Skip to main content
Log in

Subchondral Bone Apparent Density and Locomotor Behavior in Extant Primates and Subfossil Lemurs Hadropithecus and Pachylemur

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

We analyze patterns of subchondral bone apparent density in the distal femur of extant primates to reconstruct differences in knee posture, discriminate among extant species with different locomotor preferences, and investigate the knee postures used by subfossil lemur species Hadropithecus stenognathus and Pachylemur insignis. We obtained computed tomographic scans for 164 femora belonging to 39 primate species. We grouped species by locomotor preference into knuckle-walking, arboreal quadruped, terrestrial quadruped, quadrupedal leaper, suspensory and vertical clinging, and leaping categories. We reconstructed knee posture using an experimentally validated procedure of determining the anterior extent of the region of maximal subchondral bone apparent density on a median slice through the medial femoral condyle. We compared subchondral apparent density magnitudes between subfossil and extant specimens to ensure that fossils did not display substantial mineralization or degradation. Subfossil and extant specimens were found to have similar magnitudes of subchondral apparent density, thereby permitting comparisons of the density patterns. We observed significant differences in the position of maximum subchondral apparent density between leaping and nonleaping extant primates, with leaping primates appearing to use much more flexed knee postures than nonleaping species. The anterior placement of the regions of maximum subchondral bone apparent density in the subfossil specimens of Hadropithecus and Pachylemur suggests that both species differed from leaping primates and included in their broad range of knee postures rather extended postures. For Hadropithecus, this result is consistent with other evidence for terrestrial locomotion. Pachylemur, reconstructed on the basis of other evidence as a committed arboreal quadruped, likely employed extended knee postures in other activities such as hindlimb suspension, in addition to occasional terrestrial locomotion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahluwalia, K. (2000). Knee joint load as determined by tibial subchondral bone density: Its relationship to gross morphology and locomotor behavior in catarrhines [PhD]. Stony Brook, NY: Stony Brook University, 315 pp.

  • Alexander, R. M. (1985). The maximum forces exerted by animals. Journal of Experimental Biology, 115, 231–238.

    CAS  PubMed  Google Scholar 

  • Biewener, A. A. (1989). Scaling body support in mammals: Limb posture and muscle mechanics. Science, 245, 45–48.

    Article  CAS  PubMed  Google Scholar 

  • Biewener, A. A. (1990). Biomechanics of mammalian terrestrial locomotion. Science, 250, 1097–1103.

    Article  CAS  PubMed  Google Scholar 

  • Burgess, N. D., D’Amico Hales, J., Underwood, E. C., Dinerstein, E., Olson, D., Itoua, I., et al. (2004). Terrestrial ecoregions of Africa and Madagascar: A conservation assessment. Washington, DC: Island Press.

    Google Scholar 

  • Burney, D. A., Burney, L. P., Godfrey, L. R., Jungers, W. L., Goodman, S. M., Wright, H. T., et al. (2004). A chronology for late prehistoric Madagascar. Journal of Human Evolution, 47, 25–63.

    Article  PubMed  Google Scholar 

  • Burney, D. A., Vasey, N., Godfrey, L. R., Ramilisonina, Jungers, W. L., Ramarolahy, M., et al. (2008). New findings at Andrahomana Cave, Southeastern Madagascar. Journal of Cave and Karst Studies, 70(1), 13–24.

    Google Scholar 

  • Carlson, K. J., & Patel, B. A. (2006). Habitual use of the primate fore-limb is reflected in the material properties of subchondral bone in the distal radius. Journal of Anatomy, 208, 659–670.

    Article  PubMed  Google Scholar 

  • Carter, D. R., & Beaupre, G. S. (2001). Skeletal form and function: Mechanobiology of skeletal development, aging and regeneration. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Carter, D. R., & Hayes, W. C. (1977). The compressive behavior of bone as a two phase porous structure. Journal of Bone and Joint Surgery, 59A, 954–962.

    Google Scholar 

  • Catlett, K. K., Schwartz, G. T., Godfrey, L. R., & Jungers, W. L. (2010). “Life History Space”: A multivariate analysis of life history variation in extant and extinct Malagasy lemurs. American Journal of Physical Anthropology. doi:10.1002/ajpa.21236.

  • Cohen, J. (1990). Things I have learned (so far). American Psychologist, 45, 1304–1312.

    Article  Google Scholar 

  • Crowley, B. E., Godfrey, L. R., & Irwin, M. T. (2010). A glance to the past: Subfossils, stable isotopes, seed dispersal, and lemur species loss in southern Madagascar. American Journal of Primatology, 71, 1–13.

    Google Scholar 

  • Currey, J. D. (1988). The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. Journal of Biomechanics, 21, 131–139.

    Article  CAS  PubMed  Google Scholar 

  • Currey, J. D. (2002). Bones: Structure and mechanics. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Decary, R. (1926). Une mission scientifique dans le S.E. de Madagascar. Bull. de l’Académie Malgache, 9, 79–86.

    Google Scholar 

  • Demes, B., & Günther, M. M. (1989). Biomechanics and allometric scaling in primate locomotion and morphology. Folia Primatologica, 53318, 125–141.

    Article  Google Scholar 

  • Demes, B., & Carlson, K. J. (2009). Locomotor variation and bending regimes of capuchin limb bones. American Journal of Physical Anthropology, 139, 558–571.

    Article  PubMed  Google Scholar 

  • Demes, B., Larson, S. G., Stern, J. T., Jungers, W. L., Biknevicius, A. R., & Schmitt, D. (1994). The kinematics of primate quadrupedalism: “Hindlimb drive” reconsidered. Journal of Human Evolution, 26, 353–374.

    Article  Google Scholar 

  • Demes, B., Fleagle, J. G., & Jungers, W. L. (1999). Takeoff and landing forces of leaping strepsirhine primates. Journal of Human Evolution, 37, 279–292.

    Article  CAS  PubMed  Google Scholar 

  • Eckstein, F., Müller-Gerbl, M., Steinlechner, M., Kierse, R., & Putz, R. (1995). Subchondral bone density in the human elbow assessed by computed tomography osteoabsorptiometry: A reflection of the loading history of the joint surfaces. Journal of Orthopedic Research, 13, 268–278.

    Article  CAS  Google Scholar 

  • Eckstein, F., Merz, B., Schon, M., Jacobs, C. R., & Putz, R. (1999). Tension and bending, but not compression alone, determine the functional adaptation of subchondral bone in incongruous joints. Anatomy and Embryology, 199(1), 85–97.

    Article  CAS  PubMed  Google Scholar 

  • Fedigan, L, & Fedigan, L. M. (1988). Cercopithecus aethiops: a review of field studies. In A. Gautier-Hion, R. Fouliere, J-P. Gautier, & J. Kingdon (Eds.), A primate radiation: Evolutionary biology of the African guenons. Cambridge, UK: Cambridge University Press.

  • Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist, 125, 1–15.

    Article  Google Scholar 

  • Fischer, K. J., Jacobs, C. R., & Carter, D. R. (1995). Computation method for determination of bone and joint loads using bone density distributions. Journal of Biomechanics, 28, 1127–1135.

    Article  CAS  PubMed  Google Scholar 

  • Fleagle, J. G. (1976). Locomotor behavior and skeletal anatomy of sympatric Malaysian leaf monkeys (Presbytis obscura and Presbytis melalophos). Yearbook of Physical Anthropology, 20, 440–453.

    Google Scholar 

  • Fleagle, J. G. (1980). Locomotion and posture. In D. J. Chivers (Ed.), Malayan Forest primates (191–207). New York: Plenum Press.

    Google Scholar 

  • Fleagle, J. G. (1999). Primate adaptation and evolution. New York: Academic Press.

    Google Scholar 

  • Godfrey, L. R. (1988). Adaptive diversification of Malagasy strepsirrhines. Journal of Human Evolution, 17, 93–134.

    Article  Google Scholar 

  • Godfrey, L. R., & Jungers, W. L. (2002). Quaternary fossil lemurs. In W. C. Hartwig (Ed.), The primate fossil record (pp. 97–121). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Godfrey, L. R., Jungers, W. L., Wunderlich, R. E., & Richmond, B. G. (1997). Reappraisal of the postcranium of Hadropithecus (Primates, Indroidea). American Journal of Physical Anthropology, 103, 529–556.

    Article  CAS  PubMed  Google Scholar 

  • Godfrey, L. R., Semprebon, G. M., Jungers, W. L., Sutherland, M. R., Simons, E. L., & Solounias, N. (2004). Dental use wear in extinct lemurs: Evidence of diet and niche differentiation. Journal of Human Evolution, 47, 145–169.

    Article  PubMed  Google Scholar 

  • Godfrey, L. R., Jungers, W. L., Burney, D. A., Vasey, N., Ramilisonina, Wheeler, W., et al. (2006a). New discoveries of skeletal elements of Hadropithecus stenognathus from Andrahomana Cave, southeastern Madagascar. Journal of Human Evolution, 51(4), 395–410.

    Article  CAS  Google Scholar 

  • Godfrey, L. R., Jungers, W. L., & Schwartz, G. T. (2006b). Ecology and extinction of Madagascar’s subfossil lemurs. In L. Gould & M. Sauther (Eds.), Lemurs: Ecology and adaptation (pp. 41–64). New York: Springer.

    Google Scholar 

  • Godfrey, L. R., Jungers, W. L., Schwartz, G. T., & Irwin, M. T. (2008a). Ghosts and orphans: Madagascar’s vanishing ecosystems. In J. G. Fleagle & C. C. Gilbert (Eds.), Elwyn Simons: A search for origins (pp. 361–395). New York: Springer.

    Google Scholar 

  • Godfrey, L. R., Crowley, B. E., Muldoon, K. M., King, S. J., & Burney, D. A. (2008b). The Hadropithecus conundrum. American Journal of Physical Anthropology (Supplement), 46, 105.

  • Grandidier, G. (1905). Recherches sur les lémuriens disparus et en particulier sur ceux qui vivaient à Madagascar. Nouvelles Archives du Muséum, 7, 1–142, plus 12 plates.

  • Hanna, J. B., Polk, J. D., & Schmitt, D. (2006). Forelimb and hindlimb forces in walking and galloping primates. American Journal of Physical Anthropology, 130(4), 529–535.

    Article  CAS  PubMed  Google Scholar 

  • Harvey, P. H., & Pagel, M. D. (1991). The comparative method in evolutionary biology. Oxford: Oxford University Press.

    Google Scholar 

  • Horvath, J. E., Weisrock, D. W., Embry, S. L., Fiorentino, I., Balhoff, J. P., Kappeler, P., et al. (2008). Development and application of a phylogenomic toolkit: Resolving the evolutionary history of Madagascar’s lemurs. Genome Research, 18, 489–499.

    Article  CAS  PubMed  Google Scholar 

  • Hoshino, A., & Wallace, W. A. (1987). Impact-absorbing properties of the human knee. Journal of Bone and Joint Surgery, 69B, 807–811.

    Google Scholar 

  • Housworth, E. A., Martins, E. P., & Lynch, M. (2004). The phylogenetic mixed model. American Naturalist, 163, 84–96.

    Article  PubMed  Google Scholar 

  • Jouffroy, F. K. (1960). Caractères adaptatifs dans les proportions des members chez les Lémurs fossiles. Comptes Rendus de l’Académie des Sciences Paris, 251, 2756–2757.

    Google Scholar 

  • Jungers, W. L. (1988). Relative joint size and hominoid locomotor adaptations with implications for the evolution of hominid bipedalism. Journal of Human Evolution, 17, 247–265.

    Article  Google Scholar 

  • Jungers, W. L. (1991). Scaling of postcranial joint size in hominoid primates. Human Evolution, 6, 391–399.

    Article  Google Scholar 

  • Jungers, W. L., Falsetti, A. B., & Wall, C. E. (1995). Shape, relative size, and size-adjustments in morphometrics. Yearbook of Physical Anthropology, 1995, 137–161.

    Article  Google Scholar 

  • Jungers, W. L., Demes, B., & Godfrey, L. R. (2008). How big were the ‘giant’ extinct lemurs of Madagascar? In J. G. Fleagle & C. C. Gilbert (Eds.), Elwyn Simons: A search for origins (pp. 343–360). New York: Springer.

    Google Scholar 

  • Lemelin, P., Hamrick, M. W., Richmond, B. G., Godfrey, L. R., Jungers, W. L., & Burney, D. A. (2008). New hand bones of Hadropithecus stenognathus: Implications for the paleobiology of the Archaeolemuridae. Journal of Human Evolution, 54, 405–413.

    Article  PubMed  Google Scholar 

  • Lovejoy, C. O. (2007). The natural history of human gait: Part 3. The knee. Gait & Posture, 25, 325–341.

    Article  Google Scholar 

  • Lynch, M. (1991). Methods for the analysis of comparative data in evolutionary biology. Evolution, 45, 1065–1080.

    Article  Google Scholar 

  • McHenry, H. M. (1988). New estimates of body weight in early hominids and their significance to encephalization and megadontia in “robust” Australopithecines. In F. E. Grine (Ed.), Evolutionary history of the “robust” Australopithecines (pp. 133–148). New York: Aldine de Gruyter.

    Google Scholar 

  • McHenry, H. M., & Berger, L. R. (1998). Body proportions in Australopithecus afarensis and A. africanus and the origin of the genus Homo. Journal of Human Evolution, 35(1), 1–22.

    Article  CAS  PubMed  Google Scholar 

  • Muldoon, K. M., Godfrey, L. R., & Jungers, W. L. (2009). Geographic patterning in subfossil primate community dynamics in Madagascar. American Journal of Physical Anthropology (Supplement), 48, 195.

    Google Scholar 

  • Müller-Gerbl, M., Putz, R., Hodapp, N., Schulte, E., & Wimmer, B. (1989). Computed tomography-osteoabsorptiometry for assessing the density distribution of subchondral bone as a measure of long-term mechanical adaptation in individual joints. Skeletal Radiology, 18(7), 507–512.

    Article  PubMed  Google Scholar 

  • Müller-Gerbl, M., Putz, R., Hodapp, N., Schulte, E., & Wimmer, B. (1990). Computed-tomography osteoabsorptiometry – A method of assessing the mechanical condition of the major joints in a living subject. Clinical Biomechanics, 5(4), 193–198.

    Article  Google Scholar 

  • Muller-Gerbl, M., Putz, R., & Kenn, R. (1992). Demonstration of subchondral bone-density patterns by 3-dimensional Ct osteoabsorptiometry as a noninvasive method for in vivo assessment of individual long-term stresses in joints. Journal of Bone and Mineral Research, 7, S411–S418.

    Google Scholar 

  • O’Neill, M. C., & Dobson, S. D. (2008). The degree and pattern of phylogenetic signal in primate long-bone structure. Journal of Human Evolution, 54, 309–322.

    Article  PubMed  Google Scholar 

  • Orlando, L., Calvignac, S., Schnebelen, C., Douady, C. J., Godfrey, L. R., & Hänni, C. (2008). DNA from extinct giant lemurs links archaeolemurids to extant indriids. BMC Evolutionary Biology, 8, Article no. 121.

  • Paradis, E. (2006). Analysis of phylogenetics and evolution with R. New York; Springer.

  • Patel, B. A., & Carlson, K. J. (2006). Hand postures reflect bone apparent density patterns in the primate distal radius. American Journal of Physical Anthropology, 144–145.

  • Patel, B. A., & Carlson, K. J. (2007). Bone density spatial patterns in the distal radius reflect habitual hand postures adopted by quadrupedal primates. Journal of Human Evolution, 52, 130–141.

    Article  PubMed  Google Scholar 

  • Patel, B. A., & Carlson, K. J. (2008). Apparent density patterns in subchondral bone of the sloth and anteater forelimb. Biology Letters, 4(5), 486–489.

    Article  PubMed  Google Scholar 

  • Polk, J. D. (2002). Adaptive and phylogenetic influences on musculoskeletal design in cercopithecine primates. Journal of Experimental Biology, 205(21), 3399–3412.

    CAS  PubMed  Google Scholar 

  • Polk, J. D. (2004). The influence of body size and limb proportions on joint posture in terrestrial monkeys and fossil hominins. Journal of Human Evolution, 47, 237–252.

    Article  CAS  PubMed  Google Scholar 

  • Polk, J. D., Blumenfeld, J., & Ahluwalia, K. (2008). Knee posture predicted from subchondral apparent density in the distal femur: An experimental validation. Anatomical Record, 291, 293–302.

    Article  Google Scholar 

  • Polk, J. D., Williams, S. A., & Peterson, J. V. (2009). Body size and joint posture in Primates. American Journal of Physical Anthropology, 140, 359–375.

    Article  PubMed  Google Scholar 

  • Radin, E. L., & Paul, I. L. (1971). The importance of bone in sparing articular cartilage from impact. Clinical Orthopaedics and Related Research, 78, 342–344.

    Article  CAS  PubMed  Google Scholar 

  • Radin, E. L., Paul, I. L., & Lowy, M. (1970). A comparison of the dynamic force transmitting properties of subchondral bone and articular cartilage. Journal of Bone and Joint Surgery, 52A, 444–456.

    Google Scholar 

  • Ravololonarivo, G. F. N. (1990). Contribution à l’étude de la colonne vertébrale du genre Pachylemur (Lamberton, 1946): Anatomie et analyse cladistique. 3 rd Cycle thesis, University of Antananarivo, Madagascar.

  • Reynolds, T. R. (1985). Mechanics of increased support of weight by the hindlimb in primates. American Journal of Physical Anthropology, 67, 335–349.

    Article  CAS  PubMed  Google Scholar 

  • Rice, J. C., Cowin, S. C., & Bowman, J. A. (1988). On the dependency of the elasticity and strength of cancellous bone on apparent density. Journal of Biomechanics, 21, 155–168.

    Article  CAS  PubMed  Google Scholar 

  • Rohlf, F. J. (2006). Tpsdig2: http://life.bio.sunysb.edu/morph/soft-dataacq.html.

  • Ruff, C. (1987). Structural allometry of the femur and tibia in Hominoidea and Macaca. Folia Primatologica, 48, 9–49.

    Article  CAS  Google Scholar 

  • Ruff, C. (1988). Hindlimb articular surface allometry in Hominoidea and Macaca, with comparisons to diaphyseal scaling. Journal of Human Evolution, 17(7), 687–714.

    Article  Google Scholar 

  • Ruff, C. B., & Leo, F. P. (1986). Use of computed tomography in skeletal structure research. Yearbook of Physical Anthropology, 29, 181–196.

    Article  Google Scholar 

  • Ryan, T. M., Burney, D. A., Godfrey, L. R., Göhlich, U., Jungers, W. L., Vasey, N., et al. (2008). A reconstruction of the Vienna skull of Hadropithecus stenognathus. Proceedings of the National Academy of Sciences of the United States of America, 105(31), 10698–10701.

    Article  Google Scholar 

  • Samii, V. F., Les, C. M., Schulz, K. S., Keyak, J. H., & Stover, S. M. (2002). Computed tomographic osteoabsorptiometry of the elbow joint in clinically normal dogs. American Journal of Veterinary Research, 63, 1159–1166.

    Article  PubMed  Google Scholar 

  • Schmitt, D. (1994). Forelimb mechanics as a function of substrate type during quadrupedalism in two anthropoid primates. Journal of Human Evolution, 26, 441–457.

    Article  Google Scholar 

  • Schmitt, D. (1999). Compliant walking in Primates. Journal of Zoology (London), 248, 149–160.

    Article  Google Scholar 

  • Shapiro, L. J., Seiffert, C. V. M., Godfrey, L. R., Jungers, W. L., Simons, E. L., & Randria, G. F. N. (2005). Morphometric analysis of lumbar vertebrae in extinct Malagasy strepsirrhines. American Journal of Physical Anthropology, 128(4), 823–839.

    Article  PubMed  Google Scholar 

  • Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4), 591–611.

    Article  Google Scholar 

  • Simon, S. R., Rose, R. M., Radin, E. L., & Paul, I. L. (1972). Response of joints to impact loading 2. In-vivo behavior of subchondral bone. Journal of Biomechanics, 5(3), 267–272.

    CAS  Google Scholar 

  • Smith, R. J., & Cheverud, J. M. (2002). Scaling of sexual dimorphism in body mass: A phylogenetic analysis of Rensch’s rule in Primates. International Journal of Primatology, 23, 1095–1135.

    Article  Google Scholar 

  • Sokal, R. R., & Rohlf, F. J. (1995). Biometry (3rd ed.). New York: W. H. Freeman.

    Google Scholar 

  • Tardieu, C., & Jouffroy, F. K. (1979). Les surfaces articulaires fémorales du genou chez les Primates: étude préliminaire. Annales des Sciences Naturelles Zoologie (Paris), 13, 23–38.

    Google Scholar 

  • Taylor, W. R., Ehrig, R. M., Heller, M. O., Schell, H., Seebeck, P., & Duda, G. N. (2006). Tibio-femoral joint contact forces in sheep. Journal of Biomechanics, 39(5), 791–798.

    Article  PubMed  Google Scholar 

  • von Eisenhart, R., Adam, C., Steinlechner, M., Muller-Gerbl, M., & Eckstein, F. (1999). Quantitative determination of joint incongruity and pressure distribution during simulated gait and cartilage thickness in the human hip joint. Journal of Orthopaedic Research, 17(4), 532–539.

    Article  Google Scholar 

  • Walker, A. C. (1974). Locomotor adaptations in past and present prosimian primates. In F. A. Jenkins Jr. (Ed.), Primate locomotion (pp. 349–381). New York: Academic Press.

    Google Scholar 

  • Walker, A. (1983). Prosimian locomotor behavior. In G. A. Doyle & R. D. Martin (Eds.), The study of prosiman behavior (pp. 543–566). New York: Academic Press.

    Google Scholar 

  • Walker, A., Ryan, T. M., Silcox, M. T., Simons, E. L., & Spoor, F. (2008). The semicircular canal system and locomotion: The case of extinct lemuroids and lorisoids. Evolutionary Anthropology, 17(3), 135–145.

    Article  Google Scholar 

  • Wall, J. C., Chatterji, S. K., & Jeffery, J. W. (1979). Age-related changes in the density and tensile strength of human femoral cortical bone. Calcified Tissue International, 27, 105–108.

    Article  CAS  PubMed  Google Scholar 

  • Wiley, D. F., Amenta, N., Alcantara, D. A., Ghosh, D., Kil, Y. J., Delson, E., Harcourt-Smith, W., Rohlf, F. J., St. John, K., & Hamann, B. (2005). Evolutionary morphing. Proceedings IEEE Visualization, 2005, 431–438.

  • Wright, T. M., & Hayes, W. C. (1977). Fracture mechanics parameters for compact bone – effects of density and specimen thickness. Journal of Biomechanics, 10, 419–430.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Profs. E. Hirasaki, Y. Hamada, and T. C. Rae for their invitation to participate in the Primate Functional Morphology Symposium in August 2008. We also thank Judy Chupasko and her staff at Harvard’s Museum of Comparative Zoology for their generous loan of extant primate specimens for CT scanning. We thank Dr. Armand Rasoamiaramanana and the late Dr. Gisèle Randria (formerly Ravololonarivo) for the specimen (Pachylemur) loaned from the University of Antananarivo and for the paleontological research accord under which the Hadropithecus specimen was found. Kevin Reynolds and his staff at Mount Auburn Hospital provided excellent assistance in CT scanning. Jennifer Swartz assisted with preliminary analyses of the patterns of subchondral density. Rebecca Stumpf provided excellent advice at all stages of the project. This research was supported by grants from the National Science Foundation: BCS 0639630, with REU supplement (J. D. Polk), and BCS 0129185 (D. Burney, W. Jungers, and L. R. Godfrey), and the University of Illinois, Urbana-Champaign (J. D. Polk). We also thank the editors, Bill Jungers, and 1 anonymous reviewer for their substantial improvements to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Polk.

Appendix

Appendix

Phylogeny in Newick format

((((Nycticebus:35,Perodicticus:35):5,(Otolemur:20,Galago:20):20):33.7,(((((Eulemur fulvus:9.2,Eulemur rubriventer:9.2):10.1,Hapalemur:19.3):4.1,Varecia:23.4):15.9,((Indri:29,Propithecus:29):6.9,Lepilemur: 35.9):3.4):26.9,Daubentonia:66.2):7.5):1.5,((((Alouatta belzebuth: 4.1,A.fusca:4.1):9.5,Ateles:13.6): 6.5,((Saguinus:8.1,Leontopithecus:8.1):2,Callithrix: 10.1):10):19.9,((((((Macaca mulatta:1.7,M. fascicularis:1.7):1.1,M.nemestrina:2.8):5,(Cercocebus: 6.5,Mandrillus:6.5):1.3):1,((Miopithecus: 4,Chlorocebus:4):1,(Cercopithecus diana:5,Cercopithecus l’hoesti:5):0):3.3):4,(((Colobus guereza:0.1,C. polykomos:0.1):1.9,Piliocolobus badius:2): 9,(((Trachypithecus cristata:1,t. vetulus:1,T. phayrei:1): 1,Presbytis hosei:2):2.5,Nasalis:4.5):6.5):2):2,(((Pan:7.7,Gorilla:7.7):8.3,Pongo:16):3,Hylobates: 19):6):15):35.2);

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polk, J.D., Williams, S.A., Peterson, J.V. et al. Subchondral Bone Apparent Density and Locomotor Behavior in Extant Primates and Subfossil Lemurs Hadropithecus and Pachylemur . Int J Primatol 31, 275–299 (2010). https://doi.org/10.1007/s10764-010-9401-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10764-010-9401-y

Keywords

Navigation