Skip to main content
Log in

The allometry of parrot BMR: seasonal data for the Greater Vasa Parrot, Coracopsis vasa, from Madagascar

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

In this study we examined the allometry of basal metabolic rate (BMR) of 31 parrot species. Unlike previous reports, we show that parrots per se do not display BMRs that are any different to other captive-raised birds of their body size. An ordinary least squares regression fitted the data best and body mass explained 95% of the variation in BMR. There was no phylogenetic signal in the BMR data. We also provide new data for the Greater Vasa Parrot (Coracopsis vasa) of Madagascar. We tested the hypotheses that C. vasa may, because of its insular existence, display conservative energetic traits (low BMR, use of adaptive heterothermy) similar to those observed in several Malagasy mammals. However, this was not the case. C. vasa had a higher BMR than other parrots, especially during summer, when BMR was up-regulated by 50.5% and was 95.7% higher than predicted from an ordinary least squares (OLS) allometry of parrots (BMR = 0.042M 0.649b , BMR in Watts, M b in grammes). Compared with BMR data for 94 captive-raised bird species, the winter and summer BMRs were, respectively, 45.5 and 117.8% higher than predicted by a phylogenetic generalised least squares (PGLS) allometry (BMR = 0.030M 0.687b , BMR in Watts, M b in grammes). The summer up-regulation of BMR is the highest recorded for a bird of any size to date. We suggest that the costs of a high summer BMR may be met by the unusual cooperative breeding system of C. vasa in which groups of males feed the female and share paternity. The potential breeding benefits of a high summer BMR are unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arnold KE, Owens IPF (1999) Cooperative breeding in birds: the role of ecology. Behav Ecol 10:465–471

    Article  Google Scholar 

  • Astheimer LB, Buttemer WA (2002) Changes in latitude, changes in attitude: a perspective on ecophysiological studies of Australian birds. EMU 102:19–27

    Article  Google Scholar 

  • Aujard F, Vasseur F (2001) Effect of ambient temperature on the body temperature rhythm of male gray mouse lemurs (Microcebus murinus). Int J Primatol 22:43–56

    Article  Google Scholar 

  • Bennett PM, Harvey PH (1987) Active and resting metabolism in birds: allometry, phylogeny and ecology. J Zool 213:327–363

    Article  Google Scholar 

  • Blomberg SP, Garland T (2002) Tempo and mode in evolution: phylogentic inertia, adaptation, and comparative methods. J Evol Biol 15:899–910

    Article  Google Scholar 

  • Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioural traits are more labile. Evolution 57:717–745

    PubMed  Google Scholar 

  • Bush NG, Brown M, Downs CT (2008) Seasonal effects on thermoregulatory responses of the Rock Kestrel, Falco rupicolis. J Therm Biol 33:404–412

    Article  Google Scholar 

  • Chamane SC, Downs CT (2009) Seasonal effects on metabolism and thermoregulation abilities of the red-winged starling (Onychognathus morio). J Therm Biol 34:337–341

    Article  CAS  Google Scholar 

  • Chambers GK, Boon WM, Buckley TR, Hitchmough RA (2001) Using molecular methods to understand the Gondwanan affinities of the New Zealand biota: three case studies. Aust J Bot 49:377–387

    Article  Google Scholar 

  • Cockburn A (1998) Evolution of helping behavior in cooperatively breeding birds. Annu Rev Ecol Syst 29:141–177

    Article  Google Scholar 

  • Cockburn A (2006) Prevalence of different modes of parental care in birds. Proc R Soc B 273:1375–1383

    Article  PubMed  Google Scholar 

  • Cockburn A, Floyd RB, Sheppard AW, Debarro PJ (1996) Why do so many Australian birds cooperate: social evolution in the Corvida? Frontiers of population ecology. CSIRO, Melbourne, pp 451–472

    Google Scholar 

  • Daniels HL (1984) Oxygen consumption in Lemur fulvus: deviation from the ideal model. J Mamm 65:584–592

    Article  Google Scholar 

  • Dausmann KH, Glos J, Ganzhorn JU, Heldmaier G (2004) Hibernation in a tropical primate. Nature 429:825–826

    Article  PubMed  CAS  Google Scholar 

  • Dausmann KH, Glos J, Ganzhorn JU, Heldmaier G (2005) Hibernation in the tropics: lessons from a primate. J Comp Physiol B 175:147–155

    Article  PubMed  Google Scholar 

  • Dawson WR, Bennett AF (1973) Roles of metabolic level and temperature regulation in the adjustment of western plumed pigeons (Lophophaps ferruginea) to desert conditions. Comp Biochem Physiol A 44:249–266

    Article  PubMed  CAS  Google Scholar 

  • Dewar RE, Richard AF (2007) Evolution in the hypervariable environment of Madagascar. Proc Natl Acad Sci USA 104:13723–13727

    Article  PubMed  CAS  Google Scholar 

  • Dowsett RJ, Dowsett-Lamaire F (2000) The status of the Greater and Lesser Vasa parrots, Coracopsis vasa and C. nigra and the Grey-headed Lovebird Agapornis canus in Madagascar. BirdLife International, IUCN, London, pp 1–49

  • Edwards SV, Naeem S (1993) The phylogentic component of cooperative breeding in perching birds. Am Nat 141:754–789

    Article  PubMed  CAS  Google Scholar 

  • Ekstrom JMM, Burke T, Randrianaina L, Birkhead TR (2007) Unusual sex roles in a highly promiscuous parrot: the Greater Vasa Parrot Coracopsis vasa. Ibis 149:313–320

    Article  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Fry CH (1972) Social organization of bee-eaters (Meropidae) and cooperative breeding in hot-climate birds. Ibis 114:1

    Google Scholar 

  • Garland T, Ives AR (2000) Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. Am Nat 155:346–365

    Article  Google Scholar 

  • Garland T, Harvey PH, Ives AR (1992) Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst Biol 41:18–32

    Google Scholar 

  • Garland T, Dickerman AW, Janis CM, Jones JA (1993) Phylogenetic analysis of covariance by computer simulation. Syst Biol 42:265–292

    Google Scholar 

  • Greene TC (1999) Aspects of the ecology of Antipodes Island parakeet (Cyanoramphus unicolor) and Reischek’s parakeet (C. novaezelandiae novaezelandiae) on Antipodes Island, October–November 1995. Notornis 46:301–310

    Google Scholar 

  • Greene TC (2003) Breeding biology of red-crowned parakeets (Cyanoramphus novaezelandiae novaezelandiae) on Little Barrier Island, Hauraki Gulf, New Zealand. Notornis 50:83–99

    Google Scholar 

  • Hackett SJ, Kimball RT, Reddy S, Bowie RCK, Braun EL, Braun MJ, Chojnowski JL, Cox WA, Han KL, Harshman J, Huddleston CJ, Marks BD, Miglia KJ, Moore WS, Sheldon FH, Steadman DW, Witt CC, Yuri T (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320:1763–1768

    Article  PubMed  CAS  Google Scholar 

  • Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University, Oxford

    Google Scholar 

  • Jetz W, Freckleton RP, McKechnie AE (2008) Environment, migratory tendency, phylogeny and basal metabolic rate in birds. PloS One 3(9):e3261

    Google Scholar 

  • Kvist A, Lindstrom A (2001) Basal metabolic rate in migratory waders: intra-individual, intraspecific, interspecific and seasonal variation. Funct Ecol 15:465–473

    Article  Google Scholar 

  • Lavin SR, Karasov WH, Ives AR, Middleton KM, Garland T (2008) Morphometrics of the avian small intestine compared with that of nonflying mammals: a phylogenetic approach. Physiol Biochem Zool 81:526–550

    Article  PubMed  Google Scholar 

  • Lindsay CV, Downs CT, Brown M (2009) Physiological variation in amethyst sunbirds (Chalcomitra amethystina) over an altitudinal gradient in winter. J Exp Biol 212:483–493

    Article  PubMed  Google Scholar 

  • Lovegrove BG (2000) The zoogeography of mammalian basal metabolic rate. Am Nat 156:201–219

    Article  PubMed  Google Scholar 

  • Lovegrove BG (2003) The influence of climate on the basal metabolic rate of small mammals: a slow-fast metabolic continuum. J Comp Physiol B 173:87–112

    PubMed  CAS  Google Scholar 

  • Lovegrove BG (2009) Modification and miniaturization of Thermochron iButtons for surgical implantation into small animals. J Comp Physiol B 179:451–458

    Article  PubMed  Google Scholar 

  • Lovegrove BG, Génin F (2008) Torpor and hibernation in a basal placental mammal, the lesser hedgehog tenrec Echinops telfairi. J Comp Physiol B 178:691–698

    Article  PubMed  Google Scholar 

  • Lovegrove BG, Heldmaier G, Ruf T (1991) Perspectives of endothermy revisited: the endothermic temperature range. J Therm Biol 16:185–197

    Article  Google Scholar 

  • Lovegrove BG, Lawes MJ, Roxburgh L (1999) Confirmation of pleisiomorphic daily torpor in mammals: the round-eared elephant shrew Macroscelides proboscideus (Macroscelidea). J Comp Physiol B 169:453–460

    Article  PubMed  CAS  Google Scholar 

  • Maddison WP, Maddison DR (2009) Mesquite: a modular system for evolutionary analysis. Version 1:12

    Google Scholar 

  • Maddocks TA, Geiser F (2000) Seasonal variations in thermal energetics of Australian silvereyes (Zosterops lateralis). J Zool 252:327–333

    Article  Google Scholar 

  • McCormick SA (1981) Oxygen consumption and torpor in the fat tailed dwarf lemur (Cheirogaleus medius): rethinking prosimian metabolism. Comp Biochem Physiol A 68:605–610

    Article  Google Scholar 

  • McKechnie AE (2008) Phenotypic flexibility in basal metabolic rate and the changing view of avian physiological diversity: a review. J Comp Physiol B 178:235–247

    Article  PubMed  Google Scholar 

  • McKechnie AE, Wolf BO (2004) The allometry of avian basal metabolic rate: good predictions need good data. Physiol Biochem Zool 77:502–521

    Article  PubMed  Google Scholar 

  • McKechnie AE, Freckleton RP, Jetz W (2006) Phenotypic plasticity in the scaling of avian basal metabolic rate. Proc R Soc B 473:931–937

    Article  Google Scholar 

  • McKechnie AE, Chetty K, Lovegrove BG (2007) Phenotypic flexibility in the basal metabolic rate of laughing doves: responses to short-term thermal acclimation. J Exp Biol 210:97–106

    Article  PubMed  Google Scholar 

  • McNab BK, Salisbury CA (1995) Energetics of New Zealand’s temperate parrots. N Z J Zool 22:339–349

    Article  Google Scholar 

  • Ortmann S, Schmid J, Ganzhorn JU, Heldmaier G, Geiser F, Hulbert AJ, Nicol SC (1996) Body temperature and torpor in a Malagasy small primate, the mouse lemur. Adaptations to the cold. In: Tenth International Hibernation Symposium, University of New England Press, Armidale, pp 55–61

  • Prinzinger R, Pressmar A, Schleucher E (1991) Body temperature in birds. Comp Biochem Physiol A 99:499–506

    Article  Google Scholar 

  • Reynolds PS, Lee RM (1996) Phylogenetic analysis of avian energetics: passerines and nonpasserines do not differ. Am Nat 147:735–759

    Article  Google Scholar 

  • Richardson DS, Jury FL, Blaakmeer K, Komdeur J, Burke T (2001) Parentage assignment and extra-group paternity in a cooperative breeder: the Seychelles warbler (Acrocephalus sechellensis). Mol Ecol 10:2263–2273

    Article  PubMed  CAS  Google Scholar 

  • Saarela S, Hohtola E (2003) Seasonal thermal acclimatization in sedentary and active pigeons. Israel J Zool 49:185–193

    Article  Google Scholar 

  • Schleucher E, Withers PC (2001) Re-evaluation of the allometry of wet thermal conductance for birds. Comp Biochem Physiol A 129:821–827

    CAS  Google Scholar 

  • Schmid J (1996) Oxygen consumption and torpor in mouse lemurs (Microcebus murinus and M. myoxinus): preliminary results of a study in western Madagascar. In: Geiser F, Hulbert AJ, Nicol SC (eds) Adaptations to the cold: Tenth International Hibernation Symposium. University of New England, Armidale, pp 47–54

    Google Scholar 

  • Schmid J (2001) Daily torpor in free-ranging gray mouse lemurs (Microcebus murinus) in Madagascar. Int J Primatol 22:1021–1031

    Article  Google Scholar 

  • Schmidt-Nielsen K (1983) Animal physiology: adaptation and environment. Cambridge University, Cambridge

    Google Scholar 

  • Scholl P (1974) Temperaturregulation beim madagassischen Igeltanrek Echinops telfairi (Martin, 1838). J Comp Physiol 89:175–195

    Article  Google Scholar 

  • Sibley CG, Ahlquist JE (1990) Phylogeny and classification of birds. Yale University, New Haven

    Google Scholar 

  • Sinclair I, Langrand O (2003) Birds of the Indian Ocean islands. Struik, Cape Town

    Google Scholar 

  • Smit B, McKechnie AE (2010) Avian seasonal metabolic variation in a subtropical desert: basal metabolic rates are lower in winter than in summer. Funct Ecol 24:330–339

    Article  Google Scholar 

  • Smit B, Brown M, Downs CT (2008) Thermoregulatory responses in seasonally acclimatized captive Southern white-faced scops-owls. J Therm Biol 33:76–86

    Article  Google Scholar 

  • Theuerkauf J, Rouys S, Mériot JM, Gula R, Kuehn R (2009) Cooperative breeding, mate guarding, and nest sharing in two parrot species of New Caledonia. J Ornithol 150:791–797

    Article  Google Scholar 

  • Tieleman BI, Williams JB (2000) The adjustment of avian metabolic rates and water fluxes to desert environments. Physiol Biochem Zool 73:461–479

    Article  PubMed  CAS  Google Scholar 

  • Tieleman BI, Williams JB, Buschur ME (2002) Physiological adjustments to arid and mesic environments in larks (Alaudidae). Physiol Biochem Zool 75:305–313

    Article  PubMed  Google Scholar 

  • Weathers WW (1979) Climate adaptation in avian standard metabolic rate. Oecologia 42:81–89

    Google Scholar 

  • Weathers WW, Caccamise DF (1978) Seasonal acclimatization to temperature in Monk Parakeets. Oecologia 35:173–183

    Article  Google Scholar 

  • White CR, Blackburn TM, Martin GR, Butler PJ (2007) Basal metabolic rate of birds is associated with habitat temperature and precipitation, not primary productivity. Proc R Soc B 274:287–293

    Article  PubMed  Google Scholar 

  • Wiersma P, Munoz-Garcia A, Walker A, Williams JB (2007) Tropical birds have a slow pace of life. Proc Natl Acad Sci USA 104:9340–9345

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson R, Birkhead TR (1995) Copulation behaviour in the Vasa Parrots Coracopsis vasa and C. nigra. Ibis 137:117–119

    Article  Google Scholar 

  • Williams JB, Tieleman BI (2001) Physiological ecology and behavior of desert birds. Curr Ornithol 16l:299–353

    Article  Google Scholar 

  • Williams JB, Tieleman BI (2002) Ecological and evolutionary physiology of desert birds: a progress report. Int Comp Biol 42:68–75

    Article  Google Scholar 

  • Williams JB, Withers PC, Bradshaw SD, Nagy KA (1991) Metabolism and water flux of captive and free-living Australian parrots. Aust J Zool 39:131–142

    Article  Google Scholar 

  • Withers PC (1977) Measurement of VO2, VCO2, and evaporative water loss with a flow-through mask. J Appl Physiol 42:120–123

    Google Scholar 

  • Withers PC, Cooper CE, Larcombe AN (2006) Environmental correlates of physiological variables in marsupials. Physiol Biochem Zool 79:437–453

    Article  PubMed  CAS  Google Scholar 

  • Wright TF, Schirtzinger EE, Matsumoto T, Eberhard JR, Graves GR, Sanchez JJ, Capelli S, Mueller H, Scharpegge J, Chambers GK, Fleischer RC (2008) A multilocus molecular phylogeny of the parrots (Psittaciformes): Support for a Gondwanan origin during the Cretaceous. Mol Biol Evol 25:2141–2156

    Article  PubMed  CAS  Google Scholar 

  • Zar JH (1984) Biostatistical analysis. Prentice-Hall International, New Jersey

    Google Scholar 

Download references

Acknowledgments

This study was financed by an NRF and UKZN incentive grants to BGL and MRP. Thamsanqa Mjwara is thanked for assistance in bird maintenance and installing the video recording equipment. We thank Brian Boswell most sincerely for the loan of his birds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry G. Lovegrove.

Additional information

Communicated by G. Heldmaier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendix 1 (DOC 1.97 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lovegrove, B.G., Perrin, M.R. & Brown, M. The allometry of parrot BMR: seasonal data for the Greater Vasa Parrot, Coracopsis vasa, from Madagascar. J Comp Physiol B 181, 1075–1087 (2011). https://doi.org/10.1007/s00360-011-0590-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-011-0590-2

Keywords

Navigation