Skip to main content
Log in

Extracellular Synthesis and Characterization of Gold Nanoparticles Using Mycobacterium sp. BRS2A-AR2 Isolated from the Aerial Roots of the Ghanaian Mangrove Plant, Rhizophora racemosa

  • Original Research Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Through the use of genomes that have undergone millions of years of evolution, marine Actinobacteria are known to have adapted to rapidly changing environmental pressures. The result is a huge chemical and biological diversity among marine Actinobacteria. It is gradually becoming a known fact that, marine Actinobacteria have the capability to produce nanoparticles which have reasonable sizes and structures with possible applications in biotechnology and pharmacology. Mycobacterium sp. BRS2A-AR2 was isolated from the aerial roots of the mangrove plant Rhizophora racemosa. The Mycobacterium was demonstrated for the first time ever to produce AuNPs with sizes that range between 5 and 55 nm. The highest level absorbance of the biosynthesized AuNPs was typical for actinobacterial strains (2.881 at 545 nm). The polydispersity index was measured as 0.207 in DLS and the zeta potential was negatively charged (− 28.3 mV). Significant vibration stretches were seen at 3314, 2358, 1635 and 667 cm−1 in FT-IR spectra. This demonstrated the possible use of small aliphatic compounds containing –COOH, –OH, –Cl and –NH2 functional groups in the stabilization of the AuNPs. The effect of the biosynthesized AuNPs on HUVEC and HeLA cell lines was measured at 48 h. IC50 values were determined at 3500 µg/ml concentration for HUVEC and HeLA cell lines at 45.25 and 53.41% respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Coll Interface Sci 156(1–2):1–13. https://doi.org/10.1016/j.cis.2010.02.001

    Article  CAS  Google Scholar 

  2. Stark WJ, Stoessel PR, Wohlleben W, Hafner A (2015) Industrial applications of nanoparticles. Chem Soc Rev 44(16):5793–5805. https://doi.org/10.1039/c4cs00362d

    Article  CAS  PubMed  Google Scholar 

  3. Baetke SC, Lammers T, Kiessling F (2015) Applications of nanoparticles for diagnosis and therapy of cancer. Br J Radiol 88(1054):20150207. https://doi.org/10.1259/bjr.20150207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Diao F, Wang Y (2017) Transition metal oxide nanostructures: premeditated fabrication and applications in electronic and photonic devices. J Mater Sci 53(6):4334–4359. https://doi.org/10.1007/s10853-017-1862-3

    Article  Google Scholar 

  5. Martins M, Mourato C, Sanches S, Noronha JP, Crespo MT, Pereira IA (2017) Biogenic platinum and palladium nanoparticles as new catalysts for the removal of pharmaceutical compounds. Water Res 108:160–168. https://doi.org/10.1016/j.watres.2016.10.071

    Article  CAS  PubMed  Google Scholar 

  6. Patel SKS, Lee J-K, Kalia VC (2017) Nanoparticles in biological hydrogen production: an overview. Indian J Microbiol. https://doi.org/10.1007/s12088-017-0678-9

    Google Scholar 

  7. Pugazhendhi S, Kirubha E, Palanisamy PK, Gopalakrishnan R (2015) Synthesis and characterization of silver nanoparticles from Alpinia calcarata by Green approach and its applications in bactericidal and nonlinear optics. Appl Surf Sci 357:1801–1808. https://doi.org/10.1016/j.apsusc.2015.09.237

    Article  CAS  Google Scholar 

  8. De Sio L, Placido T, Comparelli R, Lucia Curri M, Striccoli M, Tabiryan N, Bunning TJ (2015) Next-generation thermo-plasmonic technologies and plasmonic nanoparticles in optoelectronics. Prog Quantum Electron 41:23–70. https://doi.org/10.1016/j.pquantelec.2015.03.001

    Article  Google Scholar 

  9. Patel SK, Choi SH, Kang YC, Lee JK (2016) Large-scale aerosol-assisted synthesis of biofriendly Fe(2)O(3) yolk-shell particles: a promising support for enzyme immobilization. Nanoscale 8(12):6728–6738. https://doi.org/10.1039/c6nr00346j

    Article  CAS  PubMed  Google Scholar 

  10. Patel SK, Choi SH, Kang YC, Lee JK (2017) Eco-friendly composite of Fe3O4-reduced graphene oxide particles for efficient enzyme immobilization. ACS Appl Mater Interfaces 9(3):2213–2222. https://doi.org/10.1021/acsami.6b05165

    Article  CAS  PubMed  Google Scholar 

  11. Otari SV, Kumar M, Anwar MZ, Thorat ND, Patel SKS, Lee D, Lee JH, Lee JK, Kang YC, Zhang L (2017) Rapid synthesis and decoration of reduced graphene oxide with gold nanoparticles by thermostable peptides for memory device and photothermal applications. Sci Rep 7(1):10980. https://doi.org/10.1038/s41598-017-10777-1

    Article  PubMed  PubMed Central  Google Scholar 

  12. Otari SV, Patel SKS, Jeong J-H, Lee JH, Lee J-K (2016) A green chemistry approach for synthesizing thermostable antimicrobial peptide-coated gold nanoparticles immobilized in an alginate biohydrogel. Rsc Adv 6(90):86808–86816. https://doi.org/10.1039/c6ra14688k

    Article  CAS  Google Scholar 

  13. Khan ME, Khan MM, Cho MH (2015) Green synthesis, photocatalytic and photoelectrochemical performance of an Au–Graphene nanocomposite. Rsc Adv 5(34):26897–26904. https://doi.org/10.1039/c5ra01864a

    Article  CAS  Google Scholar 

  14. Hulkoti NI, Taranath TC (2014) Biosynthesis of nanoparticles using microbes—a review. Colloids Surf B 121:474–483. https://doi.org/10.1016/j.colsurfb.2014.05.027

    Article  CAS  Google Scholar 

  15. Golinska P, Wypij M, Ingle AP, Gupta I, Dahm H, Rai M (2014) Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity. Appl Microbiol Biotechnol 98(19):8083–8097. https://doi.org/10.1007/s00253-014-5953-7

    Article  CAS  PubMed  Google Scholar 

  16. Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed-Uk 6(2):257–262. https://doi.org/10.1016/j.nano.2009.07.002

    Article  CAS  Google Scholar 

  17. Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk HP, Clement C, Ouhdouch Y, van Wezel GP (2016) Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev MMBR 80(1):1–43. https://doi.org/10.1128/MMBR.00019-15

    Article  PubMed  Google Scholar 

  18. Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189–216. https://doi.org/10.1146/annurev.mi.37.100183.001201

    Article  CAS  PubMed  Google Scholar 

  19. Ramesh S, Jayaprakashvel M, Mathivanan N (2006) Microbial status in seawater and coastal sediments during pre- and post-tsunami periods in the Bay of Bengal, India. Mar Ecol 27(3):198–203. https://doi.org/10.1111/j.1439-0485.2006.00110.x

    Article  Google Scholar 

  20. Ramesh S, Mathivanan N (2009) Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes. World J Microbiol Biotechnol 25(12):2103–2111. https://doi.org/10.1007/s11274-009-0113-4

    Article  CAS  Google Scholar 

  21. Zhang H, Zhang W, Jin Y, Jin M, Yu X (2008) A comparative study on the phylogenetic diversity of culturable actinobacteria isolated from five marine sponge species. Antonie Van Leeuwenhoek 93(3):241–248. https://doi.org/10.1007/s10482-007-9196-9

    Article  CAS  PubMed  Google Scholar 

  22. Das M, Royer TV, Leff LG (2007) Diversity of fungi, bacteria, and actinomycetes on leaves decomposing in a stream. Appl Environ Microbiol 73(3):756–767. https://doi.org/10.1128/AEM.01170-06

    Article  CAS  PubMed  Google Scholar 

  23. Karthik L, Kumar G, Keswani T, Bhattacharyya A, Reddy BP, Rao KVB (2013) Marine actinobacterial mediated gold nanoparticles synthesis and their antimalarial activity. Nanomed-Nanotechnol 9(7):951–960. https://doi.org/10.1016/j.nano.2013.02.002

    Article  CAS  Google Scholar 

  24. Manivasagan P, Venkatesan J, Kang KH, Sivakumar K, Park SJ, Kim SK (2015) Production of alpha-amylase for the biosynthesis of gold nanoparticles using Streptomyces sp. MBRC-82. Int J Biol Macromol 72:71–78. https://doi.org/10.1016/j.ijbiomac.2014.07.045

    Article  CAS  PubMed  Google Scholar 

  25. Manivasagan P, Venkatesan J, Senthilkumar K, Sivakumar K, Kim SK (2013) Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel nocardiopsis sp MBRC-1. Biomed Res Int. https://doi.org/10.1155/2013/287638

    Google Scholar 

  26. Singh R, Nawale LU, Arkile M, Shedbalkar UU, Wadhwani SA, Sarkar D, Chopade BA (2015) Chemical and biological metal nanoparticles as antimycobacterial agents: a comparative study. Int J Antimicrob Agents 46(2):183–188. https://doi.org/10.1016/j.ijantimicag.2015.03.014

    Article  CAS  PubMed  Google Scholar 

  27. Mansour A, Tammam S, Althani A, Azzazy HME (2017) A single tube system for the detection of Mycobacterium tuberculosis DNA using gold nanoparticles based FRET assay. J Microbiol Methods 139:165–167. https://doi.org/10.1016/j.mimet.2017.06.001

    Article  CAS  PubMed  Google Scholar 

  28. Malhotra A, Dolma K, Kaur N, Rathore YS, Ashish Mayilraj S, Choudhury AR (2013) Biosynthesis of gold and silver nanoparticles using a novel marine strain of Stenotrophomonas. Bioresour Technol 142:727–731. https://doi.org/10.1016/j.biortech.2013.05.109

    Article  CAS  PubMed  Google Scholar 

  29. Lane DJ (1991) 16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  30. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721. https://doi.org/10.1099/ijs.0.038075-0

    Article  CAS  PubMed  Google Scholar 

  31. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  33. Kluge AG, Farris JS (1969) Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32

    Article  Google Scholar 

  34. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17(6):368–376

    Article  CAS  PubMed  Google Scholar 

  35. Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125(1):1–15

    Article  Google Scholar 

  36. Singh AK, Talat M, Singh DP, Srivastava ON (2010) Biosynthesis of gold and silver nanoparticles by natural precursor clove and their functionalization with amine group. J Nanopart Res 12(5):1667–1675. https://doi.org/10.1007/s11051-009-9835-3

    Article  CAS  Google Scholar 

  37. George WO, McIntyre PS, Mowthorpe DJ (1987) ACOL (Project) Infrared spectroscopy. Analytical chemistry by open learning. Published on behalf of ACOL, London, by Wiley, Chichester West Sussex; New York

Download references

Acknowledgements

KK wishes to thank Centre for African Wetlands (CAW), University of Ghana for providing seed funding to enable collection of samples. KK is grateful to Cambridge-Africa Partnership for Research Excellence (CAPREx)—funded by the Carnegie Corporation of New York, for a Postdoctoral Fellowship. KK also appreciates Cambridge-Africa ALBORADA Research Fund for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Camas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camas, M., Sazak Camas, A. & Kyeremeh, K. Extracellular Synthesis and Characterization of Gold Nanoparticles Using Mycobacterium sp. BRS2A-AR2 Isolated from the Aerial Roots of the Ghanaian Mangrove Plant, Rhizophora racemosa. Indian J Microbiol 58, 214–221 (2018). https://doi.org/10.1007/s12088-018-0710-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-018-0710-8

Keywords

Navigation