Skip to main content

Advertisement

Log in

Morphology predicting ecology: incorporating new methodological and analytical approaches

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Associations between the morphology of animals and their ecology have contributed to our understanding of phenotypic diversity by helping to relate form and function. Most early studies on fishes used traditional measurements of linear distances on the body or fins to quantify morphological variation among taxa. More recently, geometric morphometric analyses have gained popularity for assessing phenotypic shape variation. Along with new methodologies for quantifying morphological variation, researchers have become increasingly aware of the influence of phylogeny on morphological and ecological traits. Our study, which spanned seven cyprinid genera, assessed the abilities of traditional and geometric morphometric approaches to characterize ecologically relevant morphological variation. Furthermore, we compared morphometric approaches employing two analyses (partial Mantel test and Phylogenetic Canonical Correlation Analysis (PCCA)) that test for correlations among data sets while explicitly accounting for phylogenetic relationships. Traditional morphology and body shape showed similar correlations with habitat use in all analyses. In contrast, only traditional morphology was correlated with diet; however, this was only revealed by the PCCA. Our findings indicated the taxonomic span of species under study and the statistical treatment of data are important factors to consider when choosing between traditional or geometric morphometric approaches. In addition, a better understanding of phylogenetic relationships will improve our ability to establish associations between morphology and ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams DC, Otárola-Castillo E (2013) geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol Evol 4:393–399

    Article  Google Scholar 

  • Adams DC, Rohlf FJ, Slice DE (2004) Geometric morphometrics: ten years of progress following the “revolution”. Ital J Zool 71:5–16

    Article  Google Scholar 

  • Alexander RM (1967) Functional design in fishes. Hutchinson, London

    Google Scholar 

  • Blomberg SP, Garland T Jr, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745

    Article  PubMed  Google Scholar 

  • Breno M, Leirs H, van Dongen S (2011) Traditional and geometric morphometrics for studying skull morphology during the growth in Mastomys natalensis (Rodentia: Muridae). J Mammal 92:1395–1406

    Article  Google Scholar 

  • Bufalino AP, Mayden RL (2010) Phylogenetic relationships of North American phoxinins (Actinopterygii: Cypriniformes: Leuciscidae) as inferred from S7 nuclear DNA sequences. Mol Phylogenet Evol 55:143–152

    Article  PubMed  Google Scholar 

  • Colborne SF, Peres-Neto PR, Longstaffe FJ, Neff BD (2013) Effects of foraging and sexual selection on the ecomorphology of a fish with alternative reproductive tactics. Behav Ecol 24:1339–1347

    Article  Google Scholar 

  • Collar DC, Wainwright PC (2006) Discordance between morphological and mechanical diversity in the feeding mechanism of centrarchid fishes. Evolution 60:2575–2584

    Article  PubMed  Google Scholar 

  • Collar DC, Near TJ, Wainwright PC (2005) Comparative analysis of morphological diversity: does disparity accumulate at the same rate in two lineages of centrarchid fishes? Evolution 59:1783–1794

    Article  PubMed  Google Scholar 

  • Colston TJ, Costa GC, Vitt LJ (2010) Snake diets and deep history hypothesis. Biolog J Linn Soc 101:476–486

    Article  Google Scholar 

  • Douglas ME, Matthews WJ (1992) Does morphology predict ecology? Hypothesis testing within a freshwater stream assemblage. Oikos 65:213–224

    Article  Google Scholar 

  • Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2012) Geneious v5.6. http://www.geneious.com

  • Eggleton P, Vane-Wright R (1994) Phylogenetics and Ecology. Acad Press, San Diego

    Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Felsenstein J (2004) Inferring Phylogenies. Sinauer, Sunderland, MA

    Google Scholar 

  • Findley JS (1973) Phenetic packing as a measure of faunal diversity. Am Nat 107:580–584

    Article  Google Scholar 

  • Findley JS (1976) The structure of bat communities. Am Nat 110:129–139

    Article  Google Scholar 

  • Franssen NR, Harris J, Clark SR, Schaefer JF, Stewart LK (2013) Shared and unique morphological responses of stream fishes to anthropogenic habitat alteration. Proc R Soc B 280:20122715

    Article  PubMed Central  PubMed  Google Scholar 

  • Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: a test and review of the evidence. Am Nat 160:712–726

    Article  CAS  PubMed  Google Scholar 

  • Gatz AJ Jr (1979a) Ecological morphology of freshwater stream fishes. Tulane Stud Zool Bot 21:91–124

    Google Scholar 

  • Gatz AJ Jr (1979b) Community organization in fishes as indicated by morphological features. Ecol 60:711–718

    Article  Google Scholar 

  • Giannini NP (2003) Canonical phylogenetic ordination. Syst Biol 52:684–695

    Article  PubMed  Google Scholar 

  • Gorman OT, Karr JR (1978) Habitat structure and stream fish communities. Ecol 59:507–515

    Article  Google Scholar 

  • Gosline WA (1971) Functional morphology and classification of teleostean fishes. University of Hawaii Press, Honolulu

    Google Scholar 

  • Grafen A (1989) The phylogenetic regression. Philos Trans Royal Soc Lond B 326:119–157

    Article  CAS  Google Scholar 

  • Harmon LJ, Glor RE (2010) Poor statistical performance of the Mantel test in phylogenetic comparative analyses. Evolution 64:2173–2178

    PubMed  Google Scholar 

  • Harvey PH, Pagel MD (1991) The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford

    Google Scholar 

  • Herler J (2007) Microhabitats and ecomorphology of coral- and coral rock-associated gobiid fish (Teleostei: Gobiidae) in the northern Red Sea. Mar Eco 28:82–94

    Article  Google Scholar 

  • Hoagstrom CW, Berry CR (2008) Morphological diversity among fishes in a Great Plains river drainage. Hydrobiologia 596:367–386

    Article  Google Scholar 

  • Hubbs CL (1941) The relation of hydrological conditions to speciation in fishes. In: Needham JG, Sears PB, Leopold A (eds) A symposium on hydrobiology. University of Wisconsin Press, Madison, pp 182–195

    Google Scholar 

  • Hubbs CL, Lagler KF (1941) Guide to fishes of the Great Lakes and tributary waters. The Cranbrook Institute of Science. Bloomfield Hills, MI

    Google Scholar 

  • Ibañez C, Tedesco PA, Bigorne R, Hugueny B, Pouilly M, Zepita C, Zubieta J, Oberdorff T (2007) Dietary-morphological relationships in fish assemblages of small forested streams in the Bolivian Amazon. Aquat Living Resour 20:131–142

    Article  Google Scholar 

  • Jepsen DB, Winemiller KO, Taphorn DC (1997) Temporal patterns of resource partitioning among Cichla species in a Venezuelan blackwater river. J Fish Biol 51:1085–1108

    Google Scholar 

  • Kano Y, Miyazaki Y, Tomiyama Y, Mitsuyuki C, Nishida S, Rashid ZA (2013) Linking mesohabitat selection and ecological traits of a fish assemblage in a small tropical stream (Tinggi River, Pahang Basin) of the Malay Peninsula. Zool Sci 30:178–184

    Article  PubMed  Google Scholar 

  • Langerhans RB (2008) Predictability of phenotypic differentiation across flow regimes in fishes. Integr Comp Biol 48:750–768

    Article  PubMed  Google Scholar 

  • Langerhans RB, DeWitt TJ (2004) Shared and unique features of evolutionary diversification. Am Nat 164:335–349

    Article  PubMed  Google Scholar 

  • Losos JB (1990) Ecomorphology, performance capability, and scaling of West Indian Anolis lizards: an evolutionary analysis. Ecol Monogr 60:369–388

    Article  Google Scholar 

  • Losos JB (2011) Lizards in an Evolutionary Tree: Ecology and Adaptive Radiation of Anoles. University of California Press, Berkeley

    Google Scholar 

  • Maddison WP (1990) A method for testing the correlated evolution of two binary characters: Are gains or losses concentrated on certain branches of a phylogenetic tree? Evol 44:539–557

    Article  Google Scholar 

  • Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75. http://mesquiteproject.org

  • Maderbacher M, Bauer C, Herler J, Postl L, Makasa L, Sturmbauer C (2008) Assessment of traditional versus geometric morphometrics for discriminating populations of the Tropheus moorii species complex (Teleostei: Cichlidae), a Lake Tanganyika model for allopatric speciation. J Zool Syst Evol Res 46:153–161

    Article  Google Scholar 

  • Mantel NA (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Martins EP (2004) COMPARE v.4.6b. Computer programs for the statistical analysis of comparative data. http://compare.bio.indiana.edu

  • Matthews WJ (1998) Patterns in freshwater fish ecology. Kluwer Academic Press, New York

    Book  Google Scholar 

  • McCoy MW, Bolker BM, Osenberg CW, Miner BG, Vonesh JR (2006) Size correction: comparing morphological traits among populations and environments. Oecologia 148:547–554

    Article  PubMed  Google Scholar 

  • Miles DB, Ricklefs RE (1984) The correlation between ecology and morphology in deciduous forest passerine birds. Ecol 65:1629–1640

    Article  Google Scholar 

  • Mitteroecker P, Bookstein F (2011) Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics. Evol Biol 38:100–114

    Article  Google Scholar 

  • Norton SF, Luczkovich JJ, Motta PJ (1995) The role of ecomorphological studies in the comparative biology of fishes. Environ Biol Fishes 44:287–304

    Article  Google Scholar 

  • Nylander JAA, Wilgenbusch JC, Warren DL, Swofford DL (2008) AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Biogeosciences 24:581–583

    CAS  Google Scholar 

  • Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884

    Article  CAS  PubMed  Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analysis of phylogenetics and evolution in R language. Biogeosciences 20:289–290

    CAS  Google Scholar 

  • Piet GJ (1998) Ecomorphology of a size-structured tropical freshwater fish community. Environ Biol Fishes 51:67–86

    Article  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Pouilly M, Lino F, Bretenoux JG, Rosales C (2003) Dietary-morphological relationships in a fish assemblage of the Bolivian Amazonian floodplain. J Fish Biol 62:1137–1158

    Article  Google Scholar 

  • Rambaut A, Charleston M (2001) TreeEdit: phylogenetic Tree Editor v.1.0a10. http://tree.bio.ed.ac.uk/software/treeedit/

  • Rambaut A, Drummond AJ (2007) Tracer v1.4. http://beast.bio.ed.ac.uk/Tracer

  • Raufaste N, Rousset F (2001) Are partial Mantel tests adequate? Evolution 55:1703–1705

    Article  CAS  PubMed  Google Scholar 

  • Reecht Y, Rochet MJ, Trenkel VM, Jennings S, Pinnegar JK (2013) Use of morphological characteristics to define functional groups of predatory fishes in the Celtic Sea. J Fish Biol 83:355–377

    Article  CAS  PubMed  Google Scholar 

  • Revell LJ (2012) phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223

    Article  Google Scholar 

  • Revell LJ, Harrison AS (2008) PCCA: a program for phylogenetic canonical correlation analysis. Biogeosciences 24:1018–1020

    CAS  Google Scholar 

  • Ricklefs RE, Cox GW (1977) Morphological similarity and ecological overlap among passerine birds on St. Kitts, British West Indies. Oikos 29:60–66

    Article  Google Scholar 

  • Ricklefs RE, Cochran D, Pianka ER (1981) A morphological analysis of the structure of communities of lizards in desert habitats. Ecol 62:1474–1483

    Article  Google Scholar 

  • Rohlf FJ (1998) On applications of geometric morphometrics to studies of ontogeny and phylogeny. Syst Biol 47:147–158

    Article  CAS  PubMed  Google Scholar 

  • Rohlf FJ (2004) tps software. http://life.bio.sunysb.edu/morph/

  • Rohlf FJ (2009) NTSYSpc: Numerical Taxonomy System, v.2.2. Exeter publishing, Setauket, NY

  • Rohlf FJ, Marcus LF (1993) A revolution in morphometrics. Trends Ecol Evol 8:129–132

    Article  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed Central  PubMed  Google Scholar 

  • Rosenberg MS, Anderson CD (2011) PASSaGE: Pattern analysis, spatial statistics and geographic exegesis. Version 2. Methods Ecol Evol 2:229–232

    Article  Google Scholar 

  • Sanderson MJ (1997) A nonparametric approach to estimating divergence times in the absence of rate constancy. Mol Biol Evol 14:1218–1231

    Article  CAS  Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. Oxford Series in Ecology and Evolution. Oxford University Press, Oxford

    Google Scholar 

  • Smouse PE, Long JC, Sokal RR (1986) Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst Zool 35:627–632

    Article  Google Scholar 

  • Strauss RE, Bookstein FL (1982) The truss: body form reconstructions in morphometrics. Syst Zool 31:113–135

    Article  Google Scholar 

  • Surat EM, Matthews WJ, Bek JR (1982) Comparative ecology of Notropis albeolus, N. ardens, and N. cerasinus (Cyprinidae) in the upper Roanoke River drainage, Virginia. Am Midl Nat 107:13–24

    Article  Google Scholar 

  • Swofford DL (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, MA

  • Vitt LJ, Pianka ER (2005) Deep history impacts present-day ecology and biodiversity. Proc Natl Acad Sci U S A 102:7877–7881

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wainwright PC, Reilly SM (1994) Ecological Morphology: Integrative Organismal Biology. University of Chicago Press, Chicago

    Google Scholar 

  • Werner EE, Hall DJ, Laughlin DR, Wagner DJ, Wilsmann LA, Funk FC (1977) Habitat partitioning in a freshwater fish community. J Fish Res Board Can 34:360–370

    Article  Google Scholar 

  • Wiens JJ, Bonett RM, Chippindale PT (2005) Ontogeny discombobulates phylogeny: paedomorphosis and higher-level salamander relationships. Syst Biol 54:91–110

    Article  PubMed  Google Scholar 

  • Wiens JJ, Hutter CR, Mulcahy DG, Noonan BP, Townsend TM, Sites JW Jr, Reeder TW (2012) Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species. Biol Lett 8:1043–1046

    Article  PubMed Central  PubMed  Google Scholar 

  • Wilgenbusch JC, Warren DL, Swofford DL (2004) AWTY: a system for graphical exploration of MCMC convergence in Bayesian phylogenetic inference. http://ceb.csit.fsu.edu/awty

  • Willis SC, Winemiller KO, Lopez-Fernandez H (2005) Habitat structural complexity and morphological diversity of fish assemblages in a Neotropical floodplain river. Oecologia 142:284–295

    Article  CAS  PubMed  Google Scholar 

  • Winemiller KO (1991) Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions. Ecol Monogr 61:343–365

    Article  Google Scholar 

  • Winemiller KO (1992) Ecomorphology of freshwater fishes. Natl Geogr Res Explor 8:308–327

    Google Scholar 

  • Winemiller KO, Kelso-Winemiller LC, Brenkert AL (1995) Ecomorphological diversification and convergence in fluvial cichlid fishes. Environ Biol Fishes 44:235–261

    Article  Google Scholar 

Download references

Acknowledgments

We thank W.J. Matthews for spurring this research, providing the history of traditional morphometrics, for generously sharing his specimens and data, and for comments that substantially improved the manuscript. We also thank two anonymous reviewers for their helpful suggestions for improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan R. Franssen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franssen, N.R., Goodchild, C.G. & Shepard, D.B. Morphology predicting ecology: incorporating new methodological and analytical approaches. Environ Biol Fish 98, 713–724 (2015). https://doi.org/10.1007/s10641-014-0306-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-014-0306-z

Keywords

Navigation