Skip to main content
Log in

Dynamical Aspects of TEM-1 β-Lactamase Probed by Molecular Dynamics

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The dynamical aspects of the fully hydrated TEM-1 β-lactamase have been determined by a 5 ns Molecular Dynamics simulation. Starting from the crystallographic coordinates, the protein shows a relaxation in water with an overall root mean square deviation from the crystal structure increasing up to 0.17 nm, within the first nanosecond. Then a plateau is reached and the molecule fluctuates around an equilibrium conformation. The results obtained in the first nanosecond are in agreement with those of a previous simulation (Diaz et al., J. Am. Chem. Soc., (2003) 125, 672–684). The successive equilibrium conformation in solution shows an increased mobility characterized by the following aspects. A flap-like translational motion anchores the Ω-loop to the body of the enzyme. A relevant part of the backbone dynamics implies a rotational motion of one domain relative to the other. The water molecules in the active site can exchange with different residence times. The H-bonding networks formed by the catalytic residues are frequently interrupted by water molecules that could favour proton transfer reactions. An additional simulation, where the aspartyl dyad D214–D233 was considered fully deprotonated, shows that the active site is destabilized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DynDom:

dynamic domain

ED:

essential dynamics

MD:

Molecular Dynamics

RMSD:

root mean square deviation

RMSF:

root mean square fluctuation

References

  1. S.G. Waley M.I. Page (Eds) (1992) The Chemistry of β-lactams Chapman and Hall Glasgow, U.K 198–228

    Google Scholar 

  2. M. Galleni J. Lamotte-Brasseur X. Raquet A. Dubus D. Monnaie J.R. Knox J.-M. Frere (1995) Biochem. Pharmacol. 49 1171 Occurrence Handle10.1016/0006-2952(94)00502-D Occurrence Handle7763298

    Article  PubMed  Google Scholar 

  3. A. Matagne J. Lamotte-Brasseur J.-M. Frere (1998) Biochem. J. 330 581 Occurrence Handle9480862

    PubMed  Google Scholar 

  4. G.D. Wright (2000) Chem. Biol. 7 127 Occurrence Handle10.1016/S1074-5521(00)00126-5

    Article  Google Scholar 

  5. C. Walsh (2000) Nature 406 775 Occurrence Handle10963607

    PubMed  Google Scholar 

  6. N.C. Strynadka R. Martin S.E. Jensen M. Gold J.B. Jones (1996) Nat. Struct. Biol. 3 688 Occurrence Handle10.1038/nsb0896-688 Occurrence Handle8756327

    Article  PubMed  Google Scholar 

  7. S. Ness R. Martin A.M. Kindler M. Paetzel M. Gold S.E. Jensen J.B. Jones N.C. Strynadka (2000) Biochemistry 39 5312 Occurrence Handle10.1021/bi992505b Occurrence Handle10820001

    Article  PubMed  Google Scholar 

  8. Y. Yang B.A. Rasmussen D.M. Shlaes (1999) Pharmacol. Therap. 83 141 Occurrence Handle10.1016/S0163-7258(99)00027-3

    Article  Google Scholar 

  9. C. Jelsch L. Mourey J.M. Masson J.-P. Samama (1993) Proteins 16 364 Occurrence Handle10.1002/prot.340160406 Occurrence Handle8356032

    Article  PubMed  Google Scholar 

  10. N. Diaz T.L. Sordo K.M. Merz SuffixJr. D. Suarez (2003) J. Am. Chem. Soc. 125 672 Occurrence Handle10.1021/ja027704o Occurrence Handle12526667

    Article  PubMed  Google Scholar 

  11. H.J.C. Berendsen J.R. Grigera T.P. Straatsma (1987) J. Phys. Chem. 91 6269 Occurrence Handle10.1021/j100308a038

    Article  Google Scholar 

  12. P. Swaren L. Maveyraud V. Guillet J.-M. Masson L. Mourey J.-P. Samama (1995) Structure 3 603 Occurrence Handle10.1016/S0969-2126(01)00194-0 Occurrence Handle8590021

    Article  PubMed  Google Scholar 

  13. M.P. Allen D.J. Tildesly (1987) Computer Simulation of Liquids Oxford University Press Oxford

    Google Scholar 

  14. B. Hess H. Bekker H.J.C. Berendsen J.G.E.M. Fraaije (1997) J. Comput. Chem. 18 1463 Occurrence Handle10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H

    Article  Google Scholar 

  15. A. Amadei G. Chillemi M.A. Ceruso A. Grottesi A. Di Nola (2000) J. Chem. Phys. 112 9 Occurrence Handle10.1063/1.480557

    Article  Google Scholar 

  16. T.A. Darden D.M. York L.G. Pedersen (1993) J. Chem. Phys. 98 10089 Occurrence Handle10.1063/1.464397

    Article  Google Scholar 

  17. van der Spoel, D., van Drunen, R. and Berendsen, H.J.C., GROningen MAchine for Chemical Simulation, Department of Biophysical Chemistry, BIOSON Research Institute, Nijenborgh 4 NL-9717 AG Groningen, 1994.

  18. S. Hayward H.J.C. Berendsen (1998) Proteins 30 144 Occurrence Handle10.1002/(SICI)1097-0134(19980201)30:2<144::AID-PROT4>3.0.CO;2-N Occurrence Handle9489922

    Article  PubMed  Google Scholar 

  19. B.L. Groot Particlede S. Hayward D.M.F. Aalten Particlevan A. Amadei H.J.C. Berendsen (1998) Proteins 31 116 Occurrence Handle10.1002/(SICI)1097-0134(19980501)31:2<116::AID-PROT2>3.0.CO;2-K Occurrence Handle9593186

    Article  PubMed  Google Scholar 

  20. I. Daidone D. Roccatano S. Hayward (2004) J. Mol. Biol. 339 515 Occurrence Handle10.1016/j.jmb.2004.04.007 Occurrence Handle15147839

    Article  PubMed  Google Scholar 

  21. A. Amadei A.B.M. Linssen H.J.C. Berendsen (1993) Proteins 17 412 Occurrence Handle10.1002/prot.340170408 Occurrence Handle8108382

    Article  PubMed  Google Scholar 

  22. S. Hayward R.A. Lee (2002) J. Mol. Graph. Model 21 181 Occurrence Handle10.1016/S1093-3263(02)00140-7 Occurrence Handle12463636

    Article  PubMed  Google Scholar 

  23. S. Vijayakumar G. Ravishanker R.F. Pratt D.L. Beveridge (1995) J. Am. Chem. Soc. 117 1722 Occurrence Handle10.1021/ja00111a008

    Article  Google Scholar 

  24. J.R. Knox P.C. Moews (1991) J. Mol. Biol. 220 435 Occurrence Handle10.1016/0022-2836(91)90023-Y Occurrence Handle1856867

    Article  PubMed  Google Scholar 

  25. J. Lamotte-Brasseur G. Dive O. Dideberg P. Charlier J.M. Frere J.M. Ghuysen (1991) Biochem. J. 279 213 Occurrence Handle1930139

    PubMed  Google Scholar 

  26. O. Herzberg (1991) J. Mol. Biol. 217 701 Occurrence Handle10.1016/0022-2836(91)90527-D Occurrence Handle2005620

    Article  PubMed  Google Scholar 

  27. D. Mustafi A. Sosa-Peinado M.W. Makinen (2001) Biochemistry 40 2397 Occurrence Handle10.1021/bi0021075 Occurrence Handle11327860

    Article  PubMed  Google Scholar 

  28. G. Minasov X. Wang B.K. Shoichet (2002) J. Am. Chem Soc. 124 5333 Occurrence Handle10.1021/ja0259640 Occurrence Handle11996574

    Article  PubMed  Google Scholar 

  29. N.C. Strynadka H. Adachi S.E. Jensen K. Johns A. Sielecki C. Betzel K. Sutoh M.N.G. James (1992) Nature 359 700 Occurrence Handle10.1038/359700a0 Occurrence Handle1436034

    Article  PubMed  Google Scholar 

  30. G. Guillaume M. Vanhove J. Lamotte-Brasseur P. Ledent M. Jamin B. Joris J.-M. Frere (1997) J. Biol. Chem. 272 5438 Occurrence Handle10.1074/jbc.272.9.5438 Occurrence Handle9038144

    Article  PubMed  Google Scholar 

  31. I. Massova S. Mobashery (1998) Antimicrob. Agents Chemother. 42 1 Occurrence Handle9449253

    PubMed  Google Scholar 

  32. E.J. Lietz H. Truher D. Kahn M.J. Hokenson A.L. Fink (2000) Biochemistry 39 4971 Occurrence Handle10.1021/bi992681k Occurrence Handle10819961

    Article  PubMed  Google Scholar 

  33. B.P. Atanasov D. Mustafi M.W. Makinen (2000) Proc. Natl. Acad. Sci. U.S.A. 97 3160 Occurrence Handle10.1073/pnas.060027897 Occurrence Handle10716727

    Article  PubMed  Google Scholar 

  34. B.M. Beadle I. Trehan P.J. Focia B.K. Shoichet (2002) Structure 10 413 Occurrence Handle10.1016/S0969-2126(02)00725-6 Occurrence Handle12005439

    Article  PubMed  Google Scholar 

  35. I.V. Kashparov M.E. Popov E.M. Popov (1998) Adv. Exp. Med. Biol. 436 115 Occurrence Handle9561208

    PubMed  Google Scholar 

  36. I.Y. Torshin R.W. Harrison I.T. Weber (2003) Protein Eng. 16 201 Occurrence Handle10.1093/proeng/gzg027 Occurrence Handle12702800

    Article  PubMed  Google Scholar 

  37. V.P. Denisov B. Halle (1996) Faraday Discuss 103 227 Occurrence Handle10.1039/fd9960300227 Occurrence Handle9136639

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Mazza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roccatano, D., Sbardella, G., Aschi, M. et al. Dynamical Aspects of TEM-1 β-Lactamase Probed by Molecular Dynamics. J Comput Aided Mol Des 19, 329–340 (2005). https://doi.org/10.1007/s10822-005-7003-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-005-7003-0

Keywords

Navigation