Skip to main content

Advertisement

Log in

A candidate for Lr19, an exotic gene conditioning leaf rust resistance in wheat

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Lr19, one of the few widely effective genes conferring resistance to leaf rust in wheat, was transferred from the wild relative Thinopyrum ponticum to durum wheat. Since Lr19 confers a hypersensitive response to the pathogen, it was considered likely that the gene would be a member of the major nucleotide-binding site (NBS)-leucine-rich repeat (LRR) plant R gene family. NBS profiling, based on PCR amplification of conserved NBS motifs, was applied to durum wheat–Th. ponticum recombinant lines involving different segments of the alien 7AgL chromosome arm, carrying or lacking Lr19. Differential PCR products were isolated and sequenced. From one such sequence (AG15), tightly linked to Lr19, a 4,121-bp full-length cDNA was obtained. Its deduced 1,258 amino acid sequence has the characteristic NBS-LRR domains of plant R gene products and includes a coiled-coil (CC) region typical of monocots. The genomic DNA sequence showed the presence of two exons and a short intron upstream of the predicted stop codon. Homology searches revealed considerable identity of AG15 with the cloned wheat resistance gene Pm3a and a lower similarity with wheat Lr1, Lr21, and Lr10. Quantitative PCR on leaf-rust-infected and non-infected Lr19 carriers proved AG15 to be constitutively expressed, as is common for R genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ayliffe MA, Lagudah ES (2004) Molecular genetics of disease resistance in cereals. Ann Bot 94:765–773

    Article  PubMed  CAS  Google Scholar 

  • Bai J, Pennill LA, Ning J, Lee SW, Ramalingam J, Webb CA, Zhao B, Sun Q, Nelson JC, Leach JE, Hulbert SH (2002) Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res 12:1871–1884

    Article  PubMed  CAS  Google Scholar 

  • Bhardwaj SC, Prashar M, Kumar S, Jain SK, Datta D (2005) Lr19 resistance in wheat becomes susceptible to Puccinia triticina in India. Plant Dis 89:1360

    Article  Google Scholar 

  • Calenge F, van Der Linden CG, van De Weg E, Schouten HJ, van Arkel G, Denancé C, Durel C-E (2005) Resistance gene analogues identified through the NBS-profiling method map close to major genes and QTL for disease resistance in apple. Theor Appl Genet 110:660–668

    Article  PubMed  CAS  Google Scholar 

  • Ceoloni C, Biagetti M, Ciaffi M, Forte P, Pasquini M (1996) Wheat chromosome engineering at the 4x level: the potential of different alien gene transfers into durum wheat. Euphytica 89:87–97

    Article  CAS  Google Scholar 

  • Ceoloni C, Vitellozzi F, Forte P, Basili F, Biagetti M, Bitti A, Delre V (1998) Wheat chromosome engineering in the light of advanced genetic and cytogenetic marker-mediated approaches. In: Lelley T (ed) Current topics in plant cytogenetics related to plant improvement. WUV-Universitätsverlag, Wien, pp 43–53

    Google Scholar 

  • Ceoloni C, Forte P, Ciaffi M, Nenno M, Bitti A, De Vita P, D'Egidio MG (2000) Chromosomally engineered durum wheat: the potential of alien gene introgressions affecting disease resistance and quality. In: Proc of the Seminar on Durum Wheat Improvement in the Mediterranean Region: New Challenges. Zaragoza (Spain), 12–14 April 2000, Options Médit A-40:363–371

  • Ceoloni C, Forte P, Gennaro A, Micali S, Carozza R, Bitti A (2005) Recent developments in durum wheat chromosome engineering. Cytogenet Genome Res 109:328–344

    Article  PubMed  CAS  Google Scholar 

  • Chen YP, Wang HZ, Cao AZ, Wang CM, Chen PD (2006) Cloning of a resistance gene analog from wheat and development of a codominant PCR marker for Pm21. J Integrat Plant Biol 48:715–721

    Article  CAS  Google Scholar 

  • Cloutier S, McCallum BD, Loutre C, Banks TW, Wicker T, Feuillet C, Keller B, Jordan MC (2007) Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol Biol 65:93–106

    Article  PubMed  CAS  Google Scholar 

  • Cole C, Barber JD, Barton GJ (2008) The Jpred 3 secondary structure prediction server. Nucleic Acids Res 36(Web Server issue):W197–W201

    Article  PubMed  CAS  Google Scholar 

  • De Majnik J, Ogbonnaya FC, Moullet O, Lagudah ES (2003) The Cre1 and Cre3 nematode resistance genes are located at homeologous loci in the wheat genome. Mol Plant-Microbe Interact 16:1129–1134

    Article  PubMed  Google Scholar 

  • Dilbirligi M, Erayman M, Sandhu D, Sidhu D, Gill KS (2004) Identification of wheat chromosomal regions containing expressed resistance genes. Genetics 166:461–481

    Article  PubMed  CAS  Google Scholar 

  • Dubcovsky J, Fu D, Uauy C, Blechl A, Epstein L, Chen X, Distelfeld A, Sela H, Fahima T (2009) Positional cloning of a QTL for slow rusting in wheat. W426. Plant and Animal Genomes XVII Conference, San Diego, California, USA.

  • Dvorak J, Knott DR (1977) Homoeologous chromatin exchange in radiation-induced gene transfer. Can J Genet Cytol 19:125–131

    Google Scholar 

  • Eizenga GC (1987) Locating the Agropyron segment in wheat-Agropyron 'transfer No. 12'. Genome 29:365–366

    Google Scholar 

  • Ellis J, Dodds P, Pryor T (2000) Structure, function and evolution of plant disease resistance genes. Curr Opin Plant Biol 3:278–284

    Article  PubMed  CAS  Google Scholar 

  • Elyasi-Gomari S, Panteleev VK (2006) Virulence polymorphism of Puccinia recondita f. sp. tritici and effectiveness of Lr genes for leaf rust resistance of wheat in Ukraine. Plant Dis 90:853–857

    Article  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Amer Naturalist 125:1–15

    Article  Google Scholar 

  • Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100:15253–15258

    Article  PubMed  CAS  Google Scholar 

  • Flor HH (1971) Current status of the gene-for-gene concept. Ann Rev Phytopathol 9:275–296

    Article  Google Scholar 

  • Gennaro A, Borrelli GM, D’Egidio MG, De Vita P, Ravaglia S, Ceoloni C (2003) A chromosomally engineered durum wheat–Thinopyrum ponticum recombinant line with novel and promising attributes for varietal development. In: Pogna NE, Romanò M, Pogna EA, Galterio G (eds): Proc 10th Int Wheat Genet Symp, vol 2. S.I.M.I., Rome, Italy, 2003, pp. 881-883

  • Gennaro A, Forte P, Carozza R, Savo Sardaro ML, Ferri D, Bitti A, Borrelli GM, D’Egidio MG, Ceoloni C (2007) Pyramiding different alien chromosome segments in durum wheat: feasibility and breeding potential. Isr J Plant Sci 55:267–276

    Article  Google Scholar 

  • Gennaro A, Koebner RMD, Janni M, Ceoloni C (2008) Identification of candidate sequences for the Lr19 and Yp genes transferred from Thinopyrum ponticum to durum wheat by chromosome engineering. P312. Plant and Animal Genomes XVI Conference, San Diego, California, USA.

  • Germán S, Barcellos A, Chaves M, Kohli M, Campos P, Viedma L (2007) The situation of common wheat rusts in the Southern Cone of America and perspectives for control. Austr J Agric Res 58:620–630

    Article  Google Scholar 

  • Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, Colas I, Moore G (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439:749–752

    Article  PubMed  CAS  Google Scholar 

  • Groenewald JZ, Fourie M, Marais AS, Marais GF (2005) Extension and use of a physical map of the Thinopyrum-derived Lr19 translocation. Theor Appl Genet 112:131–138

    Article  PubMed  CAS  Google Scholar 

  • Hanzalová A, Husza J, Bartos P, Herzová E (2008) Occurrence of wheat leaf rust (Puccinia triticina) races and virulence changes in Slovakia in 1994–2004. Biologia 63:171–174

    Article  Google Scholar 

  • Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164:655–664

    PubMed  CAS  Google Scholar 

  • Huerta-Espino J, Singh RP (1994) First report of virulence to wheat with leaf rust resistance gene Lr19 in Mexico. Plant Dis 78:640

    Google Scholar 

  • Hulbert SH, Craig AW, Smith SM, Sun Q (2001) Resistance gene complexes: evolution and utilization. Ann Rev Phytopathol 39:285–312

    Article  CAS  Google Scholar 

  • Kim B-R, Nam H-Y, Kim S-U, Kim S-I, Chang Y-J (2003) Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnol Lett 25:1869–1872

    Article  PubMed  CAS  Google Scholar 

  • Knott DR (1980) Mutation of a gene for yellow pigment linked to Lr19 in wheat. Can J Genet Cytol 22:651–654

    CAS  Google Scholar 

  • Knott DR (1984) The genetic nature of mutations of a gene for yellow pigment linked to Lr19 in ‘Agatha’ wheat. Can J Genet Cytol 26:392–393

    Google Scholar 

  • Knott DR (1989) Genetic analysis of resistance. In: The wheat rusts—Breeding for resistance. Springer, Berlin, pp 58–83

  • Kolmer JA, Jin Y, Long DL (2007) Wheat leaf and stem rust in the United States. Austr J Agric Res 58:631–638

    Article  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Selter LL, Keller B (2009) A multi-pathogen resistance QTL in wheat is controlled by a single gene. W424. Plant and Animal Genomes XVII Conference, San Diego, California, USA.

  • Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Lind V, Gultyaeva E (2007) Virulence frequencies of Puccinia triticina in Germany and the European regions of the Russian Federation. J Phytopathol 155:13–21

    Article  Google Scholar 

  • Mantovani P, van der Linden G, Maccaferri M, Sanguineti MC, Tuberosa R (2004) Molecular characterization of durum wheat germplasm with NBS markers as compared to AFLPs and SSRs. In: Vollmann J, Grausgruber H, Ruckenbauer P (eds) Proc 17th EUCARPIA General Congress: Genetic variation for plant breeding. University of Natural Resources and Applied Life Sciences, Vienna, p 146

  • Marais GF (1992) The modification of a common wheat—Thinopyrum distichum translocated chromosome with a locus homoeoallelic to Lr19. Theor Appl Genet 85:73–78

    Article  Google Scholar 

  • Marais GF, Marais AS, Groenwald JZ (2001) Evaluation and reduction of Lr19–149, a recombined form of the Lr19 translocation of wheat. Euphytica 121:289–295

    Article  CAS  Google Scholar 

  • Martins-Lopes P, Zhang H, Koebner R (2001) Detection of single nucleotide mutation in wheat using single strand conformation polymorphism gels. Plant Mol Biol Rep 19:159–162

    Article  CAS  Google Scholar 

  • McCallum BD, Seto-Goh P (2006) Physiologic specialization of Puccinia triticina, the causal agent of wheat leaf rust, in Canada in 2004. Can J Plant Pathol 28:566–576

    Google Scholar 

  • McCallum BD, Fetch T, Chong J (2007) Cereal rust control in Canada. Austr J Agric Res 58:639–467

    Article  Google Scholar 

  • McDowell JM, Simon SA (2006) Recent insights into R gene evolution. Mol Plant Pathol 7:437–448

    Article  CAS  Google Scholar 

  • McFadden HG, Lehmensiek A, Lagudah ES (2006) Resistance gene analogues of wheat: molecular genetic analysis of ESTs. Theor Appl Genet 113:987–1002

    Article  PubMed  CAS  Google Scholar 

  • McHale L, Tan X, Koehl P, Michelmore RW (2006) Plant NBS-LRR proteins: adaptable guards. Genome Biology 7:212

    Article  PubMed  Google Scholar 

  • McIntosh RA, Dyck PL, Green GJ (1976) Inheritance of leaf rust and stem rust resistances in wheat cultivars Agent and Agatha. Aust J Agric Res 28:37–45

    Article  Google Scholar 

  • McIntosh RA, Devos KM, Dubcovsky J, Rogers WJ, Morris CF, Appels R, Somers J, Anderson OA (2007) Catalogue of gene symbols for wheat: 2007 supplement: http://www.shigen.nig.ac.jp/wheat/komugi/genes/ macgene/supplement2007.pdf

  • Mesterházy A, Bartos P, Goyeau H, Niks R, Csosz M, Andersen O, Casulli F, Ittu M, Jones E, Manisterski J, Manninger K, Pasquini M, Rubiales D, Schachermayr G, Strzembicka A, Szunics L, Todorova M, Unger O, Vanco B, Vida G, Walther U (2000) European virulence survey for leaf rust in wheat. Agronomie 20:793–804

    Article  Google Scholar 

  • Meyers BC, Kozik A, Griego A, Kuang HH, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding gene in Arabidopsis. Plant Cell 15:809–834

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Kaushik S, Nandety RS (2005) Evolving disease resistance genes. Curr Opin Plant Biol 8:129–134

    Article  PubMed  CAS  Google Scholar 

  • Michelmore RW (2000) Genomic approaches to plant disease resistance. Curr Opin Plant Biol 3:125–131

    Article  PubMed  CAS  Google Scholar 

  • Ordoñez ME, Kolmer JA (2008) Virulence phenotypes of a worldwide collection of Puccinia triticina from durum wheat. Phytopathology 97:344–351

    Article  Google Scholar 

  • Pan Q, Wendel J, Fluhr R (2000) Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J Mol Evol 50:203–213

    PubMed  CAS  Google Scholar 

  • Park RF, Bariana HS, Wellings CR (2007) Preface to 'Global Landscapes in Cereal Rust Control'. Austr J Agric Res 58:469

    Article  Google Scholar 

  • Perrière G, Gouy M (1996) WWW-Query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369

    Article  PubMed  Google Scholar 

  • Plotnikova LY (2008) Cellular features of immune reaction of common wheat with Lr19 gene to brown rust fungus infection. Tsitologiya 50:124–131

    Google Scholar 

  • Reeves JC, Chiapparino E, Donini P, Ganal M, Guiard J, Hamrit S, Heckenberger M, Huang X-Q, van Kaauwen M, Kochieva E, Koebner R, Law JR, Lea V, LeClerc V, van der Lee T, Leigh F, van der Linden G, Malysheva L, Melchinger AE, Orford S, Reif JC, Röder M, Schulman A, Vosman B, van der Wiel C, Wolf M, Zhang D (2004) Changes over time in the genetic diversity of four major European crops from the Gediflux Framework 5 project. In: Vollmann J, Grausgruber H, Ruckenbauer P (eds) Proc 17th EUCARPIA General Congress: genetic variation for plant breeding. University of Natural Resources and Applied Life Sciences, Vienna, pp 3–7

    Google Scholar 

  • Saini RG, Kaur L, Kaur M (1998) Adult plant leaf rust (Puccinia recondita tritici) resistance of known Lr genes against three virulence variants of race 77 from Indian sub-continent. Indian J Agric Sci 68:776–779

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (2001) Molecular cloning, a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Sears ER (1973) Agropyron-wheat transfers obtained by homoeologous pairing. In: Sears ER, Sears LMS (eds): Proc 4th Int Wheat Genet Symp, Columbia, Missouri, Agric. Exp. Station, College of Agric., University of Missouri, Columbia, Missouri, pp. 191-199

  • Sears ER (1978) Analysis of wheat-Agropyron recombinant chromosomes. In: Sanchez-Monge E, Garcia-Olmedo F (eds.): Interspecific Hybridization in Plant Breeding, Proc 8th EUCARPIA Congress, Madrid, Spain, Escuela Técnica Superior de Ingenieros Agrónomos, Ciudad Universitaria, Madrid 1977, pp 63-72

  • Sharma D, Knott DR (1966) The transfer of leaf rust resistance from Agropyron to Triticum by irradiation. Can J Genet Cytol 8:137–143

    Google Scholar 

  • Sibikeev SN, Krupnov VA, Voronina SA, Elesin VA (1996) First report of leaf rust pathotypes virulent to highly effective Lr-genes transferred from Agropyron species to bread wheat. Plant Breed 115:276–278

    Article  Google Scholar 

  • Singh RP, Huerta-Espino J, Pfeiffer W, Figueroa-Lopez P (2004) Occurrence and impact of a new leaf rust race on durum wheat in northwestern Mexico from 2001 to 2003. Plant Dis 88:703–708

    Article  Google Scholar 

  • Singh RP, Hodson DP, Jin Y, Huerta-Espino J, Kinyua MG, Wanyera R, Njau P, Ward RW (2006) Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen. CAB Reviews: Perspectives in Agriculture, Veterinary Science. Nutr Nat Resour 1, No. 054.

  • Srichumpa P, Brunner S, Keller B, Yahiaoui N (2005) Allelic series of four powdery mildew resistance genes at the Pm3 locus in hexaploid bread wheat. Plant Physiol 139:885–895

    Article  PubMed  CAS  Google Scholar 

  • Tai TH, Tanksley SD (1990) A rapid and inexpensive method for isolation of total DNA from dehydrated plant tissue. Plant Mol Biol Rep 8:297–303

    Article  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tixier MH, Sourdille P, Röder M, Leroy P, Bernard M (1997) Detection of wheat microsatellites using a non radioactive silver-nitrate staining method. J Genet & Breed 51:175–177

    CAS  Google Scholar 

  • van der Linden CD, Wouters DCAE, Mihalka V, Kochieva EZ, Smulders MJM, Vosman B (2004) Efficient targeting of plant disease resistance loci using NBS profiling. Theor Appl Genet 109:384–393

    Article  PubMed  Google Scholar 

  • Wicker T, Yahiaoui N, Keller B (2007) Contrasting rates of evolution in Pm3 loci from three wheat species and rice. Genetics 177:1207–1216

    Article  PubMed  CAS  Google Scholar 

  • Yahiaoui N, Srichumpa P, Dudler R, Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37:528–538

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Lukaszewski AJ, Kolmer J, Soria MA, Goyal S, Dubcovsky J (2005) Molecular characterization of durum and common wheat recombinant lines carrying leaf rust resistance (Lr19) and yellow pigment (Y) genes from Lophopyrum ponticum. Theor Appl Genet 111:573–582

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Italian Ministry of Research, grant FISR (Fondo Integrativo Speciale per la Ricerca) 2005–2008 is gratefully acknowledged. The senior author acknowledges a Marie Curie fellowship grant to carry out part of this work. Thanks are due to Leslie Boyd, John Innes Centre, Norwich, UK, for advice in leaf rust infections, and to Douglas Knott, University of Saskatchewan, Saskatoon, Canada, and Robert McIntosh, Plant Breeding Institute, University of Sydney, Australia, for seeds of the Agatha mutants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Ceoloni.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

Amino acid sequence comparison of proteins encoded by AG15 and Pm3a genes performed by ClustalW2 software using default parameters. Start positions of CC, NBS and LRR domains are indicated in bold. The AG15 CC domain, identified by Jpred 3 software, is underlined. Conserved motifs, characteristics of the NBS domain of NBS-LRR proteins (in the following order: P-loop, Kinase 2, RNBS-B, GLPL, MHD), are boxed and show complete identity between the two proteins. Intron position, identified in both AG15 (see text) and Pm3a (Yahiaoui et al. 2004) by comparison of the genomic sequences with the cDNA sequences, is conserved between the two genes and located immediately upstream of the stop codon (vertical arrow) (GIF 106 kb)

High resolution (EPS 1274 kb)

Fig. S2

Neighbor-joining phylogenetic tree of AG15 and related cereal proteins encoded by R genes or RGAs. Abbreviation of the Latin species name precedes the protein name (where known) and the accession number. Chromosome location of each sequence is reported in brackets. Proteins encoded by genes isolated in wheat are indicated in bold (GIF 13 kb)

High resolution (EPS 1274 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gennaro, A., Koebner, R.M.D. & Ceoloni, C. A candidate for Lr19, an exotic gene conditioning leaf rust resistance in wheat. Funct Integr Genomics 9, 325–334 (2009). https://doi.org/10.1007/s10142-009-0115-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-009-0115-1

Keywords

Navigation