Skip to main content
Log in

Noradrenalin induces thermogenesis in a phylogenetically ancient eutherian mammal, the rock elephant shrew, Elephantulus myurus

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The evolution of endothermy is thought to have been facilitated by the advent of endothermic energy sources such as brown adipose tissue (BAT), the principal site of non-shivering thermogenesis (NST). In marsupials, heat is primarily produced through shivering and NST in skeletal muscle because BAT is either absent or appears to be non-functional. The most basal group of the eutherian lineage are the Afrotheria. Rock elephant shrews, Elephantulus myurus are amongst the smallest members of the Afrotheria and are also known to use exogenous passive heating. The aim of this study was to determine whether the reliance on passive heating compromised the capacity for thermogenesis in E. myurus. We measured the thermogenic response to noradrenalin (NA) injection in E. myurus acclimated to short photoperiod. The thermogenic response at 25°C was 1.58 ml O2 g−1 h−1. We used phylogenetically independent analyses to establish how this thermogenic response compared to other eutherians that display classical NST. The thermogenic response of E. myurus was not significantly different from phylogenetically independent allometric predictions. However, it is unclear whether this thermogenic response is indicative of classical NST and molecular data are required to verify the presence of BAT and UCPs in elephant shrews.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Böckler H, Steinlechner S, Heldmaier G (1982) Complete cold substitution of noradrenaline-induced thermogenesis in the Djungarian hamster, Phodopus sungorus. Experiment 38:261–262

    Article  Google Scholar 

  • Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359

    Article  PubMed  CAS  Google Scholar 

  • Cannon B, Nedergaard J (1985) The biochemistry of an inefficient tissue: brown adipose tissue. Essays Biochem 20:110–164

    PubMed  CAS  Google Scholar 

  • Cannon B, Golozoubova V, Matthias A, Ohlson K, Jacobsson A, Nedergaard J (2000) Is there life in the cold without UCP1? Uncoupling proteins and thermoregulatory thermogenesis. In: Heldmaier G, Klingenspor M (eds) Life in the cold: 11th international hibernation symposium. Springer, Berlin, pp 387–400

    Google Scholar 

  • Catzeflis FM, Hänni C, Sourrouille P, Douzery E (1995) Molecular systematics of hystricognath rodents: the contribution of sciurognath mitochondrial 12S rRNA sequences. Mol Phylogenet Evol 4:357–360

    Article  PubMed  CAS  Google Scholar 

  • Corbet GB, Hill JE (1991) A world list of mammalian species. Oxford University Press, Oxford

    Google Scholar 

  • Dausmann K, Glos J, Ganzhorn JU, Heldmaier G (2004) Hibernation in a tropical primate. Nature 429:825–826

    Article  PubMed  CAS  Google Scholar 

  • Dew EM, Carson KA, Rose RK (1998). Seasonal changes in brown fat and pelage in southern short-tailed shrews. J Mammal 79:271–278

    Article  Google Scholar 

  • Downs CT, Perrin MR (1991) Physiological adjustments to low temperatures of for Gerbillurus species. J therm Biol 16:25–29

    Article  Google Scholar 

  • Feist DD, Feist CF (1986) Effects of cold, short day and melatonin on thermogenesis, body weight and reproductive organs in Alaskan red-backed voles. J Comp Physiol B 156:741–746

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Filippucci M, Macholán M, Michaux J (2002) Genetic variation and evolution in the genus Apodemus (Muridae: Rodentia). Biol J Linn Soc 75:395–419

    Article  Google Scholar 

  • Garland T, Harvey PH, Ives AR (1992) Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst Biol 41:18–32

    Article  Google Scholar 

  • Geiser F, Goodship N, Pavey CR (2002) Was basking important in the evolution of mammalian endothermy? Naturwiss 89:412–414

    Article  PubMed  CAS  Google Scholar 

  • Geiser F, Drury RL (2003) Radient heat affects thermoregulation and energy expenditure during rewarming from torpor. J Comp Physiol B 173:55–60

    Article  PubMed  CAS  Google Scholar 

  • Geiser F, Drury RL, Körtner G, Turbill C, Pavey C R, Brigham M (2004) Passive rewarming from torpor in mammals and birds: energetic, ecological and evolutionary implications. In: Barnes BM, Carey H (eds) Life in the cold: evolution, mechanisms, adaptation and application. Twelfth international hibernation symposium. Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska, pp 51–62

  • Gettinger R, Ralph C (1985) Thermoregulatory responses to photoperiod by kangaroo rats (Dipodomys ordii): influence of night lighting on non-shivering thermogenesis and resting metabolism. J Exp Zool 234:335–340

    Article  PubMed  CAS  Google Scholar 

  • Grafen A (1989) The phylogenetic regression. Philos Trans R Soc Lond 326B:119–157

    Article  Google Scholar 

  • Haim A, Fourie le R (1980) Heat production in cold and long scotophase acclimated and winter acclimatized rodents. Int J Biometeorol 24:231–236

    Article  PubMed  CAS  Google Scholar 

  • Haim A, Borut A (1981) Heat production and dissipation in Golden spiny Mice, Acomys russatus from two extreme habitats. J Comp Physiol 142:445–450

    Google Scholar 

  • Haim A, Yahav S (1982) Non-shivering thermogenesis in winter-acclimatized and in long-scotophase and cold acclimated Apodemus mystacinus (Rodentia). J therm Biol 7:193–195

    Article  Google Scholar 

  • Haim A (1984) Adaptive variations in heat production within gerbils (genus Gerbillus) from different habitats. Oecologia 61:49 52

    Article  Google Scholar 

  • Haim A, Heth G, Avnon Z, Nevo E (1984) Adaptive physiological variation in non-shivering thermogenesis and its significance in speciation. J Comp Physiol B 154:145–147

    Article  Google Scholar 

  • Haim A, Fairall N (1986) Physiological adaptations to the subterranean environment by the mole rat Cryptomys hottentotus. Cimbebasia 8:49–53

    Google Scholar 

  • Haim A, Levi G (1990) Role of body temperature in seasonal acclimatization: photoperiod-induced rhythms and heat production in Meriones crassus. J Exp Zool 256:237–241

    Article  Google Scholar 

  • Haim A, Izhaki I (1993) The ecological significance of resting metabolic rate and non-shivering thermogenesis for rodents. J therm Biol 18:71–81

    Article  Google Scholar 

  • Haim A, Racey PA, Speakman JR, Ellison GTH, Skinner JD (1991) Seasonal acclimation and thermoregulation in the pouched mouse Saccostomus camprestris. J therm Biol 16:13–17

    Article  Google Scholar 

  • Haim A, Izhaki I (1995) Comparative physiology of thermoregulation in rodents: Adaptations to arid and mesic environments. J Arid Environ 31:431–440

    Article  Google Scholar 

  • Haim A, McDevitt RM, Speakman JR (1995) Daily Variations in the response of wood mice Apodemus sylvaticus to noradrenaline. J Exp Biol 198:561–565

    PubMed  CAS  Google Scholar 

  • Haim A (1996) Food and energy intake, non-shivering thermogenesis and daily rhythm of body temperature in the bushy-tailed gerbil Sekeetamys calurus: the role of photoperiod manipulations. J Therm Biol 21:37–42

    Article  Google Scholar 

  • Haim A, Shabtay A, Arad Z (1998) Thermoregulatory responses of mesic and xeric rodent species to photoperiod manipulations. Comp Biochem Physiol A 120:187–191

    Article  CAS  Google Scholar 

  • Hayes JP, Garland T (1995) The evolution of endothermy: testing the aerobic capacity model. Evol 49:836–847

    Article  Google Scholar 

  • Heldmaier G, Steinlechner S (1981) Seasonal control of energy requirements for thermoregulation in the Djungarian Hamster (Phodopus sungorus), living in natural photoperiod. J Comp Physiol B 142:429–437

    Article  Google Scholar 

  • Heldmaier G, Steinlechner S, Rafael J, Vsiansky P (1981) Photoperiodic control and effects of melatonin on non-shivering thermogenesis and brown adipose tissue. Science 212:917–919

    Article  PubMed  CAS  Google Scholar 

  • Heldmaier G, Steinlechner S, Rafael J (1982) Non-shivering thermogenesis and cold resistance during seasonal acclimitization in the Djungarian Hamster. J Comp Physiol B 149:1–9

    Article  Google Scholar 

  • Heldmaier G, Böckler H, Buchberger A, Lynch GR, Puchalski W, Steinlechner S, Wiesinger H (1985) Seasonal acclimation and thermogenesis. In: Gilles R (eds) Circulation, respiration and metabolism. Springer-Verlag, Berlin, pp 490–501

    Google Scholar 

  • Heldmaier G, Klaus S, Wiesinger H (1990) Seasonal adaptation of thermoregulatory heat production in small mammals. In: Bligh J, Voigt K (eds) Thermoreception and temperature regulation. Springer-Verlag, Berlin, pp 235–243

    Google Scholar 

  • Hislop M, Buffenstein R (1994) Noradrenalin induces non-shivering thermogenesis in both the naked mole-rat (Heterocephalus glaber) and the damara mole-rat (Cryptomys damarensis) despite very different modes of thermoregulation. J Therm Biol 19:25–32

    Article  CAS  Google Scholar 

  • Holloway JC, Geiser F (2001) Seasonal changes in the thermoenergetics of the marsupial sugar glider, Petaurus breviceps. J Comp Physiol B 171:643–650

    Article  PubMed  CAS  Google Scholar 

  • Hope PJ, Pyle D, Daniels C, Chapman I, Horowitz M, Morley J, Trayhurn P, Kumaratilake J, Wittert G (1997) Identification of brown fat and mechanisms for energy balance in the marsupial, Sminthopsis crassicaudata. Am J Physiol Regul Integr Comp Physiol 273:R161–R167

    CAS  Google Scholar 

  • Huchon D, Douzery E (2001) From the old world to the new world: a molecular chronicle of the phylogeny and biogeography of hystricognath rodents. Mol Phylogenet Evol 20:238–251

    Article  PubMed  CAS  Google Scholar 

  • Jansky L (1973) Non-shivering thermogenesis and its thermoregulatory significance. Biol Rev 48:85–132

    PubMed  CAS  Google Scholar 

  • Klaus S, Heldmaier G, Ricquier D (1988) Seasonal acclimation of bank voles and wood mice: non-shivering thermogenesis and thermogenic properties of brown adipose tissue mitochondria. J Comp Physiol B 158:157–164

    Article  PubMed  CAS  Google Scholar 

  • Kronfeld-Schor N, Haim A, Dayan T, Zisapel N, Klingenspor M, Heldmaier G (2000) Seasonal thermogenic acclimation of diurnally and nocturnally active desert spiny mice. Physiol Biochem Zool 73:37–44

    Article  PubMed  CAS  Google Scholar 

  • Lovegrove BG, Heldmaier G, Knight M (1991) Seasonal and circadian energetic patterns in an arboreal rodent, Thallomys paedulcus, and burrow-dwelling rodent, Aethomys namaquensis, from the Kalahari desert. J therm Biol 16:199–209

    Article  Google Scholar 

  • Lovegrove BG, Körtner G, Geiser F (1999a) The energetic cost of arousal from torpor in the marsupial Sminthopsis macroura: benefits of summer ambient temperature cycles. J Comp Physiol B 169:11–18

    Article  PubMed  CAS  Google Scholar 

  • Lovegrove BG, Lawes MJ, Roxburgh L (1999b) Confirmation of pleisiomorphic daily torpor in mammals: the round-eared elephant shrew Maroscelides proboscideus (Macroscelidea). J Comp Physiol B 169:453–460

    Article  PubMed  CAS  Google Scholar 

  • Lovegrove BG, Raman J, Perrin MR (2001a) Daily torpor in elephant shrews (Macroscelidea: Elephantulus sp.) in response to food deprivation. J Comp Physiol B 171:11–21

    Article  PubMed  CAS  Google Scholar 

  • Lovegrove BG, Raman J, Perrin MR (2001b) Heterothermy in elephant shrews (Elephantulus spp.): hibernation or daily torpor? J Comp Physiol B 171:1–10

    Article  PubMed  CAS  Google Scholar 

  • Lyman CP, Willis JS, Malan A, Wang LCH (1982) Hibernation and torpor in mammals and birds. Academic Press, New York

    Google Scholar 

  • Lyman CP, O’Brien RC (1986) Is brown fat necessary? In: Heller HC, Mussachia XJ, Wang LCH (eds) Living in the cold. Elsevier, New York, pp 109–116

    Google Scholar 

  • Lynch GR, White S, Grundel R, Berger M (1978) Effects of photoperiod, melatonin administration and thyroid block on spontaneous daily torpor and temperature regulation in the white-footed mouse, Peromyscus leucopus. J Comp Physiol B 125:157–163

    Article  CAS  Google Scholar 

  • Maier H, Feist D (1991) Thermoregulation, growth and reproduction in Alaskan collared lemmings: role of short day and cold. Am J Physiol 261:R522–R530

    PubMed  CAS  Google Scholar 

  • Malan A (1996) The origins of hibernation: a reappraisal. In: Geiser F, Hulbert AJ, Nicol SC (eds) Adaptations to the cold: tenth international hibernation symposium. University of New England Press, Armidale, pp 1–6

    Google Scholar 

  • Martin Y, Gerlach G, Schlötterer C, Meyer A (2000) Molecular phylogeny of European muriod rodents based on complete cytochrome b sequences. Mol Phylogenet Evol 16:37–47

    Article  PubMed  CAS  Google Scholar 

  • McDevitt R, Speakman J (1996) Summer acclimatization in the short-tailed field vole, Microtus agrestis. J Comp Physiol B 166:286–293

    Article  PubMed  CAS  Google Scholar 

  • McNab BK (1978) The evolution of endothermy in the phylogeny of mammals. Am Nat 112(983):1–21

    Article  Google Scholar 

  • Merritt JF (1986) Winter survival adaptations of the short-tailed shrew, Blarina brevicauda in an apalachian montane forest. J Mammal 67:450–464

    Article  Google Scholar 

  • Merritt JF (1995) Seasonal thermogenesis and changes in body mass of masked shrews, Sorex cinereus. J Mammal 76:1020–1035

    Article  Google Scholar 

  • Michaux J, Catzeflis F (2000) The bushlike radiation of muroid rodents is exemplified by the molecular phylogeny of the LCAT nuclear gene. Mol Phylogenet Evol 17:280–293

    Article  PubMed  CAS  Google Scholar 

  • Moshkin M, Novikov E, Petrovski D (2001) Seasonal changes of thermoregulation in the mole vole Ellobius talpinus. Physiol Biochem Zool 74:869–875

    Article  PubMed  CAS  Google Scholar 

  • Murphy WJ, Elzirik E, Johnson WE, Ryder OA, O’Brien JO (2001) Molecular phylogenetics and the origins of placental mammals. Nature 409:614–618

    Article  PubMed  CAS  Google Scholar 

  • Mzilikazi N, Lovegrove BG, Ribble D (2002) Exogenous passive heating during torpor arousal in free-ranging rock elephant shrews, Elephantulus myurus. Oecologia 133:307–314

    Article  Google Scholar 

  • Mzilikazi N, Lovegrove BG (2004) Daily torpor in free-ranging rock elephant shrews, Elephantulus myurus: a year-long study. Physiol Biochem Zool 77:285–296

    Article  PubMed  Google Scholar 

  • Mzilikazi N, Lovegrove BG (in press) Daily torpor during the active phase in free-ranging rock elephant shrews, Elephantulus myurus. J Zool (Lond)

  • Nedergaard J, Cannon B (1984) Preferential utilization of brown adipose tissue lipids during arousal from hibernation in hamsters. Am J Physiol Regul Integr Comp Physiol 247:R506–R512

    CAS  Google Scholar 

  • Nespolo RF, Opazo J, Rosenmann M, Bozinovic F (1999) Thermal acclimation, amximum metabolic rate and non-shivering thermogenesis of Phylottis xanthopygus (Rodentia) in the Andes mountains. J Mammal 80:742–748

    Article  Google Scholar 

  • Nespolo R, Bacigalupe L, Rezende E, Bozinovic F (2001) When non-shivering thermogenesis equals maximum metabolic rate: thermal acclimation and phenotypic plasticity of fossorial Spalacopus cyanus (Rodentia). Physiol Biochem Zool 74:325–332

    Article  PubMed  CAS  Google Scholar 

  • Nicol S, Pavlides, Andersen N (1997) Non-shivering thermogenesis in marsupials: absence of thermogenic response to β3-adrenergic agonists. Comp Biochem Physiol A 117:399–405

    Article  CAS  Google Scholar 

  • Ortmann S, Schmid J, Ganzhorn JU, Heldmaier G (1996) Body temperature and torpor in a Malagasy small primate, the mouse lemur. In: Geiser F, Hulbert AJ, Nicol SC (eds) Adaptations to the cold: tenth international hibernation symposium. University of New England Press, Armidale, pp 55–61

    Google Scholar 

  • Pagel M (1992) A method for the analysis of comparative data. J Theor Biol 156:431–442

    Article  Google Scholar 

  • Rose RW, West AK, Ye J, McCormack GH, Colquhoun EQ (1999) Non-shivering thermogenesis in a marsupial (the Tasmanian bettong Bettongia gaimardi) is not attributable to brown adipose tissue. Physiol Biochem Zool 72:699–705

    Article  PubMed  CAS  Google Scholar 

  • Ruedi M (1998) Protein evolution in shrews. In: Wójcik J, Wolsan M (eds) Evolution of shrews. Mammal Research Institute, Polish Academy of Sciences, Bialowieza, pp 269–294

  • Ruf T, Klingenspor M, Preis H, Heldmaier G (1991) Daily torpor in the Djungarian hamster (Phodopus sungorus): interactions with food intake, activity and social behaviour. J Comp Physiol B 160:609–615

    Article  Google Scholar 

  • Ruf T, Heldmaier G (1992) The impact of daily torpor on energy requirements in the Djungarian hamster, Phodopus sungorus. Physiol Zool 65:994–1010

    Google Scholar 

  • Saarela S, Hissa R (1993) Metabolism, thermogenesis and daily rhythm of body temperature in the wood lemming, Myopus schisticolor. J Comp Physiol 163B:546–555

    Google Scholar 

  • Schmid J (2000) Daily torpor in the gray mouse lemur (Microcebus murinus) in Madagascar: energetic consequences and biological significance. Oecologia 123:175–183

    Article  Google Scholar 

  • Sparti A (1992) Thermogenic capacity of shrews (Mammalia, Soricidae) and its relationship with basal rate of metabolism. Physiol Zool 65:77–96

    Google Scholar 

  • Springer MS, Cleven GC, Madsen O, de Jong WW, Waddell VG, Amrine HM, Stanhope MJ (1997) Endemic African mammals shake the phylogenetic tree. Nature 388:61–64

    Article  PubMed  CAS  Google Scholar 

  • Steinlechner S, Heldmaier G (1982) The role of photoperiod and melatonin in seasonal acclimatization of the Djungarian hamster, Phodopus sungorus. Int J Biometeor 26:329–337

    Article  CAS  Google Scholar 

  • Turbill C, Law BS, Geiser F (2003) Summer torpor in a free-ranging bat from subtropical Australia. J Therm Biol 28:223–226

    Article  Google Scholar 

  • Wang D, Sun R, Wang Z, Liu J (1999) Effects of temperature and photoperiod on the thermogenesis in plateau pikas (Ochotona curzoniae) and root voles (Microtus oeconomus). J Comp Physiol B 169:77–83

    Article  PubMed  CAS  Google Scholar 

  • Watts C, Baverstock P (1995) Evolution in some African murinae (Rodentia) assessed by microcomplement fixation of albumin. J Afr Zool 109:423–433

    Google Scholar 

  • Wilson DE, Reeder DM (1993) Mammal species of the world. Smithsonian Institution Press, WA

    Google Scholar 

  • Wunder BA, Gettinger RD (1996) Effects of body mass and temperature acclimation on the non-shivering thermogenic response of small mammals. In: Geiser F, Hulbert AJ, Nicol SC (eds) Adaptations to the cold: tenth international hibernation symposium. University of New England Press, Armidale, pp 131–139

    Google Scholar 

  • Zegers D, Merrit J (1988) Effect of photoperiod and ambient temperature on non-shivering thermogenesis of Peromyscus maniculatus. Acta Theriol 33:273–281

    Google Scholar 

Download references

Acknowledgements

This study was financed by the National Research Foundation and the University of KwaZulu-Natal core-rolling grants to BGL. We gratefully acknowledge the Cannon Collins Educational Trust for Southern Africa for a grant to NM. All procedures in this study complied with the “Principles for animal care” publication no. 86-23, revised 1986 (National Institute of Health) and the “Code of ethics for animal experimentation” manual adopted by the University of KwaZulu-Natal. We are grateful to the KwaZulu Natal Wildlife and Mr and Mrs Bruce McKay for granting permission to work on their farm in Estcourt. Kirsten K Coe-Mouton provided invaluable assistance in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nomakwezi Mzilikazi.

Additional information

Communicated by G. Heldmaier

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mzilikazi, N., Lovegrove, B.G. Noradrenalin induces thermogenesis in a phylogenetically ancient eutherian mammal, the rock elephant shrew, Elephantulus myurus . J Comp Physiol B 176, 75–84 (2006). https://doi.org/10.1007/s00360-005-0035-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-005-0035-x

Keywords

Navigation