Skip to main content

Advertisement

Log in

The ‘Little Ice Age’ glacial expansion in western Scandinavia: summer temperature or winter precipitation?

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Reconstructing the temporal and spatial climate development on a seasonal basis during the last few centuries, including the ‘Little Ice Age’, may help us better understand modern-day interplay between natural and anthropogenic climate variability. The conventional view of the climate development during the last millennium has been that it followed a sequence of a Medieval Warm Period, a cool ‘Little Ice Age’ and a warming during the later part of the 19th century and in particular during the late 20th/early 21st centuries. However, recent research has challenged this rather simple sequence of climate development. Up to the present, it has been considered most likely that the ‘Little Ice Age’ glacial expansion in western Scandinavia was due to lower summer temperatures. Data presented here, however, indicate that the main cause of the early 18th century glacial advance in western Scandinavia was mild and humid winters associated with increased precipitation and high snowfall on the glaciers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andersen JL, Sollid JL (1971) Glacial chronology and glacial geomorphology in the marginal zones of the glaciers Midtdalsbreen and Nigardsbreen, South Norway. Nor Geogr Tidsskr 25:1–38

    Article  Google Scholar 

  • Andreassen LM, Elvehøy H, Kjøllmoen R, Engeset RV, Haakensen N (2005) Glacier mass-balance and length variations in Norway. Ann Glaciol 42:317–325

    Article  Google Scholar 

  • Bickerton RH, Matthews JA (1992) On the accuracy of lichenometric dates: an assessment based on the ‘Little Ice Age’ moraine sequence of Nigardsbreen, southern Norway. Holocene 2:227–237

    Article  Google Scholar 

  • Bickerton RH, Matthews JA (1993) ‘Little Ice Age’ variations of outlet glaciers from the Jostedalsbreen ice-cap, southern Norway: a regional lichenometric-dating study of ice-marginal moraine sequences and their climatic significance. J Quat Sci 8:45–66

    Article  Google Scholar 

  • Bond G, Showers W, Cheseby M, Lotti R, Almasi P, deMenocal P, Priore P, Cullen H, Hajadas I, Bonani G (1997) A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278:1257–1266

    Article  Google Scholar 

  • Bradley RS (2000) Climate paradigms for the last millennium. Pages Newsl 8:2–3

    Google Scholar 

  • Briffa KR (2000) Annual climate variability in the Holocene: interpreting the message of ancient trees. Quat Sci Rev 19: 87–105

    Article  Google Scholar 

  • Briffa KR, Jones PD, Pilcher JR, Hughes MK (1988) Reconstructing summer temperatures in northern Fennoscandia back to A.D. 1700 using tree-ring data from Scots Pine. Arct Alp Res 20:385–394

    Article  Google Scholar 

  • Briffa KR, Jones PD, Bartholin TS, Eckstein D, Schweingruber FH, Karlén W, Zetterberg P, Eronen M (1992) Fennoscandian summers from AD 500: temperature changes on short and long timescales. Clim Dyn 7:111–119

    Article  Google Scholar 

  • Briffa KR, Osborn TJ, Schweingruber FH, Jones PD, Shiyatov SG, Vaganov EA (2002) Tree-ring width and density data around the Northern Hemispher: part 1, local and regional climate signals. Holocene 12:737–757

    Article  Google Scholar 

  • Campbell ID, Campbell C, Apps MJ, Rutter NW, Bush ABG (1998) Late Holocene ∼1500 yr climatic periodicities and their implications. Geology 26:471–473

    Article  Google Scholar 

  • Casty C, Handorf D, Raible CC, Gonzáles-Rouco JF, Weisheimer A, Xoplaki E, Luterbacher J, Dethlof K, Wanner H (2005) Recurrent climate winter regimes in reconstructed and modelled 500 hPa geopotential height fields over the North Atlantic/European sector 1650–1990. Clim Dyn 24:809–822

    Article  Google Scholar 

  • Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277

    Article  Google Scholar 

  • Crowley TJ, Lowery TS (2000) How warm was the medieval warm period? Ambio 29:51–54

    Article  Google Scholar 

  • Deser C, Walsh JE, Timlin MS (2000) Arctic sea ice variability in the context of recent atmospheric circulation trends. J Clim 13:617–633

    Article  Google Scholar 

  • Dyurgerov MB, Meier MF (2000) Twentieth century climate change: evidence from small glaciers. Proc Natl Acad Sci USA 97:1406–1411

    Article  Google Scholar 

  • Eronen M, Hyvärinen H, Zetterberg P (1999) Holocene humidity changes in northern Finnish Lapland inferred from lake sediments and submerged Scots pines dated by tree-rings. Holocene 9:569–580

    Article  Google Scholar 

  • Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295:2250–2253

    Article  Google Scholar 

  • Foss M (1750, printed in 1820) Justedalsens kortelige beskrivelse. Magazin for Danmarks og Norges topografiske, oekonomiske og statistiske Beskrivelse, 1–44. Electronic version by Oddmund L. Hoel, November 2002

  • Glueck MF, Stockton CW (2001) Reconstruction of the North Atlantic Oscillation, 1429–1983. Int J Clim 21:1453–1465

    Article  Google Scholar 

  • Grove JM (1988) The Little Ice Age. Methuen, London

    Google Scholar 

  • Grove JM (2001) The initiation of the “Little Ice Age” in regions round the North Atlantic. Clim Change 48:53–82

    Article  Google Scholar 

  • Grove JM (2004) ‘Little Ice Ages’—ancient and modern, vol I and II. Routledge, London

    Google Scholar 

  • Grove JM, Battagel A (1983) Tax records from western Norway, as an index of Little Ice Age environmental and economic deterioration. Clim Change 5:265–282

    Article  Google Scholar 

  • Grove JM, Switsur R (1994) Glacial geological evidence for the Medieval warm period. Clim Change 26:143–169

    Article  Google Scholar 

  • Grudd H, Briffa K, Karlén W, Bartholin T, Jones PD, Kromer B (2002) A 7400-year tree-ring chronology in northern Swedish Lapland: natural climatic variability expressed on annual to millennial timescales. Holocene 12:657–665

    Article  Google Scholar 

  • Gunnarson B, Linderholm HW (2002) Low-frequency summer temperature variation in central Sweden since the tenth century inferred from tree rings. Holocene 12:667–671

    Article  Google Scholar 

  • Helama S, Lindholm M, Timonen M, Meriläinen J, Eronen M (2002) The supra-long Scots pine tree-ring record for Finnish Lapland: part 2, interannual to centennial variability in summer temperatures for 7500 years. Holocene 12:681–687

    Article  Google Scholar 

  • Holzhauser H, Magny M, Zumbühl HJ (2005) Glacier and lake-level variations in west-central Europe over the last 3500 years. Holocene 15:789–801

    Article  Google Scholar 

  • Hughes MK, Diaz HF (1994) Was there a “Medieval warm Period” and if so, where and when? Clim Change 26:109–142

    Article  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679

    Article  Google Scholar 

  • Hurrel JW, van Loon H (1997) Decadal variations in climate associated with the North Atlantic Oscillation. Clim Change 36:301–326

    Article  Google Scholar 

  • Hurrell JW, Kushnir Y, Ottesen G, Visbeck M (2003) The North Atlantic Oscillation—climatic significance and environmental impact. Geophys Monogr 134:279

    Google Scholar 

  • Ingram MJ, Underhill DJ, Wigley TML (1978) Historical climatology. Nature 276:329–334

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Summary for policy makers. Geneva, 18 p

  • Jansen E, Overpeck J, Briffa KR, Duplessy J-C, Joos F, Masson-Delmotte V, Olago D, Otto-Bliesner B, Peltier WR, Rahmstorf S, Ramesh R, Raynaud D, Rind D, Solomina O, Villalaba R, Zhang D (2007) Palaeoclimate. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK/New York, pp 433–497

    Google Scholar 

  • Jones PD, Mann ME (2004) Climate over past millennia. Rev of Geophys 42. doi:10.1029/2003RG000143

  • Jones PD, Jonsson T, Wheeler D (1997) Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-west Iceland. Int J Clim 17:1433–1450

    Article  Google Scholar 

  • Kalela-Brundin M (1999) Climatic information from tree-rings of Pinus sylvestris L. and reconstruction of summer temperatures back to AD 1500 in Femundsmarka, eastern Norway, using partial least squares regression (PLS) analysis. Holocene 9:59–77

    Article  Google Scholar 

  • Kirchhefer AJ (2001) Reconstruction of summer temperatures from tree-rings of Scots pine (Pinus sylvestris L.) in coastal northern Norway. Holocene 11:41–52

    Article  Google Scholar 

  • Koch L (1945) The East Greenland ice. Medd om Grønland 130(3):1–323

    Google Scholar 

  • Koslowski G, Glaser R (1999) Variations in reconstructed ice winter severety in the western Baltic from 1501 to 1995, and their implications for the North Atlantic Oscillation. Clim Change 41:175–191

    Article  Google Scholar 

  • Kushnir Y (1994) Interdecadal variations in the North Atlantic sea surface temperature and associated atmospheric conditions. J Clim 7:141–157

    Article  Google Scholar 

  • Kushnir Y, Wallace JM (1989) Low-frequency variability in the Northern Hemisphere winter: geographical distribution, structure and time-scale dependence. J Atmos Sci 46:3122–3141

    Article  Google Scholar 

  • Lamb HH (1963) On the nature of certain climatic epochs which differed from the modern (1900–39) normal. In: Changes of climate (proceedings of the WMO-UNESCO Rome 1961 symposium on changes of climate), UNESCO arid zone research series XX. UNESCO, Paris, pp 125–150

  • Lamb HH (1965) The early medieval warm epoch and its sequel. Palaeogeogr, Palaeoclimatol, Palaeoecol 1:13–37

    Article  Google Scholar 

  • Lamb HH (1977) Climate: present, past and future 2, Climatic history and the future. Methuen, London

    Google Scholar 

  • Lean J, Beer J, Bradley R (1995) Reconstruction of solar irradiance since 1610: implications for climate change. Geophys Res Lett 22:3195–3198

    Article  Google Scholar 

  • Lowell TV (2000) As climate changes, so do glaciers. Proc Natl Acad Sci USA 97:1351–1354

    Article  Google Scholar 

  • Luterbacher J, Xoplaki E, Dietrich D, Jones PD, Davies TD, Portis D, Gonzalez-Rouco JF, von Storch H, Gyalistras D, Casty C, Wanner H (2002) Extending North Atlantic Oscillation reconstructions back to 1500. Atmos Sci Lett. doi:10.1006/asle.2001.0044

  • Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303:1499–1503

    Article  Google Scholar 

  • Manley G (1953) The mean temperature of Central England, 1698 to 1952. QJR Meteorol Soc 79:242–261

    Article  Google Scholar 

  • Manley G (1974) Central England temperatures: monthly means 1659 to 1973. QJR Meteorol Soc 100:389–405

    Article  Google Scholar 

  • Mann ME, Jones PD (2003) Global surface temperatures over the past two millennia. Geophys Res Lett 30. doi:10.1029/2003GL017814

  • Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787

    Article  Google Scholar 

  • Mann ME, Bradley RS, Hughes MK (1999) Northern Hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations. Geophys Res Lett 26:759–762

    Article  Google Scholar 

  • Matthes FE (1939) Report of the Committee on Glaciers, April 1939. Trans Am Geophys Union 20:518–523

    Google Scholar 

  • Matthews JA, Briffa KR (2005) The ‘Little Ice Age’: re-evaluation of an evolving concept. Geogr Ann 87(A):17–36

    Article  Google Scholar 

  • Mayewski PA, Rohling EE, Stager JC, Karlén W, Maasch KA, Meeker LD, Meyerson EA, Gasse F, van Kreveld S, Holmgren K, Lee-Torp J, Rosqvist G, Rack F, Staubwasser M, Schneider RR, Steig EJ (2004) Holocene climate variability. Quat Res 62:243–255

    Article  Google Scholar 

  • Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlén W (2005a) Highly variable Northern Hemisphere temperature reconstructed from low- and high-resolution proxy data. Nature 433:613–617

    Article  Google Scholar 

  • Moberg A, Tuomenvirta H, Nordli Ø (2005b) Recent climatic trends. In: Seppälä M (ed) The physical geography of Fennoscandia, chap 7. The Oxford Regional Environmental Series. Oxford University Press, Oxford, pp 113–133

    Google Scholar 

  • Nesje A (1994) A gloomy 250-year memory; the glacier destruction of the Tungøyane farm in Oldedalen, western Norway, 12 December 1743. Nor Geogr Tidsskr 48:133–135

    Article  Google Scholar 

  • Nesje A (2005) Briksdalsbreen in western Norway: AD 1900–2004 frontal fluctuations as a combined effect of variations in winter precipitation and summer temperature. Holocene 15:1245–1252

    Article  Google Scholar 

  • Nesje A, Dahl SO (2003) ‘The Little Ice Age’—only temperature? Holocene 13:139–145

    Article  Google Scholar 

  • Nesje A, Lie Ø, Dahl SO (2000) Is the North Atlantic Oscillation reflected in Scandinavian glacier mass balance records? J Quat Sci 15:587–601

    Article  Google Scholar 

  • Nordli PØ, Lie Ø, Nesje A, Dahl SO (2003) Spring-summer temperature reconstruction in western Norway 1734–2003: a data-synthesis approach. Int J Clim 23:1821–1841

    Article  Google Scholar 

  • Oerlemans J (2005) Extracting a climate signal from 169 glacier records. Science 308:5722

    Article  Google Scholar 

  • Ogilvie AEJ (1992) Documentary evidence for the change in the climate of Iceland, A.D. 1500–1800. In: Bradley RS, Jones PD (eds) Climate since A.D. 1500. Routledge, London, pp 92–117

    Google Scholar 

  • Ogilvie AEJ, Jónsdóttir I (1996) Sea-ice incidence off the coast of Iceland A.D. 1601–1850: evidence from historical data and early sea-ice maps. In: 26th international arctic workshop, arctic and alpine environments, past and present. Program with abstracts INSTAAR, 14–16 March, 1996. Boulder, Colorado, pp 109–110

  • Osborn TJ (2006) Recent variations in the winter North Atlantic Oscillation. Weather 61:353–355

    Article  Google Scholar 

  • Osborn TJ, Briffa KR (2006) The spatial extent of 20th-century warmth in the context of the past 1200 years. Science 311:841–844

    Article  Google Scholar 

  • Østrem G, Liestøl O, Wold B (1977) Glaciological investigations at Nigardsbreen, Norway. Nor Geogr Tidsskr 30:187–209

    Article  Google Scholar 

  • Parker DE, Horton EB (2005) Uncertainties in Central England temperature 1878–2003 and some improvements to the maximum and minimum series. Int J Clim 25:1173–1188

    Article  Google Scholar 

  • Parker DE, Legg TP, Folland CK (1992) A new daily Central England temperature series 1772–1991. Int J Clim 12:317–342

    Article  Google Scholar 

  • Pauling A, Luterbacher J, Casty C, Wanner H (2005) Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation. Clim Dyn. doi:10.107/s00382-005-0090-8

  • Pontoppidan E (1752) Norges naturlige historie (in Danish). The natural history of Norway. 1. Copenhagen

  • Porter SC, Denton GH (1967) Chronology of neoglaciation in the North American Cordillera. Am J Sci 265:177–210

    Article  Google Scholar 

  • Reichert BK, Bengtsson L, Oerlemans J (2001) Midlatitude forcing mechanisms for glacier mass balance investigated using general circulation models. J Clim 14:3767–3784

    Article  Google Scholar 

  • Reimer PJ, Co-authors (2004) IntCal04 terrestrial radiocarbon age calibration, 26 - 0 ka BP. Radiocarbon 46:1029–1058

    Google Scholar 

  • Schweingruber FH, Bartholin T, Schär E, Briffa K (1988) Radiodensiometric-dendroclimatological conifer chronologies from Lapland (Scandinavia) and the Alps (Switzerland). Boreas 17:559–566

    Article  Google Scholar 

  • Sigtryggsson H (1972) An outline of sea ice conditions in the vicinity of Iceland. Jökull 22:1–11

    Google Scholar 

  • Six D, Reynaud L, Letréguilly A (2001) Bilans de masse des glaciers alpins et scandinaves, leurs relations avec l’oscillation du climat de l’Atlantique nord. Sci de la Terre et des planètes 333:693–698

    Google Scholar 

  • Tarand A, Nordli Ø (2001) The Tallinn temperature series reconstructed back half a millennium by use of proxy data. Clim Change 48:189–199

    Article  Google Scholar 

  • Thun T (2002) Dendrochronological constructions of Norwegian conifer chronologies providing dating of historical material. Dr. philos. Thesis. Norwegian University of Science and Technology (NTNU), Trondheim

  • van den Dool HM, Krijnen HJ, Schuurmans CJE (1978) Average winter temperatures at De Bilt (The Netherlands), 1634–1977. Clim Change 1:319–330

    Article  Google Scholar 

  • van Loon H, Rogers JC (1978) The seesaw in winter temperature between Greenland and Northern Europe. Part I. General description. Mon Weather Rev 106:296–310

    Article  Google Scholar 

  • Vinje T (1998) Barents Sea ice edge variations over the past 400 years. Extended abstract. In: Report of the ACSYS Workshop on sea ice charts of the Arctic—scientific achievements from the first 400 years. WMO/TD No. 949

  • Walker GT, Bliss EW (1932) World weather V. Mem R Meteorol Soc 4:53–84

    Google Scholar 

  • Wanner H, Holzhauser H, Pfister C, Zumbühl H (2000) Interannual to century scale climate variability in the European Alps. Erdkunde 54:62–69

    Article  Google Scholar 

  • Xoplaki E, Luterbacher J, Paeth H, Dietrich D, Steiner N, Grosjean M, Wanner H (2005) European spring and autumn temperature variability and change of extremes over the last half millennium. Geophys Res Lett 32:L15713. doi:10.1029/2005GL023424

    Article  Google Scholar 

Download references

Acknowledgements

The pine stump in the glacier foreland of Nigardsbreen was found by Frank Smedgård, who is thanked for making the stump available for radiocarbon dating. Two anonymous referees are thanked for their comments and suggestions of how to improve the manuscript. Eystein Jansen is thanked for commenting on the final version of the manuscript. This is publication no. A175 from the Bjerknes Centre for Climate Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nesje.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nesje, A., Dahl, S.O., Thun, T. et al. The ‘Little Ice Age’ glacial expansion in western Scandinavia: summer temperature or winter precipitation?. Clim Dyn 30, 789–801 (2008). https://doi.org/10.1007/s00382-007-0324-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-007-0324-z

Keywords

Navigation