Skip to main content

Advertisement

Log in

A roadmap to disentangling ecogeographical patterns of spatial synchrony in dendrosciences

  • Review
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

A systematic assessment of spatial synchrony in tree growth, a fundamental feature of spatiotemporal forest dynamics, can provide valuable insights into complex tree reactions across species and environmental gradients.

Abstract

The concept of spatial synchrony in ecology refers to the presence of coordinated time fluctuations in certain characteristics that can be observed in plant and animal communities inhabiting an area. It is a well-known phenomenon common to virtually every taxon, but comparatively little attention has been given to the study of the temporal coherence of forest tree performance across biogeographical gradients. In forest ecosystems, tree growth dynamics is primarily driven by climatic variability (i.e., the Moran effect). Due to rapid climate change, trees are increasingly pushed to their physiological limits up to the level that many populations are facing immediate risk of extinction. The characterization of synchrony patterns in tree growth can provide clues on the relevance of emerging climatic threats on forests, as new combinations of precipitation and temperature are entraining tree performance worldwide. In this regard, comprehensive and systematic approaches to analyse spatiotemporal dynamics of tree growth are needed. Here, we present a methodology for disentangling and interpreting how the variability and common signal strength of tree growth (or other traits) are structured in tree-ring networks. It is grounded on mixed modelling principles and broadens well-known theoretical principles in dendrosciences. Based on this approach, we describe the essential properties of spatial synchrony in tree growth at multiple geographical scales. We also discuss the potential of this methodology to discern early warning signals of climate change impacts on forest ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Scopus

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aerts R, Cornelissen JHC, Dorrepaal E (2006) Plant performance in a warmer world: general responses of plants from cold, northern biomes and the importance of winter and spring events. Plant Ecol 182:65–77

    Google Scholar 

  • Aitken SN, Bemmels JB (2016) Time to get moving: assisted gene flow of forest trees. Evol Appl 9:271–290

    Article  PubMed  Google Scholar 

  • Alía R, Moro J, Denis JB (1997) Performance of Pinus pinaster provenances in Spain: interpretation of the genotype by environment interaction. Can J For Res 27:1548–1559

    Article  Google Scholar 

  • Allen CD, Breshears DD, McDowell NG (2015) On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6:art129

    Article  Google Scholar 

  • Anderegg WRL, Berry JA, Smith DD, Sperry JS, Anderegg LDL, Fieldb CB (2012) The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proc Natl Acad Sci USA 109:233–237

    Article  CAS  PubMed  Google Scholar 

  • Andreu L, Gutiérrez E, Macias M, Ribas M, Bosch O, Camarero JJ (2007) Climate increases regional tree-growth variability in Iberian pine forests. Glob Change Biol 13:804–815

    Google Scholar 

  • Babst F, Carrer M, Urbinati C, Neuwirth B, Frank DC (2012) 500 years of regional forest growth variability and links to climatic extreme events in Europe. Environ Res Lett 7:045705

    Article  Google Scholar 

  • Babst F, Poulter B, Trouet V, Tan K, Neuwirth B, Wilson R, Carrer M, Grabner M, Tegel W, Levanič T, Panayotov M, Urbinati C, Bouriaud O, Ciais P, Frank DC (2013) Site- and species-specific responses of forest growth to climate across the European continent. Glob Ecol Biogeogr 22:706–717

    Article  Google Scholar 

  • Babst F, Poulter B, Bodesheim P, Mahecha MD, Frank DC (2017) Improved tree-ring archives will support earth-system science. Nat Ecol Evol 1:0008

    Article  Google Scholar 

  • Badeck FW, Bondeau A, Bottcher K, Doktor D, Lucht W, Schaber J, Sitch S (2004) Responses of spring phenology to climate change. New Phytol 162:295–309

    Article  Google Scholar 

  • Barber V, Juday GP, Finney B (2000) Reduced growth of Alaska white spruce in the twentieth century from temperature-induced drought stress. Nature 405:668–672

    Article  CAS  PubMed  Google Scholar 

  • Begum S, Nakaba S, Yamagishi Y, Oribe Y, Funada R (2013) Regulation of cambial activity in relation to environmental conditions: understanding the role of temperature in wood formation of trees. Physiol Plant 147:46–54

    Article  CAS  PubMed  Google Scholar 

  • Bernal M, Estiarte M, Penuelas J (2011) Drought advances spring growth phenology of the Mediterranean shrub Erica multiflora. Plant Biol 13:252–257

    Article  CAS  PubMed  Google Scholar 

  • Bigelow SW, Papaik MJ, Caum C, North MP (2014) Faster growth in warmer winters for large trees in a Mediterranean-climate ecosystem. Clim Change 123:215–224

    Article  Google Scholar 

  • Bjørnstad ON, Ims RA, Lambin X (1999) Spatial population dynamics: analyzing patterns and processes of population synchrony. Trends Ecol Evol 14:427–431

    Article  PubMed  Google Scholar 

  • Bowman DMJS., Brienen RJW, Gloor E, Phillips OL, Prior LD (2013) Detecting trends in tree growth: not so simple. Trends Plant Sci 18:11–17

    Article  CAS  PubMed  Google Scholar 

  • Brienen RJW, Gloor E, Zuidema PA (2012) Detecting evidence for CO2 fertilization from tree ring studies: the potential role of sampling biases. Glob Biogeochem Cycles 26:GB1025

    Article  CAS  Google Scholar 

  • Briffa KR, Jones PD (1990) Basic chronology statistics and assessment. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: applications in the environmental sciences. Kluwer Academic Publisher, Dordrecht, pp 137–152

    Google Scholar 

  • Briffa KR, Jones PD, Schweingruber FH, Osborn TJ (1998) Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years. Nature 393:450–455

    Article  CAS  Google Scholar 

  • Briffa KR, Osborn TJ, Schweingruber FH, Jones PD, Shiyatov SG, Vaganov EA (2002) Tree-ring width and density data around the Northern Hemisphere: Part 1, local and regional climate signals. Holocene 12:737–757

    Article  Google Scholar 

  • Briffa KR, Shishov VV, Melvin TM, Vaganov EA, Grudd H, Hantemirov RM, Eronen M, Naurzbaev MM (2008) Trends in recent temperature and radial tree growth spanning 2000 years across northwest Eurasia. Philos Trans R Soc B 363:2271–2284

    Article  Google Scholar 

  • Carrer M, Urbinati C (2001) Spatial analysis of structural and tree-ring related parameters in a timberline forest in the Italian Alps. J Veg Sci 12:643–652

    Article  Google Scholar 

  • Carrer M, Urbinati C (2006) Long-term change in the sensitivity of tree-ring growth to climate forcing in Larix decidua. New Phytol 170:861–871

    Article  PubMed  Google Scholar 

  • Case MJ, Peterson DL (2005) Fine-scale variability in growth–climate relationships of Douglas-fir, North Cascade Range, Washington. Can J For Res 35:2743–2755

    Article  Google Scholar 

  • Case MJ, Peterson DL (2007) Growth–climate relations of Lodgepole Pine in the North Cascades National Park, Washington. Northwest Sci 81:62–75

    Article  Google Scholar 

  • Cernusak LA, English NB (2015) Beyond tree-ring widths: stable isotopes sharpen the focus of climate response of temperate forest trees. Tree Physiol 35:1–3

    Article  CAS  PubMed  Google Scholar 

  • Cherubini P, Dobbertin M, Innes JL (1998) Potential sampling bias in long-term forest growth trends reconstructed from tree rings: a case study from the Italian Alps. For Ecol Manag 109:103–118

    Article  Google Scholar 

  • Ciais P, Reichstein M, Viovy N et al (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    Article  CAS  PubMed  Google Scholar 

  • Defriez EJ, Reuman DC (2017) A global geography of synchrony for terrestrial vegetation. Glob Ecol Biogeogr 26:878–888

    Article  Google Scholar 

  • den Boer PJ (1981) On the survival of populations in a heterogeneous and variable environment. Oecologia 50:39–53

    Article  Google Scholar 

  • Di Filippo A, Biondi F, Čufar K, de Luis M, Grabner M, Maugeri M, Saba EP, Schirone B, Piovesan G (2007) Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: spatial and altitudinal climatic signals identified through a tree-ring network. J Biogeogr 34:1873–1892

    Article  Google Scholar 

  • Dorado-Liñán I, Zorita E, Martínez-Sancho E, Gea-Izquierdo G, Di Filippo A, Gutiérrez E, Levanic T, Piovesan G, Vacchiano G, Zang C, Zlatanov T, Menzel A (2017) Large-scale atmospheric circulation enhances the Mediterranean East–West tree growth contrast at rear-edge deciduous forests. Agric For Meteorol 239:86–95

    Article  Google Scholar 

  • Earn DJ, Levin SA, Rohani P (2000) Coherence and conservation. Science 290:1360–1364

    Article  CAS  PubMed  Google Scholar 

  • Eckstein D, Bauch J (1969) Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussagesicherheit. Forstwissenschaftliches Centralblatt 88:230–250

    Article  Google Scholar 

  • Esper J, Benz M, Pederson N (2012) Influence of wood harvest on tree-ring time-series of Picea abies in a temperate forest. For Ecol Manag 284:86–92

    Article  Google Scholar 

  • Feliksik E (1993) Teleconnection of the radial growth of fir (Abies alba Mill.) within central Europe. Dendrochronologia 11:171–175

    Google Scholar 

  • Frank D, Esper J (2005) Characterization and climate response patterns of a high-elevation, multi-species tree-ring network in the European Alps. Dendrochronologia 22:107–121

    Article  Google Scholar 

  • Friedman JH (1984) A variable span smoother. Stanford University, Stanford

    Book  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, London

    Google Scholar 

  • Galván JD, Camarero JJ, Ginzler C, Büntgen U (2014) Spatial diversity of recent trends in Mediterranean tree growth. Environ Res Lett 9:084001

    Article  Google Scholar 

  • Gessler A, Ferrio JP, Hommel R, Treydte K, Werner R, Monson R (2014) Stable isotopes in tree rings: toward a mechanistic understanding of fractionation and mixing processes from the leaves to the wood. Tree Physiol 34:796–818

    Article  CAS  PubMed  Google Scholar 

  • Gordo O, Sanz JJ (2009) Long-term temporal changes of plant phenology in the Western Mediterranean. Glob Change Biol 15:1930–1948

    Article  Google Scholar 

  • Grissino-Mayer HD, Fritts HC (1997) The International Tree-Ring Data Bank: an enhanced global database serving the global scientific community. Holocene 7:235–238

    Article  Google Scholar 

  • Gutiérrez E, Campelo F, Camarero JJ, Ribas M, Muntán E, Nabais C, Freitas H (2011) Climate controls act at different scales on the seasonal pattern of Quercus ilex L. stem radial increments in NE Spain. Trees 25:637–646

    Article  Google Scholar 

  • Hanski I, Woiwod IP (1993) Spatial synchrony in the dynamics of moth and aphid populations. J Anim Ecol 62:656–668

    Article  Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Climatol 34:623–642

    Article  Google Scholar 

  • Haydon DT, Steen H (1997) The effects of large- and small-scale random events on the synchrony of metapopulation dynamics: a theoretical analysis. Proc R Soc Lond Ser B Biol Sci 264:1375–1381

    Article  Google Scholar 

  • Heino M, Kaitala V, Ranta E, Lindström J (1997) Synchronous dynamics and rates of extinction in spatially structured populations. Proc R Soc Lond B 264:481–486

    Article  Google Scholar 

  • Hughes MK, Kelly PM, Pilcher JR, La Marche Jr VC (1982) Climate from tree rings. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jennrich RI, Schluchter MD (1986) Unbalanced repeated-measures models with structured covariance matrices. Biometrics 42:805–820

    Article  CAS  PubMed  Google Scholar 

  • Kherchouche D, Kalla M, Gutiérrez EM, Attalah S, Bouzghaia M (2012) Impact of droughts on Cedrus atlantica forests dieback in the Aurès (Algeria). J Life Sci 6:1262–1269

    Google Scholar 

  • Kish L (1965) Sampling organizations and groups of unequal sizes. Am Sociol Rev 30:564–572

    Article  CAS  PubMed  Google Scholar 

  • Klein T (2014) The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Funct Ecol 28:1313–1320

    Article  Google Scholar 

  • Knorre AA, Kirdyanov AV, Vaganov EA (2006) Climatically induced interannual variability in aboveground production in forest–tundra and northern taiga of central Siberia. Oecologia 147:86–95

    Article  PubMed  Google Scholar 

  • Koenig WD (1999) Spatial autocorrelation of ecological phenomena. Trends Ecol Evol 14:22–26

    Article  CAS  PubMed  Google Scholar 

  • Koenig WD (2002) Global patterns of environmental synchrony and the Moran effect. Ecography 25:283–288

    Article  Google Scholar 

  • Koenig WD, Knops JMH (1998a) Testing for spatial autocorrelation in ecological studies. Ecography 21:423–429

    Article  Google Scholar 

  • Koenig WD, Knops JMH (1998b) Scale of mast-seeding and tree-ring growth. Nature 396:225–226

    Article  CAS  Google Scholar 

  • Läänelaid A, Helama S, Kull A, Timonen M, Jaagus J (2012) Common growth signal and spatial synchrony of the chronologies of tree-rings from pines in the Baltic Sea region over the last nine centuries. Dendrochronologia 30:147–155

    Article  Google Scholar 

  • LaMarche VC, Hirschboeck KK (1984) Frost rings in trees as records of major volcanic eruptions. Nature 307:121–126

    Article  Google Scholar 

  • Latte N, Lebourgeois F, Claessens H (2015) Increased tree-growth synchronization of beech (Fagus sylvatica L.) in response to climate change in northwestern Europe. Dendrochronologia 33:69–77

    Article  Google Scholar 

  • Liebhold A, Koenig WD, Bjørnstad ON (2004) Spatial synchrony in population dynamics. Annu Rev Ecol Evol Syst 35:467–490

    Article  Google Scholar 

  • Littell JS, Peterson DL, Tjoelker M (2008) Douglas-fir growth in mountain ecosystems: water limits tree growth from stand to region. Ecol Monogr 78:349–368

    Article  Google Scholar 

  • Loveless MD, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Annu Rev Ecol Syst 15:65–95

    Article  Google Scholar 

  • Macias M, Andreu L, Bosch O, Camarero JJ, Gutiérrez E (2006) Increasing aridity is enhancing silver fir (Abies alba Mill.) water stress in its south-western distribution limit. Clim Change 79:289–313

    Article  Google Scholar 

  • Mátyás C (1996) Climatic adaptation of trees: rediscovering provenance tests. Euphytica 92:45–54

    Article  Google Scholar 

  • McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Rev 23:771–801

    Article  Google Scholar 

  • Menzel A, Sparks T, Estrella N et al (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1969–1976

    Article  Google Scholar 

  • Millar CI, Stephenson NL, Stephens SL (2007) Climate change and forests of the future: managing in the face of uncertainty. Ecol Appl 17:2145–2151

    Article  PubMed  Google Scholar 

  • Moran PAP (1953) The statistical analysis of the Canadian lynx cycle. II. Synchronization and meteorology. Aust J Zool 1:291–298

    Article  Google Scholar 

  • Nakawatase JM, Peterson DL (2006) Spatial variability in forest growth–climate relationships in the Olympic Mountains, Washington. Can J For Res 36:77–91

    Article  Google Scholar 

  • Natalini F, Correia AC, Vázquez-Piqué J, Alejano R (2015) Tree rings reflect growth adjustments and enhanced synchrony among sites in Iberian stone pine (Pinus pinea L.) under climate change. Ann For Sci 72:1023–1033

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Pease CP, Lande R, Bull JJ (1989) A model of population growth, dispersal and evolution in a changing environment. Ecology 70:1657–1664

    Article  Google Scholar 

  • Peterson DW, Peterson DL (2001) Mountain hemlock growth responds to climatic variability at annual and decadal time scales. Ecology 82:3330–3345

    Article  Google Scholar 

  • Planells O, Gutiérrez E, Helle G, Schleser GH (2009) A forced response to twentieth century climate conditions of two Spanish forests inferred from widths and stable isotopes of tree rings. Clim Change 97:229–252

    Article  Google Scholar 

  • Polechová J, Barton N, Marion G (2009) Species’ range: adaptation in space and time. Am Nat 174:E186–E204

    Article  PubMed  Google Scholar 

  • Ranta E, Kaitala V, Lindström J, Helle E (1997) The Moran effect and synchrony in population dynamics. Oikos 78:136–142

    Article  Google Scholar 

  • Restaino CM, Peterson DL, Littell J (2016) Increased water deficit decreases Douglas fir growth throughout western US forests. Proc Natl Acad Sci USA 113:9557–9562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reuman DC, Zhao L, Shepphard LW, Reid PC, Cohen JE (2017) Synchrony affects Taylor’s law in theory and data. Proc Natl Acad Sci USA 114:6788–6793

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reyer CPO, Brouwers N, Rammig A, Brook BW, Epila J, Grant RF, Holmgren M, Langerwisch F, Leuzinger S, Lucht W, Medlyn B, Pfeifer M, Steinkamp J, Vanderwel MC, Verbeeck H, Villela DM (2015) Forest resilience and tipping points at different spatio-temporal scales: approaches and challenges. J Ecol 103:5–15

    Article  Google Scholar 

  • Robledo-Arnuncio JJ, Collada C, Alía R, Gil L (2005) Genetic structure of montane isolates of Pinus sylvestris L. in a Mediterranean refugial area. J Biogeogr 32:595–605

    Article  Google Scholar 

  • Rolland C (2002) Decreasing teleconnections with inter-site distance in monthly climatic data and tree-ring width networks in a mountainous Alpine area. Theor Appl Climatol 71:63–75

    Article  Google Scholar 

  • Schauber EM, Kelly D, Turchin P, Simon C, Lee WG, Allen RB, Payton IJ, Wilson PR, Cowan PE, Brockie RE (2002) Masting by eighteen New Zealand plant species: the role of temperature as a synchronizing cue. Ecology 83:1214–1225

    Article  Google Scholar 

  • Schweingruber FH, Eckstein D, Serre-Bachet F, Bräker OU (1990) Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia 8:9–38

    Google Scholar 

  • Shestakova TA, Aguilera M, Ferrio JP, Gutiérrez E, Voltas J (2014) Unravelling spatiotemporal tree-ring signals in Mediterranean oaks: a variance–covariance modelling approach of carbon and oxygen isotope ratios. Tree Physiol 34:819–838

    Article  CAS  PubMed  Google Scholar 

  • Shestakova TA, Gutiérrez E, Kirdyanov AV, Camarero JJ, Génova M, Knorre AA, Linares JC, Resco de Dios V, Sánchez-Salguero R, Voltas J (2016) Forests synchronize their growth in contrasting Eurasian regions in response to climate warming. Proc Natl Acad Sci USA 113:662–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shestakova TA, Camarero JJ, Ferrio JP, Knorre AA, Gutiérrez E, Voltas J (2017) Increasing drought effects on five European pines modulate ∆13C–growth coupling along a Mediterranean altitudinal gradient. Funct Ecol 31:1359–1370

    Article  Google Scholar 

  • Silva LCR, Anand M, Leithead MD (2010) Recent widespread tree growth decline despite increasing atmospheric CO2. PLoS One 5:e11543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sitch S, Friedlingstein P, Gruber N et al (2015) Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12:653–679

    Article  CAS  Google Scholar 

  • St. George S (2014) An overview of tree-ring width records across the Northern Hemisphere. Quat Sci Rev 95:132–150

    Article  Google Scholar 

  • Sturrock RN, Frankel SJ, Brown AV, Hennon PE, Kliejunas JT, Lewis KJ, Worrall JJ, Woods AJ (2011) Climate change and forest diseases. Plant Pathol 60:133–149

    Article  Google Scholar 

  • Tardif J, Camarero JJ, Ribas M, Gutiérrez E (2003) Spatiotemporal variability in tree growth in the Central Pyrenees: climatic and site influences. Ecol Monogr 73:241–257

    Article  Google Scholar 

  • Trouet V, Panayotov M, Ivanova A, Frank D (2012) A pan-European summer teleconnection mode recorded by a new temperature reconstruction from the northeastern Mediterranean (AD 1768–2008). Holocene 22:887–898

    Article  Google Scholar 

  • Voelker SL (2011) Age-dependent changes in environmental influences on tree growth and their implications for forest responses to climate change. In: Meinzer FC, Dawson T, Lachenbruch B (eds) Size- and age-related changes in tree structure and function. Springer, Dordrecht, pp 455–479

    Chapter  Google Scholar 

  • Walter JA, Sheppard LW, Anderson TL, Kastens JH, Bjørnstad ON, Liebhold AM, Reuman DC (2017) The geography of spatial synchrony. Ecol Lett 20:801–814

    Article  PubMed  Google Scholar 

  • Wettstein JJ, Littell JS, Wallace JM, Gedalof Z (2011) Coherent region-, species-, and frequency dependent local climate signals in Northern Hemisphere tree-ring widths. J Clim 24:5998–6012

    Article  Google Scholar 

  • Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometerology. J Appl Meteorol Climatol 23:201–213

    Article  Google Scholar 

  • Williams AP, Allen CD, Macalady AK, Griffin D, Woodhouse CA, Meko DM, Swetnam TW, Rauscher SA, Seager R, Grissino-Mayer HD, Dean JS, Cook ER, Gangodagamage C, Cai M, McDowell NG (2013) Temperature as a potent driver of regional forest drought stress and tree mortality. Nat Clim Chang 3:292–297

    Article  Google Scholar 

  • Wilmking M, D’Arrigo R, Jacoby GC, Juday GP (2005) Increased temperature sensitivity and divergent growth trends in circumpolar boreal forest. Geophys Res Lett 32:L15715

    Article  Google Scholar 

  • Zhou F, Fang K, Zhang F, Dong Z, Chen D (2016) Climate-driven synchronized growth of alpine trees in the southeast Tibetan Plateau. PLoS One 11:e0156126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

T.A.S. acknowledges support of ERANET-Mundus (European Commission). This study was supported by the project 2014 SGR1141 (Catalan Government).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana A. Shestakova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by G. Piovesan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shestakova, T.A., Gutiérrez, E. & Voltas, J. A roadmap to disentangling ecogeographical patterns of spatial synchrony in dendrosciences. Trees 32, 359–370 (2018). https://doi.org/10.1007/s00468-017-1653-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-017-1653-0

Keywords

Navigation