Skip to main content

Advertisement

Log in

Modelling extinction risk in multispecies data sets: phylogenetically independent contrasts versus decision trees

  • Original paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Many recent studies of extinction risk have attempted to determine what differences exist between threatened and non-threatened species. One potential problem in such studies is that species-level data may contain phylogenetic non-independence. However, the use of phylogenetic comparative methods (PCM) to account for non-independence remains controversial, and some recent studies of extinction have recommended other methods that do not account for phylogenetic non-independence, notably decision trees (DTs). Here we perform a systematic comparison of techniques, comparing the performance of PCM regression models with corresponding non-phylogenetic regressions and DTs over different clades and response variables. We found that predictions were broadly consistent among techniques, but that predictive precision varied across techniques with PCM regression and DTs performing best. Additionally, despite their inability to account for phylogenetic non-independence, DTs were useful in highlighting interaction terms for inclusion in the PCM regression models. We discuss the implications of these findings for future comparative studies of extinction risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DTs:

Decision trees

PCM:

Phylogenetic comparative methods

TIPS:

Comparative analyses using species (the ‘tips’ of phylogenetic tree branches) as independent data-points

References

  • Araujo MB, Whittaker RJ, Ladle RJ, Erhard M (2005) Reducing uncertainty in projections of extinction risk from climate change. Glob Ecol Biogeogr 14:529–538

    Article  Google Scholar 

  • Bennett PM, Owens IPF (1997) Variation in extinction risk among birds: chance or evolutionary predisposition? Proc R Soc Lond B Biol Sci 264:401–408

    Article  Google Scholar 

  • Bielby J, Cunningham AA, Purvis A (2006) Taxonomic selectivity in amphibians: ignorance, geography or biology? Anim Conserv 9:135–143

    Article  Google Scholar 

  • Bielby J, Cooper N, Cunningham AA, Garner TWJ, Purvis A (2008) Predicting rapid declines in the world’s frogs. Conser Lett 2:82–90

    Article  Google Scholar 

  • Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, Grenyer R, Price SA et al (2007) The delayed rise of present-day mammals. Nature 446:507–512

    Article  CAS  PubMed  Google Scholar 

  • Breiman L, Friedman JH, Olshen RA, Stone CG (1984) Classification and regression trees. Wadsworth International Group., Belmont, California

    Google Scholar 

  • Cardillo M, Purvis A, Sechrest W, Gittleman JL, Bielby J, Mace GM (2004) Human population density and extinction risk in the world’s carnivores. PLos Biol 2:909–914

    Article  CAS  Google Scholar 

  • Cardillo M, Mace GM, Jones KE, Bielby J, Bininda-Emonds ORP, Sechrest W, Orme CDL et al (2005a) Multiple causes of high extinction risk in large mammal species. Science 309:1239–1241

    Article  CAS  PubMed  Google Scholar 

  • Cardillo M, Mace GMM, Purvis A (2005b) Response: problems of studying extinction risks. Science 310:1277–1278

    CAS  Google Scholar 

  • Cardillo M, Mace GM, Gittleman JL, Purvis A (2006) Latent extinction risk and future battlegrounds of mammal conservation. Proc Natl Acad Sci USA 103:4157–4161

    Article  CAS  PubMed  Google Scholar 

  • Cardillo M, Mace GM, Gittleman JL, Jones KE, Bielby J, Purvis A (2008) The predictability of extinction: biological and external correlates of decline in mammals. In: Proceedings of the royal society B-biological sciences (in review)

  • Collen B, Bykova E, Ling S, Milner-Gulland EJ, Purvis A (2006) Extinction risk: a comparative analysis of central Asian vertebrates. Biodivers Conserv 15:1859–1871

    Article  Google Scholar 

  • Cooper N, Bielby J, Thomas G, Purvis A (2008) Macroecology and exinction risk correlates of frogs. Glob Ecol Biogeogr 17:211–221

    Article  Google Scholar 

  • Crawley MJ (2002) Statistical computing—an introduction to data analysis using S-plus. Wiley, Chichester

    Google Scholar 

  • De’ath G, Fabricius KE (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81:3178–3192

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Fisher DO, Owens IPF (2004) The comparative method in conservation biology. Trends Ecol Evol 19:391–398

    Article  PubMed  Google Scholar 

  • Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: a test and review of evidence. Am Nat 160:712–726

    Article  CAS  PubMed  Google Scholar 

  • Frost DR, Grant T, Faivovich J, Bain RH, Hass A, Haddad CFB, De Sa RO et al (2006) The amphibian tree of life. Bull Am Mus Nat Hist 297:1–370

    Article  Google Scholar 

  • Garland T, Harvey PH, Ives AR (1992) Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst Biol 41:18–32

    Google Scholar 

  • Gittleman JL, Luh HK (1992) On comparing comparative methods. Annu Rev Ecol Syst 23:383–404

    Article  Google Scholar 

  • Grafen A (1989) The phylogenetic regression. Philos Trans R Soc Lond B Biol Sci 326:119–157

    Article  CAS  PubMed  Google Scholar 

  • Halsey LG, Butler PJ, Blackburn TM (2006) A phylogenetic analysis of the allometry of diving. Am Nat 167:276–287

    Article  PubMed  Google Scholar 

  • Harmon LJ, Losos JB (2005) The effect of intraspecific sample size on Type I and Type II error rates in comparative studies. Evolution Int J org Evolution 59:2705–2710

    Google Scholar 

  • Harvey PH, Pagel M (1991) The comparative method in evolutionary biology. Oxford University Press, Oxford

    Google Scholar 

  • Harvey PH, Rambaut A (1998) Phylogenetic extinction rates and comparative methodology. Proc R Soc Lond B Biol Sci 265:1691–1696

    Article  Google Scholar 

  • IUCN (2004) 2004 IUCN Red List of Threatened Species

  • Ives AR, Midford PE, Garland T (2007) Within-species variation and measurement error in phylogenetic comparative methods. Syst Biol 56:252–270

    Article  PubMed  Google Scholar 

  • Jones MJ, Fielding A, Sullivan M (2006) Analysing extinction risk in parrots using decision trees. Biol Conserv 15:1993–2007

    Google Scholar 

  • Jones KE, Bielby J, Cardillo M, Fritz SA, O’Dell J, Orme CDL, Safi K, Sechrest W, Boakes EH, Carbone C, Connolly C, Cutts MJ, Foster JK, Grenyer R, Habib M, Plaster CA, Price SA, Rigby EA, Rist J, Teacher A, Bininda-Emonds ORP, Gittleman JL, Mace GM, Purvis A (2009) PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90:2648

    Article  Google Scholar 

  • Koh LP, Sodhi NS, Brook BW (2004) Ecological proneness of extinction proneness in tropical butterflies. Conserv Biol 18:1571–1578

    Article  Google Scholar 

  • Laurance WF (1991) Ecological correlates of extinction proneness in Australian tropical rain forest mammals. Conserv Biol 5:79–89

    Article  Google Scholar 

  • Little RJA, Rubin DB (2002) Statistical analysis with missing data. Wiley, Hoboken

    Google Scholar 

  • McKinney ML (1997) Extinction vulnerability and selectivity: combining ecological and paleontological views. Annu Rev Ecol Syst 28:495–516

    Article  Google Scholar 

  • Owens IPF, Bennett PM (2000) Ecological basis of extinction risk in birds: habitat loss versus human persecution and introduced predators. Proc Natl Acad Sci USA 97:12144–12148

    Article  CAS  PubMed  Google Scholar 

  • Pagel M (1993) Seeking the evolutionary regression coefficient—an analysis of what comparative methods measure. J Theor Biol 164:191–205

    Article  CAS  PubMed  Google Scholar 

  • Paradis E, Claude J (2002) Analysis of comparative data using generalized estimating equations. J Theor Biol 218:175–185

    Article  PubMed  Google Scholar 

  • Purvis A (2008) Phylogenetic approaches to the study of extinction. Ann Rev Ecol Evol Syst 39:301–319

    Article  Google Scholar 

  • Purvis A, Webster AJ (1999) Phylogenetically independent comparisons and primate phylogeny. In: Lee PC (ed) Comparative primate socioecology. Cambridge University Press, Cambridge, pp 44–70

    Google Scholar 

  • Purvis A, Agapow PM, Gittleman JL, Mace GM (2000a) Nonrandom extinction and the loss of evolutionary history. Science 288:328–330

    Article  CAS  PubMed  Google Scholar 

  • Purvis A, Gittleman JL, Cowlishaw G, Mace GM (2000b) Predicting extinction risk in declining species. Proc R Soc Lond B Biol Sci 267:1947–1952

    Article  CAS  Google Scholar 

  • Purvis A, Cardillo M, Grenyer R, Collen B (2005) Correlates of extinction risk: phylogeny, biology, threat and scale. In: Purvis A, Brooks TM, Gittleman JL (eds) Phylogeny and conservation. Cambridge University Press, Cambridge

    Google Scholar 

  • Putland D (2005) Problems of studying extinction risks. Science 310:1277

    CAS  Google Scholar 

  • Quader S, Isvaran K, Hale RE, Miner BG, Seavy NE (2004) Nonlinear relationships and phylogenetically independent contrasts. J Evol Biol 17:709–715

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN: 3-900051-07-0, http://www.R-project.org

  • Reed RN, Shine R (2002) Lying in wait for extinction: ecological correlates of conservation status among Australian Elapid Snakes. Conserv Biol 16:451–461

    Article  Google Scholar 

  • Ricklefs RE, Starck JM (1996) Applications of phylogenetically independent contrasts: a mixed progress report. Oikos 77:167–172

    Article  Google Scholar 

  • Ridley M (1983) The explanation of organic diversity: the comparative method and adaptations for mating. Oxford University Press, Oxford

    Google Scholar 

  • Russell GJ, Brooks TM, McKinney MM, Anderson CG (1998) Present and future taxonomic selectivity in bird and mammal extinctions. Conserv Biol 12:1365–1376

    Article  Google Scholar 

  • Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786

    Article  CAS  PubMed  Google Scholar 

  • Stuart-Fox D, Moussalli A, Whiting MJ (2007) Natural selection on social signals: signal efficacy and the evolution of chameleon display coloration. Am Nat 170:916–930

    Article  PubMed  Google Scholar 

  • Sullivan MS, Gilbert F, Rotheray G, Croasdale S, Jones M (2000) Comparative analyses of correlates of Red data book status: a case study using European hoverflies (Diptera:Syrphidae). Anim Conserv 3:91–95

    Article  Google Scholar 

  • Sullivan M, Jones M, Lee DC, Marsden SJ, Fielding AH, Young EV (2006) A comparison of predictive methods in extinction risk studies: contrasts and decision trees. Biol Conserv 15:1977–1991

    Google Scholar 

  • Sutherland WJ (2006) Predicting the ecological consequences of environmental change: a review of the methods. J Appl Ecol 43:599–616

    Article  Google Scholar 

  • Symonds MRE (2002) The effects of topological inaccuracy in evolutionary trees on the phylogenetic comparative. Syst Biol 51:541–555

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Andrew King, Amber Teacher and two anonymous reviewers for useful comments on the manuscript. This work was conducted thanks to NERC studentship NER/S/A/2004/12987.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bielby.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 70 kb)

(TXT 71 kb)

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bielby, J., Cardillo, M., Cooper, N. et al. Modelling extinction risk in multispecies data sets: phylogenetically independent contrasts versus decision trees. Biodivers Conserv 19, 113–127 (2010). https://doi.org/10.1007/s10531-009-9709-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-009-9709-0

Keywords

Navigation