Skip to main content

Advertisement

Log in

Land cover change homogenizes functional and phylogenetic diversity within and among African savanna bird assemblages

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Conversion of natural ecosystems into anthropogenic landscapes can result in biotic homogenization, whereby differences in species composition among sites are diminished through colonization or local extinction. This may reduce the resilience of assemblages to further perturbation and the range or quality of ecosystem services they offer.

Objectives

We investigate how land cover change has altered patterns of compositional, functional and phylogenetic diversity of avian communities in a typical African savanna. We investigate if there has been selection for closely-related or functionally similar species with increasing land use intensity and how this has affected alpha and beta components of diversity.

Methods

We conducted point counts over 2 years in four distinct land cover types (urban, rural, protected and a transitional matrix), representing a gradient of land cover change. We compared alpha and beta phylogenetic, compositional and functional diversity between sites to assess whether land cover change has homogenized avian communities.

Results

While alpha diversity tended to be higher in transformed land cover types (urban, rural and matrix), measures of beta diversity among sites within these types were significantly lower than beta diversity within the protected area. Furthermore, assemblages in transformed areas were functionally and phylogenetically more similar than expectation based on a null model, particularly in the urban area.

Conclusions

While transformed areas may support higher diversity than natural habitats inside the protected area, human impacts are filtering for species with specific traits and thus homogenizing functional and phylogenetic diversity within and between sites in our study system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvey AA (2006) Promoting and preserving biodiversity in the urban forest. Urban For Urban Green 5:195–201.

    Google Scholar 

  • Aronson MFJ, La Sorte FA, Nilon CH, Katti M, Goddard MA, Lepczyk CA, Warren PS, Williams SG, Cilliers S, Clarkson B, Dobbs C, Dolan R, Hedblom M, Klotz S, Kooijmans JL, Siebert S, Sushinsky J, Werner P, Pys P (2014) A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc R Soc B Biol Sci 281:20133330.

    Google Scholar 

  • Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B, Quental TB, Marshall C, McGuire JL, Lindsey EL, Maguire KC, Mersey B, Ferrer EA (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471:51–57.

    CAS  PubMed  Google Scholar 

  • Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19:134–143.

    Google Scholar 

  • Baselga A, Orme CDL (2012) Betapart: an R package for the study of beta diversity. Methods Ecol Evol 3:808–812.

    Google Scholar 

  • Beisner BE, Ives AR, Carpenter SR, Ivest R (2013) The effects of an exotic fish invasion on the prey of two lakes communities. J Anim Ecol 72:331–342

    Google Scholar 

  • Beninde J, Veith M, Hochkirch A (2015) Biodiversity in cities needs space: a meta-analysis of factors determining intra-urban biodiversity variation. Ecol Lett 18:581–592.

    PubMed  Google Scholar 

  • Blomberg SP, Garland TJ, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Soc Study Evol 57:717–745

    Google Scholar 

  • Bryant JA, Lamanna C, Morlon H, Kerkhoff AJ, Enquist BJ, Green JL (2008) Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proc Natl Acad Sci 105:11505–11511.

    CAS  PubMed  Google Scholar 

  • Cadotte MW, Cardinale BJ, Oakley TH (2008) Evolutionary history and the effect of biodiversity on plant productivity. Proc Natl Acad Sci 105:17012–17017.

    CAS  PubMed  Google Scholar 

  • Cadotte M, Dinnage R, Tilman D (2012) Phylogenetic diversity promotes ecosystem stability. Ecology 93:S223–S233.

    Google Scholar 

  • Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715.

    PubMed  Google Scholar 

  • Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM (2015) Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci Adv 1:9–13.

    Google Scholar 

  • Clavel J, Julliard R, Devictor V (2011) Worldwide decline of specialist species: toward a global functional homogenization? Front Ecol Environ 9:222–228.

    Google Scholar 

  • Clergeau P, Croci S, Jokimäki J, Kaisanlahti-Jokimäki ML, Dinetti M (2006) Avifauna homogenisation by urbanisation: analysis at different European latitudes. Biol Conserv 127:336–344.

    Google Scholar 

  • Coetzee BWT, Chown SL (2016) Land-use change promotes avian diversity at the expense of species with unique traits. Ecol Evol 6:7610–7622.

    PubMed  PubMed Central  Google Scholar 

  • Cox RL, Underwood EC (2011) The importance of conserving biodiversity outside of protected areas in Mediterranean ecosystems. PLoS ONE 6:1–6.

    Google Scholar 

  • Cumming GS, Child MF (2009) Contrasting spatial patterns of taxonomic and functional richness offer insights into potential loss of ecosystem services. Philos Trans R Soc B 364:1683–1692

    Google Scholar 

  • Davies ZG, Fuller RA, Loram A, Irvine KN, Sims V, Gaston KJ (2009) Urban domestic gardens (XV): the extent of the resource at a national scale. Biol Conserv 142:761–771

    Google Scholar 

  • Davis M, Faurby S, Svenning J (2018) Mammal diversity will take millions of years to recover from the current biodiversity crisis. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1804906115

    Article  PubMed  Google Scholar 

  • De Castro Pena JC, Martello F, Ribeiro MC, Armitage RA, Young RJ, Rodrigues M (2017) Street trees reduce the negative effects of urbanization on birds. PLoS ONE 12:e0174484.

    Google Scholar 

  • Devictor V, Julliard R, Clavel J, Jiguet F, Lee A, Couvet D (2008) Functional biotic homogenization of bird communities in disturbed landscapes. Glob Ecol Biogeogr 17:252–261.

    Google Scholar 

  • Devictor V, Mouillot D, Meynard C, Jiguet F, Thuiller W, Mouquet N (2010) Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol Lett 13:1030–1040.

    PubMed  Google Scholar 

  • Dinnage R, Cadotte MW, Haddad NM, Crutsinger GM, Tilman D (2012) Diversity of plant evolutionary lineages promotes arthropod diversity. Ecol Lett 15:1308–1317.

    PubMed  Google Scholar 

  • Dornelas M, Gotelli NJ, McGill B, Shimadzu H, Moyes F, Sievers C, Magurran AE (2014) Assemblage time series reveal biodiversity change but not systematic loss. Science 344:296–299.

    CAS  PubMed  Google Scholar 

  • Duckworth GD, Altwegg R, Guo D (2010) Soil moisture limits foraging: a possible mechanism for the range dynamics of the Hadeda Ibis in southern Africa. Divers Distrib 16:765–772.

    Google Scholar 

  • Duckworth GD, Altwegg R, Harebottle DM (2012) Demography and population ecology of the Hadeda Ibis (Bostrychia hagedash) at its expanding range edge in South Africa. J Ornithol 153:421–430.

    Google Scholar 

  • Ellis EC, Ramankutty N (2008) Putting people in the map: anthropogenic biomes of the world. Front Ecol Environ 6:439–447.

    Google Scholar 

  • Ericson PGP, Zuccon D, Ohlson JI, Johansson US, Alvarenga H, Prum RO (2006) Higher-level phylogeny and morphological evolution of tyrant flycatchers, cotingas, manakins, and their allies (Aves: Tyrannida). Mol Phylogenet Evol 40:471–483.

    CAS  PubMed  Google Scholar 

  • Evans KL, Chamberlain DE, Hatchwell BJ, Gregory RD, Gaston KJ (2011) What makes an urban bird? Global Change Biol 17:32–44

    Google Scholar 

  • Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin JL (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112.

    PubMed  Google Scholar 

  • Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10.

    Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15.

    Google Scholar 

  • Fischer J, Lindenmayer DB, Manning AD, Fischer J, Lindenmayer DB, Manning AD (2006) Biodiversity, ecosystem function and resilience: ten guiding principles for commodity production landscapes. Front Ecol Environ 4:80–86.

    Google Scholar 

  • Forest F, Grenyer R, Rouget M, Davies TJ, Cowling RM, Faith DP, Balmford A, Manning JC, Procheş Ş, van der Bank M, Reeves G, Hedderson TAJ, Savolainen V (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445:757–760.

    CAS  PubMed  Google Scholar 

  • Frishkoff LO, Karp DS, M’Gonigle LK, Mendenhall CD, Zook J, Kremen C, Hadly EA, Daily GC (2014) Loss of avian phylogenetic diversity in neotropical agricultural systems. Science 345:1343–1346.

    CAS  PubMed  Google Scholar 

  • Fuller RJ, Ward E, Hird D, Brown AF (2002) Declines of ground-nesting birds in two areas of upland farmland in the south Pennines of England. Bird Study 49:146–152.

    Google Scholar 

  • Gerland P, Raftery AE, Ševčíková H, Li N, Gu D, Spoorenberg T, Alkema L, Fosdick BK, Chunn J, Lalic N, Bay G, Buettner T, Heilig GK, Wilmoth J (2014) World population stabilization unlikely this century. Science 346:234–237.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gotelli NJ, McCabe DJ (2002) Species co-occurrence: a meta-analysis of J. M. Diamond’s assembly rules model. Ecology 83:2091–2096.

    Google Scholar 

  • Hackett SJ, Hackett SJ, Kimball RT, Reddy S, Bowie RCK, Braun EL, Braun MJ, Chojnowski JL, Cox WA, Han K, Harshman J, Huddleston CJ, Marks BD, Miglia KJ, Moore WS, Sheldon FH, Steadman DW, Witt CC, Yuri T (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320:1763.

    CAS  PubMed  Google Scholar 

  • Hobbs RJ, Arico S, Aronson J, Baron JS, Bridgewater P, Cramer VA, Epstein PR, Ewel JJ, Klink CA, Valladares F, Vila M, Zamora R, Zobel M (2006) Novel ecosystems: theoretical and management aspects of the new ecological world order. Glob Ecol Biogeogr 15:1–7.

    Google Scholar 

  • Hope D, Gries C, Zhu W, Fagan WF, Redman CL, Grimm NB, Nelson AL, Martin C, Kinzig A (2008) Socioeconomics drive urban plant diversity. Proc Natl Acad Sci 100:339–347.

    Google Scholar 

  • Ibáñez-Álamo JD, Rubio E, Benedetti Y, Morelli F (2016) Global loss of avian evolutionary uniqueness in urban areas. Glob Chang Biol 23:2990–2998.

    PubMed  Google Scholar 

  • Jetz W, Thomas GH, Joy JB, Redding DW, Hartmann K, Mooers AO (2014) Global distribution and conservation of evolutionary distinctness in birds. Curr Biol 24:919–930.

    CAS  PubMed  Google Scholar 

  • Jetz W, Wilcove DS, Dobson AP (2007) Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol 5:3157.

    Google Scholar 

  • Kark S, Iwaniuk A, Schalimtzek A, Banker E (2007) Living in the city: can anyone become an “urban exploiter”? J Biogeogr 34:638–651.

    Google Scholar 

  • Ke A, Sibiya MD, Reynolds C, McCleery RA, Monadjem A, Fletcher RJ (2018) Landscape heterogeneity shapes taxonomic diversity of non-breeding birds across fragmented savanna landscapes. Biodivers Conserv 27:2681–2698.

    Google Scholar 

  • Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: r tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464.

    CAS  PubMed  Google Scholar 

  • Kluge AG, Farris JS (1969) Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–31

    Google Scholar 

  • Knapp S, Kuhn I, Schweiger O, Klotz S (2008) Challenging urban species diversity: contrasting phylogenetic patterns across plant functional groups in Germany. Ecol Lett 11:1054–1064.

    PubMed  Google Scholar 

  • Laliberte E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305

    PubMed  Google Scholar 

  • Lee TM, Sodhi NS, Prawiradilaga DM (2007) The importance of protected areas for the forest and endemic avifauna of Sulawesi (Indonesia). Ecol Appl 17:1727–1741

    PubMed  Google Scholar 

  • Leveau CM, Leveau LM (2005) Avian community response to urbanization in the Pampean region, Argentina. Ornitol Neotrop 16:503–510

    Google Scholar 

  • Mace GM, Gittleman JL, Purvis A (2003) Preserving the tree of life. Science 300:1707–1709.

    CAS  PubMed  Google Scholar 

  • McCleery R, Monadjem A, Baiser B, Fletcher R, Vickers K, Kruger L (2018) Animal diversity declines with broad-scale homogenization of canopy cover in African savannas. Biol Conserv 226:54–62.

    Google Scholar 

  • McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260.

    Google Scholar 

  • McKinney ML (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst 11:161–176.

    Google Scholar 

  • McKinney ML, Lockwood JL (2001) Biotic homogenization: a sequential and selective process. In: Lockwood JL, McKinney ML (eds) Biotic homogenization. Springer, Boston, MA

    Google Scholar 

  • Monnet AC, Jiguet F, Meynard CN, Mouillot D, Mouquet N, Thuiller W, Devictor V (2014) Asynchrony of taxonomic, functional and phylogenetic diversity in birds. Glob Ecol Biogeogr 23:780–788.

    PubMed  PubMed Central  Google Scholar 

  • Moorcroft D, Whittingham MJ, Bradbury RB, Wilson JD (2002) The selection of stubble fields by wintering granivorous birds reflects vegetation cover and food abundance. J Appl Ecol 39:535–547.

    Google Scholar 

  • Morelli F, Benedetti Y, Ibáñez-Álamo JD, Jokimaki J, Mänd R, Tryjanowski P, Møller AP (2016) Evidence of evolutionary homogenization of bird communities in urban environments across Europe. Glob Ecol Biogeogr 25:1284–1293.

    Google Scholar 

  • Mucina L, Rutherford MC (2006) The Vegetation of South Africa, Lesotho and Swaziland. South African National Biodiversity Institute, Pretoria

    Google Scholar 

  • Newbold T, Scharlemann JPW, Butchart SHM, Sekercioglu ÇH, Alkemade R, Booth H, Purves DW (2013) Ecological traits affect the response of tropical forest bird species to land-use intensity. Proc R Soc B Biol Sci 280:20122131.

    Google Scholar 

  • Olden JD (2006) Biotic homogenization: a new research agenda for conservation biogeography. J Biogeogr 33:2027–2039.

    Google Scholar 

  • Olden JD, Poff NLR, Douglas MR, Douglas ME, Fausch KD (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19:18–24.

    PubMed  Google Scholar 

  • Parnell S, Walawege R (2011) Sub-Saharan African urbanisation and global environmental change. Glob Environ Chang 21:S12–S20.

    Google Scholar 

  • Pavoine S, Gasc A, Bonsall M, Mason NW (2013) Correlations between phylogenetic and functional diversity: mathematical artefacts or true ecological and evolutionary processes. J Veg Sci 24:781–793

    Google Scholar 

  • Petchey OL, Gaston KJ (2002) Functional diversity (FD), species richness and community composition. Ecol Lett 5:402–411.

    Google Scholar 

  • Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9:741–758.

    PubMed  Google Scholar 

  • Petsch DK (2016) Causes and consequences of biotic homogenization in freshwater ecosystems. Int Rev Hydrobiol 101:113–122.

    Google Scholar 

  • Pimm SL, Raven P (2000) Biodiversity—extinction by numbers. Nature 403:843–845.

    CAS  PubMed  Google Scholar 

  • Podani J (1999) Extending Gower’s general coefficient of similarity to ordinal characters. Taxon 48:331–340.

    Google Scholar 

  • Podani J, Schmera D (2006) On dendrogram-based measures of functional diversity. Oikos 115:179–185.

    Google Scholar 

  • Rambaut A, Drummond AJ (2002–2015) TreeAnnotator v 1.8.2. http://beast.bio.ed.ac.uk/. Accessed 25 Oct 2018

  • Sax DF, Gaines SD, Brown JH (2002) Species invasions exceed extinctions on islands worldwide: a comparative study of plants and birds. Am Nat 160:766–783.

    PubMed  Google Scholar 

  • Sol D, Bartomeus I, González-Lagos C, Pavoine S (2017) Urbanisation and the loss of phylogenetic diversity in birds. Ecol Lett 20:721–729.

    PubMed  Google Scholar 

  • Statistics South Africa (2012) The South African National Census 2011. http://www.statssa.gov.za/

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  • Thiollay JM (2006) Large bird declines with increasing human pressure in savanna woodlands (Burkina Faso). Biodivers Conserv 15:2085–2108.

    Google Scholar 

  • Thiollay JM (2007a) Raptor declines in West Africa: comparisons between protected, buffer and cultivated areas. Oryx 41:322–329.

    Google Scholar 

  • Thiollay JM (2007b) Raptor population decline in West Africa. Ostrich 78:405–413.

    Google Scholar 

  • Trimble MJ, van Aarde RJ (2012) Geographical and taxonomic biases in research on biodiversity in human modified landscapes. Ecoshpere 3:1–169.

    Google Scholar 

  • Tucker CM, Cadotte MW, Carvalho SB, Davies TJ, Ferrier S, Fritz SA, Grenyer R, Helmus MR, Jin LS, Mooers AO, Pavoine S, Purschke O, Redding DW, Rosauer DF, Winter M, Mazel F (2016) A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol Rev 92:698–715.

    PubMed  Google Scholar 

  • Vellend M, Baeten L, Myers-Smith IH, Elmendorf SC, Beausejour R, Brown CD, De Frenne P, Verheyen K, Wipf S (2013) Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc Natl Acad Sci 110:19456–19459.

    CAS  PubMed  Google Scholar 

  • Veron S, Davies TJ, Cadotte MW, Clergeau P, Pavoine S (2017) Predicting loss of evolutionary history: where are we? Biol Rev 92:271–291.

    PubMed  Google Scholar 

  • Virani MZ, Kendall C, Njoroge P, Thomsett S (2011) Major declines in the abundance of vultures and other scavenging raptors in and around the Masai Mara ecosystem, Kenya. Biol Conserv 144:746–752.

    Google Scholar 

  • Webb CO, Ackerly DD, PcPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Evol Syst 33:475–505.

    Google Scholar 

  • Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213–251.

    Google Scholar 

Download references

Acknowledgements

Thank you to the National Research Foundation (NRF) of South Africa and the University of Cape Town for providing funding for this project. The opinions, findings and conclusions expressed in this manuscript are that of the authors and do not necessarily reflect those of the NRF of South Africa or the University of Cape Town. Thank you to R. van Mazjik and G. A. Verboom for kindly sharing R scripts. Thank you to M. Jere for helping to design the map.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleanor A. Weideman.

Ethics declarations

Conflict of interest

The authors state no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 209 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weideman, E.A., Slingsby, J.A., Thomson, R.L. et al. Land cover change homogenizes functional and phylogenetic diversity within and among African savanna bird assemblages. Landscape Ecol 35, 145–157 (2020). https://doi.org/10.1007/s10980-019-00939-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-019-00939-z

Keywords

Navigation