrain K (1996) Seasonal metabolism of a small, arboreal monitor lizard, Varanus scalaris, in tropical Australia. J Zool Lond 240:383–396

    Google Scholar 

  • Christian KA, Bedford GS, Schultz TJ (1999) Energetic consequences of metabolic depression in tropical and temperate-zone lizards. Aust J Zool 47:133–141

    Article  Google Scholar 

  • Clarke A (2003) Costs and consequences of evolutionary temperature adaptation. Trends Ecol Evol 18:573–581

    Article  Google Scholar 

  • Cowles RB, Bogert CM (1944) A preliminary study of the thermal requirements of desert reptiles. Bull Am Mus Nat Hist 83:265–296

    Google Scholar 

  • Crawford DL, Pierce VA, Segal JA (1999) Evolutionary physiology of closely related taxa: analyses of enzyme expression. Am Zool 39:389–399

    CAS  Google Scholar 

  • Downes S, Shine R (1998) Heat, safety pr solitude? Using habitat selection experiments to identify a lizard’s priorities. Anim Behav 55:1387–1396

    Article  PubMed  Google Scholar 

  • Drouin P, Prévost D, Antoun H (2000) Physiological adaptation to low temperature of strains of Rhizobium leguminosarum bv. viciae associated with Lathyrus spp. FEMS Microbiol Ecol 32:111–120

    Article  PubMed  CAS  Google Scholar 

  • Durairaj G, Vijayakumar I (1984) Temperature acclimation and phospholipid phase transition in hypothalamic membrane phospholipids of garden lizard, Calotes versicolor. Biochim Biophys Acta 770:7–14

    Article  CAS  Google Scholar 

  • Endo D, Park MK (2003) Quantification of three steroid hormone receptors of the leopard gecko (Eublepharis macularius), a lizard with temperature-dependent sex determination: their tissue distributions and the effect of environmental change on their expressions. Comp Biochem Physiol B 136:957–966

    Article  PubMed  CAS  Google Scholar 

  • Endo D, Park MK (2004) Molecular characterization of the leopard gecko POMC gene and expressional change in the testis by acclimation to low temperature and with a short photoperiod. Gen Comp Endocrin 138:70–77

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 126:1–25

    Article  Google Scholar 

  • Firth BT, Belan I (1998) Daily and seasonal rhythms in selected body temperatures in the Australian lizard Tiliqua rugosa (Scincidae): field and laboratory observations. Physiol Zool 71:303–311

    PubMed  CAS  Google Scholar 

  • Geiser F (2004) Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu Rev Physiol 66:239–274

    Article  PubMed  CAS  Google Scholar 

  • Gracey AY, Cossins AR (2003) Application of microarray technology in environmental and comparative physiology. Annu Rev Physiol 65:231–259

    Article  PubMed  CAS  Google Scholar 

  • Guderley H (2004a) Metabolic responses to low temperature in fish muscle. Biol Rev 79:409–427

    Article  PubMed  Google Scholar 

  • Guderley H (2004b) Locomotor performance and muscle metabolic capacities: impact of temperature and energetic status. Comp Biochem Physiol B 139:371–382

    Article  PubMed  CAS  Google Scholar 

  • Guderley H, St-Pierre J (2002) Going with the flow or life in the fast lane: contrasting mitochondrial responses to thermal change. J Exp Biol 205:2237–2249

    PubMed  Google Scholar 

  • Guderley H, Lapointe D, Bedard M, Dutil J-D (2003) Metabolic priorities during starvation: enzyme sparing in liver and white muscle of Atlantic cod, Gadus morhua L. Comp Biochem Physiol A 135:347–356

    Article  CAS  Google Scholar 

  • Hailey A, Loveridge JP (1997) Metabolic depression during dormancy in the African tortoise Kinixys spekii. Can J Zool 75:1328–1335

    Google Scholar 

  • Haynie DT (2001) Biological thermodynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Hicks JMT, Farrell AP (2000a) The cardiovascular responses of the red-eared slider (Trachemys scripta) acclimated to either 22 or 5°C I. Effects of anoxic exposure on in vivo cardiac performance. J Exp Biol 203:3765–3744

    PubMed  CAS  Google Scholar 

  • Hicks JMT, Farrell AP (2000b) The cardiovascular responses of the red-eared slider (Trachemys scripta) acclimated to either 22 or 5°C II. Effects of anoxia on adrenergic and cholinergic control. J Exp Biol 203:3775–3784

    PubMed  CAS  Google Scholar 

  • Hicks JW, Wang T (2004) Hypometabolism in reptiles: behavioural and physiological mechanisms that reduce aerobic demands. Resp Physiol Neurobiol 141:261–271

    Article  CAS  Google Scholar 

  • Hochachka PW, Lutz PL (2001) Mechanism, origin, and evolution of anoxia tolerance in animals. Comp Biochem Physiol B 130:435–459

    Article  PubMed  CAS  Google Scholar 

  • Hochscheid S, Bentivegna F, Speakman JR (2004) Long-term cold acclimation leads to high Q10 effects on oxygen consumption of loggerhead seas turtles Caretta caretta. Physiol Biochem Zool 77:209–222

    Article  PubMed  Google Scholar 

  • Horowitz M (2001) Heat acclimation: phenotypic plasticity and cues to the underlying molecular mechanisms. J Therm Biol 26:357–363

    Article  CAS  Google Scholar 

  • Huey RB, Kingsolver JG (1989) Evolution of thermal sensitivity of ectotherm performance. Trends Ecol Evol 4:131–135

    Article  Google Scholar 

  • Huey RB, Slatkin M (1976) Costs and benefits of lizard thermoregulation. Q Rev Biol 51:363–384

    Article  PubMed  CAS  Google Scholar 

  • Huey RB, Bennett AF (1987) Phylogenetic studies of coadaptation: preferred temperatures versus optimal performance temperatures of lizards. Evolution 41:1098–1115

    Article  Google Scholar 

  • Huey RB, Berrigan D, Gilchrist GW, Herron JC (1999) Testing the adaptive significance of acclimation: a strong inference approach. Am Zool 39: 323–336

    Google Scholar 

  • Hulbert AJ, Else PL (1999) Membranes as possible pacemakers of metabolism. J Theor Biol 199:257–274

    Article  PubMed  CAS  Google Scholar 

  • Hutchison VH, Maness JD (1979) The role of behavior in temperature acclimation and tolerance in ectotherms. Am Zool 19:367–384

    Google Scholar 

  • James MC, Mrosovsky N (2004) Body temperatures of leatherback turtles (Dermochelys coriacea) in temperate water off Nova Scotia, Canada. Can J Zool 82:1302–1306

    Article  Google Scholar 

  • Johnston IA, Temple GK (2002) Thermal plasticity of skeletal muscle phenotype in ectothermic vertebrates and its significance for locomotory behaviour. J Exp Biol 205:2305–2322

    PubMed  Google Scholar 

  • Kalarani V, Reddy DC, Naidu BP, Davies RW (1991) Acclimatory responses in enzymatic activity and metabolite concentrations in the tropical scorpion Heterometrus fulvipes. J Therm Biol 16:327–332

    Article  CAS  Google Scholar 

  • Kearney M, Porter WP (2004) Mapping the fundamental niche: physiology, climate, and the distribution of a nocturnal lizard. Ecology 85:3119–3131

    Article  Google Scholar 

  • Kingsolver JG, Huey RB (1998) Evolutionary analyses of morphological and physiological plasticity in thermally variable environments. Am Zool 38:545–559

    Google Scholar 

  • Langkilde T, Shine R (2004) Competing for crevices: interspecific conflict influences retreat-site selection in montane lizards. Oecologia 140:684–691

    Article  PubMed  Google Scholar 

  • Leroi AM, Bennett AF, Lenski RE (1994) Temperature acclimation and competitive fitness: an experimental test of the beneficial acclimation assumption. Proc Natl Acad Sci USA 91:1917–1921

    Article  PubMed  CAS  Google Scholar 

  • Levins R (1968) Evolution in changing environments. Princeton University Press, Princeton

    Google Scholar 

  • Lin J-J, Somero GN (1995) Thermal adaptation of cytoplasmic malate dehydrogenase of eastern Pacific barracuda (Sphyraena spp): the role of differential isoenzyme expression. J Exp Biol 198:551–560

    PubMed  CAS  Google Scholar 

  • Litzgus JD, Brooks RJ (2000) Habitat and temperature selection of Clemmys guttata in a northern population. J Herpetol 34:178–185

    Article  Google Scholar 

  • Lowe CH Jr, Vance VJ (1955) Accliamtion of the critical thermal maximum of the reptile Urisaurus ornatus. Science 122:73–74

    Article  PubMed  Google Scholar 

  • Manning B, Grigg GC (1997) Basking is not of thermoregulatory significance in the “basking” freshwater turtle, Emydura signata. Copeia 1997:579–584

    Article  Google Scholar 

  • Marshall E, Grigg GC (1980) Lack of metabolic acclimation to different thermal histories by tadpoles of Limnodynastes peronii (Anura: Laptodactylidae). Physiol Zool 53:1–7

    Google Scholar 

  • Maxwell LK, Jacobson ER, McNab BK (2003) Intraspecific allometry of standard metabolic rate in green iguanas, Iguana iguana. Comp Biochem Physiol A 136:301–310

    Article  CAS  Google Scholar 

  • McKechnie AE, Wolf BO (2004) Partitioning of evaporative water loss in white-winged doves: plasticity in response to short-term thermal acclimation. J Exp Biol 207:203–210

    Article  PubMed  Google Scholar 

  • Olson JM (1987) The effect of seasonal acclimatization on metabolic-enzyme activities in the heart and pectoral muscle of painted turtles Chrysemys picta marginata. Physiol Zool 149–158

  • Olson JM, Crawford KM (1989) The effect of seasonal acclimatization on the buffering capacity and lactate dehydrogenase activity in tissues of the freshwater turtle Chrysemys picta marginata. J Exp Biol 145:471–476

    CAS  Google Scholar 

  • Paladino FV, O’Connor MP, Spotila JR (1990) Metabolism of leatherback turtles, gigantothermy, and thermoregulation of dinosaurs. Nature 344:858–860

    Article  Google Scholar 

  • Piersma T, Drent J (2003) Phenotypic flexibility and the evolution of organismal design. Trends Ecol Evol 18:228–233

    Article  Google Scholar 

  • Podrabsky JE, Somero GN (2004) Changes in gene expression associated with acclimation to constant temperatures and fluctuating daily temperatures in an annual killifish Austrofundulus limnaeus. J Exp Biol 207:2237–2254

    Article  PubMed  CAS  Google Scholar 

  • Rezende EL, Chappell MA, Hammond KA (2004) Cold-acclimation in Peromyscus: temporal effects and individual variation in maximum metabolism and ventilatory traits. J Exp Biol 207:295–305

    Article  PubMed  Google Scholar 

  • Rogers KD, Seebacher F, Thompson MB (2004) Biochemical aclcimation of metabolic enzymes in tadpoles of Limnodynastes peroni. Comp Biochem Physiol A 137:731–738

    Article  CAS  Google Scholar 

  • Rogowitz GL (1996) Evaluation of thermal accliamtion and altitudinal variation of metabolism in a neotropical lizard, Anolis gundlachi. Copeia 1996:535–542

    Article  Google Scholar 

  • Seebacher F (1999) Behavioural postures and the rate of body temperature change in wild freshwater crocodiles, Crocodylus johnstoni. Physiol Biochem Zool 72:57–63

    Article  PubMed  CAS  Google Scholar 

  • Seebacher F, Franklin CE (2005) Physiological mechanisms in thermoregulation of reptiles. J Comp Physiol B

  • Seebacher F, Grigg GC (1997) Patterns of body temperature in wild freshwater crocodiles, Crocodylus johnstoni: thermoregulation versus thermoconformity, seasonal acclimatisation, and the effect of social interactions. Copeia 1997:549–557

    Article  Google Scholar 

  • Seebacher F, Grigg GC (2001) Social interactions compromise thermoregulation in crocodiles Crocodylus johnstoni and Crocodylus porosus. In: Grigg GC, Seebacher F, Franklin CE (eds) Crocodilian biology and evolution. Surrey Beatty, Chipping Norton, pp 310–316

    Google Scholar 

  • Seebacher F, Elsey RM, Trosclair PL III (2003a) Body temperature null-distributions in large reptiles: seasonal thermoregulation in the American alligator (Alligator mississippiensis). Physiol Biochem Zool 76:348–359

    Article  PubMed  Google Scholar 

  • Seebacher F, Guderley H, Elsey RM, Trosclair PL III (2003b) Seasonal acclimatisation of muscle metabolic enzymes in a reptile (Alligator mississippiensis). J Exp Biol 206:1193–1200

    Article  PubMed  CAS  Google Scholar 

  • Seebacher F, Sparrow J, Thompson MB (2004) Turtles (Chelodina longicollis) regulate muscle metabolic enzyme activity in response to seasonal variation in body temperature. J Comp Physiol B 174:205–210

    Article  PubMed  CAS  Google Scholar 

  • Seebacher F, Davison W, Lowe CJ, Franklin CE (2005) A falsification of the thermal specialization paradigm: compensation for elevated temperatures in Antarctic fishes. Biol Lett (in press)

  • Solomon S (1999) POMC-derived peptides and their biological action. Ann N Y Acad Sci 885:22–40

    Article  PubMed  CAS  Google Scholar 

  • Somero GN, Dahlhoff E, Lin JJ (1996) Stenotherms and eurytherms: mechanisms establishing thermal optima and tolerance ranges. In: Johnston IA, Bennett AF (eds) Animals and temperature. Phenotypic and evolutionary adaptation. Cambridge University Press, Cambridge, pp 53–78

    Google Scholar 

  • de Souza SCR, de Carvalho JE, Abe AS, Bicudo JEPW, Bianconcini MSC (2004) Seasonal metabolic depression, substrate utilisation and changes in scaling patterns during the first year cycle of tegu lizards (Tupinambis merianae). J Exp Biol 207:307–318

    Article  PubMed  Google Scholar 

  • Storey KB (1996) Metabolic adaptations supporting anoxia tolerance in reptiles: recent advances. Comp Biochem Physiol B 157:667–675

    Google Scholar 

  • St-Pierre J, Boutilier RG (2001) Aerobic capacity of frog skeletal muscle during hibernation. Physiol Biochem Zool 74:390–397

    Article  PubMed  CAS  Google Scholar 

  • St-Pierre J, Charest P-M, Guderley H (1998) Relative contribution of quantitative and qualitative changes in mitochondria to metabolic compensation during seasonal acclimatisation of rainbow trout Oncorhynchus mykiss. J Exp Biol 201:2961–2970

    CAS  Google Scholar 

  • Thibault M, Blier PU, Guderley H (1997) Seasonal variation of muscle metabolic organization in rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem 16:139–155

    Article  CAS  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, Ferreira de Sinqueira M, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Philips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  PubMed  CAS  Google Scholar 

  • Tocher MD, Davison W (1996) Differential thermal acclimation of metabolic rate in two populations of the New Zealand common gecko Hoplodactylus maculatus (Reptilia:Gekkonidae). J Exp Zool 275:8–14

    Article  Google Scholar 

  • Tousignant A, Crews D (1995) Incubation temperature and gonadal sex affect growth and physiology in the leopard gecko (Eublepharis macularius), a lizard with temperature-dependent sex determination. J Morphol 224:159–170

    Article  PubMed  CAS  Google Scholar 

  • Tsuji J (1988a) Seasonal profiles of standard metabolic rate of lizards (Sceloporus occidentalis) in relation to latitude. Physiol Zool 61:230–240

    Google Scholar 

  • Tsuji J (1988b) Thermal acclimation of metabolism in Sceloporus lizards from different latitudes. Physiol Zool 61:241–253

    Google Scholar 

  • Van Damme R, Bauwens D, Verheyen RF (1987) Thermoregulatory responses to environmental seasonality by the lizard Lacerta vivipara. Herpetologica 43:405–415

    Google Scholar 

  • Vézina D, Guderley H (1991) Anatomic and enzymatic responses of the three-spined stickleback, Gasterosteus aculeatus to thermal acclimation and acclimatization. J Exp Zool 258:277–287

    Article  Google Scholar 

  • Via S, Gomulkiewicz R, De Jong G, Scheiner SM, Schlichting CD, Van Tienderen PH (1995) Adaptive phenotypic plasticity: consensus and controversy. Trends Ecol Evol 10:212–217

    Article  Google Scholar 

  • West JL, Bailey JR, Almeida-Val VMF, Val AL, Sidell BD, Driedzic WR (1999) Activity levels of enzymes of energy metabolism in heart and red muscle are higher in north-temperate-zone than in Amazonian teleosts. Can J Zool 77:690–696

    Article  CAS  Google Scholar 

  • Wikelski M, Spinney L, Schelsky W, Scheuerlein A, Gwinner E (2003) Slow pace of life in tropical sedentary birds: a common-garden experiment on four stonechat populations from different latitudes. Proc R Soc Lond B 270:2383–2388

    Article  Google Scholar 

  • Wilson RS, Franklin CE (2002) Testing the beneficial acclimation hypothesis. Trends Ecol Evol 17:66–70

    Article  Google Scholar 

  • Wilson RS, Johnston IA (2004) Combining studies of comparative physiology and behavioural ecology to test the adaptive benefits of thermal acclimation. Int Congr Ser 1275:201–208

    Article  Google Scholar 

  • Woods HA, Harrison JF (2002) Interpreting rejections of the beneficial acclimation hypothesis: when is physiological plasticity adaptive? Evolution 56:1863–1866

    PubMed  Google Scholar 

  • Zari TA (1996) Seasonal metabolic compensation in the fringe-toed lizard, Acanthodactylus boskianus (Reptilia: Lacertidae). J Therm Biol 21:145–150

    Article  Google Scholar 

  • Zari TA (1999) Seasonal acclimatization in metabolic rate of the fan-fingered gecko, Ptodactylus hasselquistii (Reptilia: Gekkonidae). J Therm Biol 24:137–142

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by an Australian Research Council Discovery Grant to FS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Seebacher.

Additional information

Communicated by I.H. Hume

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seebacher, F. A review of thermoregulation and physiological performance in reptiles: what is the role of phenotypic flexibility?. J Comp Physiol B 175, 453–461 (2005). https://doi.org/10.1007/s00360-005-0010-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-005-0010-6

Keywords

Navigation