ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

N- and O-Glycosylation of the SARS-CoV-2 Spike Protein

  • Miloslav Sanda*
    Miloslav Sanda
    Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia 20057, United States
    Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, District of Columbia 20057, United States
    *Email: [email protected]. Phone: +1 202-6876279. Fax: +1 202-6871988.
    More by Miloslav Sanda
  • Lindsay Morrison
    Lindsay Morrison
    Waters Corporation Inc., Beverly, Massachusetts 01915, United States
  • , and 
  • Radoslav Goldman
    Radoslav Goldman
    Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia 20057, United States
    Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Washington, District of Columbia 20057, United States
    Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, District of Columbia 20057, United States
Cite this: Anal. Chem. 2021, 93, 4, 2003–2009
Publication Date (Web):January 6, 2021
https://doi.org/10.1021/acs.analchem.0c03173
Copyright © 2021 American Chemical Society

    Article Views

    10515

    Altmetric

    -

    Citations

    124
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (2)»

    Abstract

    Abstract Image

    Covid-19 pandemic outbreak is the reason of the current world health crisis. The development of effective antiviral compounds and vaccines requires detailed descriptive studies of SARS-CoV-2 proteins. The SARS-CoV-2 spike (S) protein mediates virion binding to the human cells through its interaction with the ACE2 cell surface receptor and is one of the prime immunization targets. A functional virion is composed of three S1 and three S2 subunits created by furin cleavage of the spike protein at R682, a polybasic cleavage site that differs from the SARS-CoV spike protein of 2002. By analysis of the protein produced in HEK293 cells, we observe that the spike is O-glycosylated on a threonine (T678) near the furin cleavage site occupied by core-1 and core-2 structures. In addition, we have identified eight additional O-glycopeptides on the spike glycoprotein and confirmed that the spike protein is heavily N-glycosylated. Our recently developed liquid chromatography–mass spectrometry methodology allowed us to identify LacdiNAc structural motifs on all occupied N-glycopeptides and polyLacNAc structures on six glycopeptides of the spike protein. In conclusion, our study substantially expands the current knowledge of the spike protein’s glycosylation and enables the investigation of the influence of O-glycosylation on its proteolytic activation.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.analchem.0c03173.

    • MS2 spectra of YFKNHTSPDVD O-glycopeptide, cIMS analysis of 657 derived from different T678 O-glycopeptides, HCD spectra of Tn-antigen-occupied T678 O-glycopeptide, and certificate of analysis of SARS-Cov-2 S protein (R683A and R685A), His-tag (PDF)

    • Summary of SARS Cov2 spike glycoprotein glycosylation (XLSX)

    • Data are available in the following link: https://repository.jpostdb.org/preview/14997783515fb8a577b126f, access code: 6639.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 124 publications.

    1. Dongxia Wang, Zijian Zhang, Jakub Baudys, Christopher Haynes, Sarah H. Osman, Bin Zhou, John R. Barr, James C. Gumbart. Enhanced Surface Accessibility of SARS-CoV-2 Omicron Spike Protein Due to an Altered Glycosylation Profile. ACS Infectious Diseases 2024, Article ASAP.
    2. Suman Maity, Atanu Acharya. Many Roles of Carbohydrates: A Computational Spotlight on the Coronavirus S Protein Binding. ACS Applied Bio Materials 2024, 7 (2) , 646-656. https://doi.org/10.1021/acsabm.2c01064
    3. Yuye Zhou, Congrui Tan, Renato Zenobi. Rapid Profiling of the Glycosylation Effects on the Binding of SARS-CoV-2 Spike Protein to Angiotensin-Converting Enzyme 2 Using MALDI-MS with High Mass Detection. Analytical Chemistry 2024, 96 (5) , 1898-1905. https://doi.org/10.1021/acs.analchem.3c03930
    4. Alyssa Q. Stiving, David J. Foreman, Zachary L. VanAernum, Eberhard Durr, Shiyi Wang, Josef Vlasak, Jennifer Galli, Jared O. Kafader, Taku Tsukidate, Xuanwen Li, Hillary A. Schuessler, Douglas D. Richardson. Dissecting the Heterogeneous Glycan Profiles of Recombinant Coronavirus Spike Proteins with Individual Ion Mass Spectrometry. Journal of the American Society for Mass Spectrometry 2024, 35 (1) , 62-73. https://doi.org/10.1021/jasms.3c00309
    5. Daniel W. Woodall, Christy A. Thomson, Thomas M. Dillon, Arnold McAuley, Lydia B. Green, Ian N. Foltz, Pavel V. Bondarenko. Native SEC and Reversed-Phase LC–MS Reveal Impact of Fab Glycosylation of Anti-SARS-COV-2 Antibodies on Binding to the Receptor Binding Domain. Analytical Chemistry 2023, 95 (42) , 15477-15485. https://doi.org/10.1021/acs.analchem.2c05554
    6. Diana Campos, Michael Girgis, Qiang Yang, Guanghui Zong, Radoslav Goldman, Lai-Xi Wang, Miloslav Sanda. “Ghost” Fragment Ions in Structure and Site-Specific Glycoproteomics Analysis. Analytical Chemistry 2023, 95 (27) , 10145-10148. https://doi.org/10.1021/acs.analchem.3c02207
    7. Anushree Sinha, Satyam Sangeet, Susmita Roy. Evolution of Sequence and Structure of SARS-CoV-2 Spike Protein: A Dynamic Perspective. ACS Omega 2023, 8 (26) , 23283-23304. https://doi.org/10.1021/acsomega.3c00944
    8. Amanda Helms, Edwin E. Escobar, Saulius Vainauskas, Christopher H. Taron, Jennifer S. Brodbelt. Ultraviolet Photodissociation Permits Comprehensive Characterization of O-Glycopeptides Cleaved with O-Glycoprotease IMPa. Analytical Chemistry 2023, 95 (24) , 9280-9287. https://doi.org/10.1021/acs.analchem.3c01111
    9. Weikai Cao, Merlin L. Bruening. Analysis of Protein Glycosylation after Rapid Digestion Using Protease-Containing Membranes in Spin Columns. Journal of the American Society for Mass Spectrometry 2023, 34 (6) , 1086-1095. https://doi.org/10.1021/jasms.3c00038
    10. Jing Liu, Ji Lv, Zheyi Liu, Zheng Fang, Can Lai, Shan Zhao, Mingliang Ye, Fangjun Wang. Enhanced Interfacial H-Bond Networks Promote Glycan–Glycan Recognition and Interaction. ACS Applied Materials & Interfaces 2023, 15 (14) , 17592-17600. https://doi.org/10.1021/acsami.3c00387
    11. Tarick J. El-Baba, Corinne A. Lutomski, Sean A. Burnap, Jani R. Bolla, Lindsay A. Baker, Andrew J. Baldwin, Weston B. Struwe, Carol V. Robinson. Uncovering the Role of N-Glycan Occupancy on the Cooperative Assembly of Spike and Angiotensin Converting Enzyme 2 Complexes: Insights from Glycoengineering and Native Mass Spectrometry. Journal of the American Chemical Society 2023, 145 (14) , 8021-8032. https://doi.org/10.1021/jacs.3c00291
    12. Edgar Gonzalez-Rodriguez, Mia Zol-Hanlon, Ganka Bineva-Todd, Andrea Marchesi, Mark Skehel, Keira E. Mahoney, Chloë Roustan, Annabel Borg, Lucia Di Vagno, Svend Kjær, Antoni G. Wrobel, Donald J. Benton, Philipp Nawrath, Sabine L. Flitsch, Dhira Joshi, Andrés Manuel González-Ramírez, Katalin A. Wilkinson, Robert J. Wilkinson, Emma C. Wall, Ramón Hurtado-Guerrero, Stacy A. Malaker, Benjamin Schumann. O-Linked Sialoglycans Modulate the Proteolysis of SARS-CoV-2 Spike and Likely Contribute to the Mutational Trajectory in Variants of Concern. ACS Central Science 2023, 9 (3) , 393-404. https://doi.org/10.1021/acscentsci.2c01349
    13. Serge Perez, Olga Makshakova. Multifaceted Computational Modeling in Glycoscience. Chemical Reviews 2022, 122 (20) , 15914-15970. https://doi.org/10.1021/acs.chemrev.2c00060
    14. Bojing Zhu, Zexuan Chen, Jiechen Shen, Yintai Xu, Rongxia Lan, Shisheng Sun. Structural- and Site-Specific N-Glycosylation Characterization of COVID-19 Virus Spike with StrucGP. Analytical Chemistry 2022, 94 (36) , 12274-12279. https://doi.org/10.1021/acs.analchem.2c02265
    15. Ebba Samuelsson, Ekaterina Mirgorodskaya, Kristina Nyström, Malin Bäckström, Jan-Åke Liljeqvist, Rickard Nordén. Sialic Acid and Fucose Residues on the SARS-CoV-2 Receptor-Binding Domain Modulate IgG Antibody Reactivity. ACS Infectious Diseases 2022, 8 (9) , 1883-1893. https://doi.org/10.1021/acsinfecdis.2c00155
    16. Zsolt Fazekas, Dóra K. Menyhárd, András Perczel. Omicron Binding Mode: Contact Analysis and Dynamics of the Omicron Receptor-Binding Domain in Complex with ACE2. Journal of Chemical Information and Modeling 2022, 62 (16) , 3844-3853. https://doi.org/10.1021/acs.jcim.2c00397
    17. Amber D. Rolland, James S. Prell. Approaches to Heterogeneity in Native Mass Spectrometry. Chemical Reviews 2022, 122 (8) , 7909-7951. https://doi.org/10.1021/acs.chemrev.1c00696
    18. Edwin E. Escobar, Shuaishuai Wang, Rupanjan Goswami, Michael B. Lanzillotti, Lei Li, Jason S. McLellan, Jennifer S. Brodbelt. Analysis of Viral Spike Protein N-Glycosylation Using Ultraviolet Photodissociation Mass Spectrometry. Analytical Chemistry 2022, 94 (15) , 5776-5784. https://doi.org/10.1021/acs.analchem.1c04874
    19. David Ropartz, Mathieu Fanuel, Simon Ollivier, Adrien Lissarrague, Mounir Benkoulouche, Laurence A. Mulard, Isabelle André, David Guieysse, Hélène Rogniaux. Combination of High-Resolution Multistage Ion Mobility and Tandem MS with High Energy of Activation to Resolve the Structure of Complex Chemoenzymatically Synthesized Glycans. Analytical Chemistry 2022, 94 (4) , 2279-2287. https://doi.org/10.1021/acs.analchem.1c04982
    20. Victor Yin, Szu-Hsueh Lai, Tom G. Caniels, Philip J. M. Brouwer, Mitch Brinkkemper, Yoann Aldon, Hejun Liu, Meng Yuan, Ian A. Wilson, Rogier W. Sanders, Marit J. van Gils, Albert J. R. Heck. Probing Affinity, Avidity, Anticooperativity, and Competition in Antibody and Receptor Binding to the SARS-CoV-2 Spike by Single Particle Mass Analyses. ACS Central Science 2021, 7 (11) , 1863-1873. https://doi.org/10.1021/acscentsci.1c00804
    21. Yolanda Picó, Damià Barceló. Mass Spectrometry in Wastewater-Based Epidemiology for the Determination of Small and Large Molecules as Biomarkers of Exposure: Toward a Global View of Environment and Human Health under the COVID-19 Outbreak. ACS Omega 2021, 6 (46) , 30865-30872. https://doi.org/10.1021/acsomega.1c04362
    22. Robert A. D’Ippolito, Matthew R. Drew, Jennifer Mehalko, Kelly Snead, Vanessa Wall, Zoe Putman, Dominic Esposito, Caroline J. DeHart. Refining the N-Termini of the SARS-CoV-2 Spike Protein and Its Discrete Receptor-Binding Domain. Journal of Proteome Research 2021, 20 (9) , 4427-4434. https://doi.org/10.1021/acs.jproteome.1c00349
    23. Concepcion A. Remoroza, Meghan C. Burke, Yi Liu, Yuri A. Mirokhin, Dmitrii V. Tchekhovskoi, Xiaoyu Yang, Stephen E. Stein. Representing and Comparing Site-Specific Glycan Abundance Distributions of Glycoproteins. Journal of Proteome Research 2021, 20 (9) , 4475-4486. https://doi.org/10.1021/acs.jproteome.1c00442
    24. David S. Roberts, Morgan Mann, Jake A. Melby, Eli J. Larson, Yanlong Zhu, Allan R. Brasier, Song Jin, Ying Ge. Structural O-Glycoform Heterogeneity of the SARS-CoV-2 Spike Protein Receptor-Binding Domain Revealed by Top-Down Mass Spectrometry. Journal of the American Chemical Society 2021, 143 (31) , 12014-12024. https://doi.org/10.1021/jacs.1c02713
    25. Xuefang Dong, Cheng Chen, Jingyu Yan, Xiaofei Zhang, Xiuling Li, Xinmiao Liang. Comprehensive O-Glycosylation Analysis of the SARS-CoV-2 Spike Protein with Biomimetic Trp-Arg Materials. Analytical Chemistry 2021, 93 (30) , 10444-10452. https://doi.org/10.1021/acs.analchem.0c04634
    26. Tyler L. Peterson, Gabe Nagy. Toward Sequencing the Human Milk Glycome: High-Resolution Cyclic Ion Mobility Separations of Core Human Milk Oligosaccharide Building Blocks. Analytical Chemistry 2021, 93 (27) , 9397-9407. https://doi.org/10.1021/acs.analchem.1c00942
    27. Yan Wang, Zhen Wu, Wenhua Hu, Piliang Hao, Shuang Yang. Impact of Expressing Cells on Glycosylation and Glycan of the SARS-CoV-2 Spike Glycoprotein. ACS Omega 2021, 6 (24) , 15988-15999. https://doi.org/10.1021/acsomega.1c01785
    28. Christoph Gstöttner, Tao Zhang, Anja Resemann, Sophia Ruben, Stuart Pengelley, Detlev Suckau, Tim Welsink, Manfred Wuhrer, Elena Domínguez-Vega. Structural and Functional Characterization of SARS-CoV-2 RBD Domains Produced in Mammalian Cells. Analytical Chemistry 2021, 93 (17) , 6839-6847. https://doi.org/10.1021/acs.analchem.1c00893
    29. Juliane Brun, Snežana Vasiljevic, Bevin Gangadharan, Mario Hensen, Anu V. Chandran, Michelle L. Hill, J.L. Kiappes, Raymond A. Dwek, Dominic S. Alonzi, Weston B. Struwe, Nicole Zitzmann. Assessing Antigen Structural Integrity through Glycosylation Analysis of the SARS-CoV-2 Viral Spike. ACS Central Science 2021, 7 (4) , 586-593. https://doi.org/10.1021/acscentsci.1c00058
    30. Lohra M. Miller, Lauren F. Barnes, Shannon A. Raab, Benjamin E. Draper, Tarick J. El-Baba, Corinne A. Lutomski, Carol V. Robinson, David E. Clemmer, Martin F. Jarrold. Heterogeneity of Glycan Processing on Trimeric SARS-CoV-2 Spike Protein Revealed by Charge Detection Mass Spectrometry. Journal of the American Chemical Society 2021, 143 (10) , 3959-3966. https://doi.org/10.1021/jacs.1c00353
    31. Shengjun Wang, Wei Ran, Lingyu Sun, Qingchi Fan, Yuanqi Zhao, Bowen Wang, Jinghong Yang, Yuqi He, Ying Wu, Yuanyuan Wang, Luoyi Chen, Arpaporn Chuchuay, Yuyu You, Xinhai Zhu, Xiaojuan Wang, Ye Chen, Yanqun Wang, Yao-Qing Chen, Yanqiu Yuan, Jincun Zhao, Yang Mao. Sequential glycosylations at the multibasic cleavage site of SARS-CoV-2 spike protein regulate viral activity. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-48503-x
    32. Sarah R. Akaaboune, Yanzhuang Wang. Golgi defect as a major contributor to lysosomal dysfunction. Frontiers in Cell and Developmental Biology 2024, 12 https://doi.org/10.3389/fcell.2024.1386149
    33. Gang Wu, Jialiang Du, Chuanfei Yu, Zhihao Fu, Xiaoxi Zhang, Lan Wang, Junzhi Wang. Mass spectrometry study on SARS-CoV-2 recombinant vaccine with comprehensive separation techniques to characterize complex heterogeneity. Analytica Chimica Acta 2024, 1297 , 342349. https://doi.org/10.1016/j.aca.2024.342349
    34. Amanda Helms, Jennifer S. Brodbelt. Mass Spectrometry Strategies for O-Glycoproteomics. Cells 2024, 13 (5) , 394. https://doi.org/10.3390/cells13050394
    35. Annan Ming, Jianxin Zhao, Yihan Liu, Yibo Wang, Xiaohui Wang, Jing Li, Leiliang Zhang. O‐glycosylation in viruses: A sweet tango. mLife 2024, 3 (1) , 57-73. https://doi.org/10.1002/mlf2.12105
    36. Fengwen Zhang, Fabian Schmidt, Frauke Muecksch, Zijun Wang, Anna Gazumyan, Michel C. Nussenzweig, Christian Gaebler, Marina Caskey, Theodora Hatziioannou, Paul D. Bieniasz, . SARS-CoV-2 spike glycosylation affects function and neutralization sensitivity. mBio 2024, 15 (2) https://doi.org/10.1128/mbio.01672-23
    37. Yu-Xi Tsai, Ning-En Chang, Klaus Reuter, Hao-Ting Chang, Tzu-Jing Yang, Sören von Bülow, Vidhi Sehrawat, Noémie Zerrouki, Matthieu Tuffery, Michael Gecht, Isabell Louise Grothaus, Lucio Colombi Ciacchi, Yong-Sheng Wang, Min-Feng Hsu, Kay-Hooi Khoo, Gerhard Hummer, Shang-Te Danny Hsu, Cyril Hanus, Mateusz Sikora. Rapid simulation of glycoprotein structures by grafting and steric exclusion of glycan conformer libraries. Cell 2024, 187 (5) , 1296-1311.e26. https://doi.org/10.1016/j.cell.2024.01.034
    38. William Edwin Hackett, Deborah Chang, Luis Carvalho, Joseph Zaia, . RAMZIS: a bioinformatic toolkit for rigorous assessment of the alterations to glycoprotein composition that occur during biological processes. Bioinformatics Advances 2024, 4 (1) https://doi.org/10.1093/bioadv/vbae012
    39. Michael Girgis, Gregory Petruncio, Paul Russo, Steven Peyton, Mikell Paige, Diana Campos, Miloslav Sanda. Analysis of N ‐ and O ‐linked site‐specific glycosylation by ion mobility mass spectrometry: State of the art and future directions. PROTEOMICS 2024, 41 https://doi.org/10.1002/pmic.202300281
    40. Sayantani Chatterjee, Joseph Zaia. Proteomics‐based mass spectrometry profiling of SARS‐CoV‐2 infection from human nasopharyngeal samples. Mass Spectrometry Reviews 2024, 43 (1) , 193-229. https://doi.org/10.1002/mas.21813
    41. Peiran Chen, Mandi Wu, Yaqing He, Binghua Jiang, Ming-Liang He. Metabolic alterations upon SARS-CoV-2 infection and potential therapeutic targets against coronavirus infection. Signal Transduction and Targeted Therapy 2023, 8 (1) https://doi.org/10.1038/s41392-023-01510-8
    42. Asif Shajahan, Lauren E. Pepi, Bhoj Kumar, Nathan B. Murray, Parastoo Azadi. Site specific N- and O-glycosylation mapping of the spike proteins of SARS-CoV-2 variants of concern. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-33088-0
    43. Nader Rahimi, Mitchell R. White, Razie Amraei, Saran Lotfollahzadeh, Chaoshuang Xia, Marek Michalak, Catherine E. Costello, Elke Mühlberger. Calreticulin Regulates SARS-CoV-2 Spike Protein Turnover and Modulates SARS-CoV-2 Infectivity. Cells 2023, 12 (23) , 2694. https://doi.org/10.3390/cells12232694
    44. Weiping Sun, Qianqiu Zhang, Xiyue Zhang, Ngoc Hieu Tran, M. Ziaur Rahman, Zheng Chen, Chao Peng, Jun Ma, Ming Li, Lei Xin, Baozhen Shan. Glycopeptide database search and de novo sequencing with PEAKS GlycanFinder enable highly sensitive glycoproteomics. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-39699-5
    45. Sabrina Lusvarghi, Charles B. Stauft, Russell Vassell, Brittany Williams, Haseebullah Baha, Wei Wang, Sabari Nath Neerukonda, Tony Wang, Carol D. Weiss, . Effects of N-glycan modifications on spike expression, virus infectivity, and neutralization sensitivity in ancestral compared to Omicron SARS-CoV-2 variants. PLOS Pathogens 2023, 19 (11) , e1011788. https://doi.org/10.1371/journal.ppat.1011788
    46. Liming Wei, Yuning Chen, Xiaoxiao Feng, Jun Yao, Lei Zhang, Xinwen Zhou, Guoquan Yan, Hong Qiu, Chunhe Wang, Haojie Lu. Elucidation of N -/ O -glycosylation and site-specific mapping of sialic acid linkage isomers of SARS-CoV-2 human receptor angiotensin-converting enzyme 2. The Analyst 2023, 148 (20) , 5002-5011. https://doi.org/10.1039/D3AN01079A
    47. Ritika Khatri, Bharat Lohiya, Gurleen Kaur, Vikas Maithil, Abhishek Goswami, Debapriyo Sarmadhikari, Shailendra Asthana, Sweety Samal. Understanding the role of conserved proline and serine residues in the SARS-CoV-2 spike cleavage sites in the virus entry, fusion, and infectivity. 3 Biotech 2023, 13 (10) https://doi.org/10.1007/s13205-023-03749-y
    48. Sherifdeen Onigbinde, Cristian D. Gutierrez Reyes, Mojibola Fowowe, Oluwatosin Daramola, Mojgan Atashi, Andrew I. Bennett, Yehia Mechref. Variations in O-Glycosylation Patterns Influence Viral Pathogenicity, Infectivity, and Transmissibility in SARS-CoV-2 Variants. Biomolecules 2023, 13 (10) , 1467. https://doi.org/10.3390/biom13101467
    49. Kinga Nagy, Gabriella Gellén, Dávid Papp, Gitta Schlosser, Ágnes Révész. Optimum collision energies for proteomics: The impact of ion mobility separation. Journal of Mass Spectrometry 2023, 58 (9) https://doi.org/10.1002/jms.4957
    50. Priyanka Samanta, Sushil Mishra, Vitor Pomin, Robert Doerksen. Docking and Molecular Dynamics Simulations Clarify Binding Sites for Interactions of Novel Marine Sulfated Glycans with SARS-CoV-2 Spike Glycoprotein. Molecules 2023, 28 (17) , 6413. https://doi.org/10.3390/molecules28176413
    51. Federico Carrión, Florencia Rammauro, Natalia Olivero‐Deibe, Martín Fló, María Magdalena Portela, Analía Lima, Rosario Durán, Otto Pritsch, Sergio Bianchi. Soluble SARS‐CoV ‐2 RBD and human ACE2 peptidase domain produced in Drosophila S2 cells show functions evoking virus–cell interface. Protein Science 2023, 32 (8) https://doi.org/10.1002/pro.4721
    52. Dongxia Wang, Jakub Baudys, Sarah H. Osman, John R. Barr. Analysis of the N-glycosylation profiles of the spike proteins from the Alpha, Beta, Gamma, and Delta variants of SARS-CoV-2. Analytical and Bioanalytical Chemistry 2023, 415 (19) , 4779-4793. https://doi.org/10.1007/s00216-023-04771-y
    53. Zhe Yang, Qi Zhang, Xiaoqing Wu, Siyuan Hao, Xinbao Hao, Elizabeth Jones, Yuxia Zhang, Jianming Qiu, Liang Xu. Repurposing Niclosamide as a Novel Anti-SARS-CoV-2 Drug by Restricting Entry Protein CD147. Biomedicines 2023, 11 (7) , 2019. https://doi.org/10.3390/biomedicines11072019
    54. Marina M. Ziganshina, Nadezhda V. Shilova, Eugenia O. Khalturina, Natalya V. Dolgushina, Sergey V. Borisevich, Ekaterina L. Yarotskaya, Nicolai V. Bovin, Gennady T. Sukhikh. Antibody-Dependent Enhancement with a Focus on SARS-CoV-2 and Anti-Glycan Antibodies. Viruses 2023, 15 (7) , 1584. https://doi.org/10.3390/v15071584
    55. Benjamin P. Zercher, Theresa A. Gozzo, AnneClaire Wageman, Matthew F. Bush. Enhancing the Depth of Analyses with Next-Generation Ion Mobility Experiments. Annual Review of Analytical Chemistry 2023, 16 (1) , 27-48. https://doi.org/10.1146/annurev-anchem-091522-031329
    56. Hannah C. Schorr, Zachary D. Schultz. Chemical conjugation to differentiate monosaccharides by Raman and surface enhanced Raman spectroscopy. The Analyst 2023, 148 (9) , 2035-2044. https://doi.org/10.1039/D2AN01762H
    57. Himakshi K. Patel, Kun Zhang, Rachael Utegg, Elaine Stephens, Shauna Salem, Heidi Welch, Svenja Grobe, Julia Schlereth, Andreas N. Kuhn, Jeff Ryczek, David J. Cirelli, Thomas F. Lerch. Characterization of BNT162b2 mRNA to Evaluate Risk of Off-Target Antigen Translation. Journal of Pharmaceutical Sciences 2023, 112 (5) , 1364-1371. https://doi.org/10.1016/j.xphs.2023.01.007
    58. Yongjing Xie, Michael Butler. Quantitative profiling of N-glycosylation of SARS-CoV-2 spike protein variants. Glycobiology 2023, 33 (3) , 188-202. https://doi.org/10.1093/glycob/cwad007
    59. Fusheng Si, Shuai Song, Ruisong Yu, Zhen Li, Wenqiang Wei, Chao Wu. Coronavirus accessory protein ORF3 biology and its contribution to viral behavior and pathogenesis. iScience 2023, 26 (4) , 106280. https://doi.org/10.1016/j.isci.2023.106280
    60. Roland M. Miller, George L. Perkins, David Bush, Aude Tartiere, Nick DeGraan‐Weber. Glycopeptide characterization of Sf9‐derived SARS‐CoV‐2 spike protein recombinant vaccine candidates expedited by the use of glycopeptide libraries. Rapid Communications in Mass Spectrometry 2023, 37 (5) https://doi.org/10.1002/rcm.9452
    61. Alev Celikgil, Aldo B. Massimi, Antonio Nakouzi, Natalia G. Herrera, Nicholas C. Morano, James H. Lee, Hyun ah Yoon, Scott J. Garforth, Steven C. Almo, . SARS-CoV-2 multi-antigen protein microarray for detailed characterization of antibody responses in COVID-19 patients. PLOS ONE 2023, 18 (2) , e0276829. https://doi.org/10.1371/journal.pone.0276829
    62. Alessandro M. Carabelli, Thomas P. Peacock, Lucy G. Thorne, William T. Harvey, Joseph Hughes, , Thushan I. de Silva, Sharon J. Peacock, Wendy S. Barclay, Thushan I. de Silva, Greg J. Towers, David L. Robertson. SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nature Reviews Microbiology 2023, 5 https://doi.org/10.1038/s41579-022-00841-7
    63. Patrick Rynkiewicz, Miranda L. Lynch, Feng Cui, André O. Hudson, Gregory A. Babbitt. Functional binding dynamics relevant to the evolution of zoonotic spillovers in endemic and emergent Betacoronavirus strains. Journal of Biomolecular Structure and Dynamics 2022, 40 (21) , 10978-10996. https://doi.org/10.1080/07391102.2021.1953604
    64. Daniel G. Delafield, Gaoyuan Lu, Cameron J. Kaminsky, Lingjun Li. High-end ion mobility mass spectrometry: A current review of analytical capacity in omics applications and structural investigations. TrAC Trends in Analytical Chemistry 2022, 157 , 116761. https://doi.org/10.1016/j.trac.2022.116761
    65. Nathan McCann, Francis J. Castellino. Cell Entry and Unusual Replication of SARS-CoV-2. Current Drug Targets 2022, 23 (17) , 1539-1554. https://doi.org/10.2174/1389450124666221014102927
    66. Arya Aloor, Rajaguru Aradhya, Parvathy Venugopal, Bipin Gopalakrishnan Nair, Renuka Suravajhala. Glycosylation in SARS-CoV-2 variants: A path to infection and recovery. Biochemical Pharmacology 2022, 206 , 115335. https://doi.org/10.1016/j.bcp.2022.115335
    67. Deborah Chang, Joseph Zaia. Methods to improve quantitative glycoprotein coverage from bottom‐up LC‐MS data. Mass Spectrometry Reviews 2022, 41 (6) , 922-937. https://doi.org/10.1002/mas.21692
    68. Ramiro Garza-Domínguez, Francisco Torres-Quiroz. Evolutionary Signals in Coronaviral Structural Proteins Suggest Possible Complex Mechanisms of Post-Translational Regulation in SARS-CoV-2 Virus. Viruses 2022, 14 (11) , 2469. https://doi.org/10.3390/v14112469
    69. David S. Roberts, Morgan Mann, Brad H. Li, Donguk Kim, Allan R. Braiser, Song Jin, Ying Ge. Distinct core glycan and O -glycoform utilization of SARS-CoV-2 Omicron variant Spike protein RBD revealed by top-down mass spectrometry. Chemical Science 2022, 13 (36) , 10944-10949. https://doi.org/10.1039/D2SC02132C
    70. Anna Maria Kiefer, Justus Niemeyer, Anna Probst, Gerhard Erkel, Michael Schroda. Production and secretion of functional SARS-CoV-2 spike protein in Chlamydomonas reinhardtii. Frontiers in Plant Science 2022, 13 https://doi.org/10.3389/fpls.2022.988870
    71. Eric S. Pringle, Brett A. Duguay, Maxwell P. Bui-Marinos, Rory P. Mulloy, Shelby L. Landreth, Krishna Swaroop Desireddy, Stacia M. Dolliver, Shan Ying, Taylor Caddell, Trinity H. Tooley, Patrick D. Slaine, Stephen L. Bearne, Darryl Falzarano, Jennifer A. Corcoran, Denys A. Khaperskyy, Craig McCormick, . Thiopurines inhibit coronavirus Spike protein processing and incorporation into progeny virions. PLOS Pathogens 2022, 18 (9) , e1010832. https://doi.org/10.1371/journal.ppat.1010832
    72. Christopher A. Beaudoin, Arun P. Pandurangan, So Yeon Kim, Samir W. Hamaia, Christopher L.‐H. Huang, Tom L. Blundell, Sundeep Chaitanya Vedithi, Antony P. Jackson. In silico analysis of mutations near S1/S2 cleavage site in SARS‐CoV‐2 spike protein reveals increased propensity of glycosylation in Omicron strain. Journal of Medical Virology 2022, 94 (9) , 4181-4192. https://doi.org/10.1002/jmv.27845
    73. Katarina Molnarova, Katerina Cokrtova, Alice Tomnikova, Tomas Krizek, Petr Kozlik. Liquid chromatography and capillary electrophoresis in glycomic and glycoproteomic analysis. Monatshefte für Chemie - Chemical Monthly 2022, 153 (9) , 659-686. https://doi.org/10.1007/s00706-022-02938-4
    74. Ivan Emmanuel Ramos-Martínez, Edgar Ramos-Martínez, René Álvaro Segura-Velázquez, Manuel Saavedra-Montañez, Jacquelynne Brenda Cervantes-Torres, Marco Cerbón, Dulce Papy-Garcia, Edgar Zenteno, José Ivan Sánchez-Betancourt. Heparan Sulfate and Sialic Acid in Viral Attachment: Two Sides of the Same Coin?. International Journal of Molecular Sciences 2022, 23 (17) , 9842. https://doi.org/10.3390/ijms23179842
    75. Nan Zhang, Siyuan Wang, Catherine C.L. Wong. Proteomics research of SARS-CoV-2 and COVID-19 disease. Medical Review 2022, 2 (4) , 427-445. https://doi.org/10.1515/mr-2022-0016
    76. Michelle N. Vu, Kumari G. Lokugamage, Jessica A. Plante, Dionna Scharton, Aaron O. Bailey, Stephanea Sotcheff, Daniele M. Swetnam, Bryan A. Johnson, Craig Schindewolf, R. Elias Alvarado, Patricia A. Crocquet-Valdes, Kari Debbink, Scott C. Weaver, David H. Walker, William K. Russell, Andrew L. Routh, Kenneth S. Plante, Vineet D. Menachery. QTQTN motif upstream of the furin-cleavage site plays a key role in SARS-CoV-2 infection and pathogenesis. Proceedings of the National Academy of Sciences 2022, 119 (32) https://doi.org/10.1073/pnas.2205690119
    77. Diana Campos, Michael Girgis, Miloslav Sanda. Site‐specific glycosylation of SARS‐CoV‐2: Big challenges in mass spectrometry analysis. PROTEOMICS 2022, 22 (15-16) https://doi.org/10.1002/pmic.202100322
    78. Thanawat Thaingtamtanha, Stephan A. Baeurle. Study of protease-mediated processes initiating viral infection and cell–cell viral spreading of SARS-CoV-2. Journal of Molecular Modeling 2022, 28 (8) https://doi.org/10.1007/s00894-022-05206-8
    79. Juliette Balieu, Jae-Wan Jung, Philippe Chan, George P. Lomonossoff, Patrice Lerouge, Muriel Bardor. Investigation of the N-Glycosylation of the SARS-CoV-2 S Protein Contained in VLPs Produced in Nicotiana benthamiana. Molecules 2022, 27 (16) , 5119. https://doi.org/10.3390/molecules27165119
    80. Eric Pereira, Stela Felipe, Raquel de Freitas, Valdevane Araújo, Paula Soares, Jannison Ribeiro, Luiz Henrique dos Santos, Juliana Osório Alves, Natália Canabrava, Mauricio van Tilburg, Maria Izabel Guedes, Vânia Ceccatto. ABO blood group and link to COVID-19: A comprehensive review of the reported associations and their possible underlying mechanisms. Microbial Pathogenesis 2022, 169 , 105658. https://doi.org/10.1016/j.micpath.2022.105658
    81. Chanyoub Park, Changsun Eun. Virtual and biochemical screening to identify the inhibitors of binding between SARS-CoV-2 spike protein and human angiotensin-converting enzyme 2. Journal of Molecular Graphics and Modelling 2022, 114 , 108206. https://doi.org/10.1016/j.jmgm.2022.108206
    82. Dorothy L Butler, Luisa Imberti, Virginia Quaresima, Chiara Fiorini, , Jason Barnett, Samuel Chauvin, Xi Cheng, Jeffrey Danielson, Kerry Dobbs, Elizabeth Garabedian, Vasu Kuram, William Lau, Zhiwen Li, Mary Magliocco, Helen Matthews, Marshall Nambiar, Smilee Samuel, Elana Shaw, Michael Stack, Sarah Weber, Sandhya Xirasagar, Yu Zhang, Jeffrey C Gildersleeve, . Abnormal antibodies to self-carbohydrates in SARS-CoV-2-infected patients. PNAS Nexus 2022, 1 (3) https://doi.org/10.1093/pnasnexus/pgac062
    83. Maximilian Große, Christian Setz, Pia Rauch, Janina Auth, Martina Morokutti-Kurz, Vladimir Temchura, Ulrich Schubert. Inhibitors of Deubiquitinating Enzymes Interfere with the SARS-CoV-2 Papain-like Protease and Block Virus Replication In Vitro. Viruses 2022, 14 (7) , 1404. https://doi.org/10.3390/v14071404
    84. Jun Li, Ting Zhao, Jing Li, Jiechen Shen, Li Jia, Bojing Zhu, Liuyi Dang, Chen Ma, Didi Liu, Fan Mu, Liangshuo Hu, Shisheng Sun. Precision N‐glycoproteomics reveals elevated LacdiNAc as a novel signature of intrahepatic cholangiocarcinoma. Molecular Oncology 2022, 16 (11) , 2135-2152. https://doi.org/10.1002/1878-0261.13147
    85. Mary Rachel Nalehua, Joseph Zaia. Measuring change in glycoprotein structure. Current Opinion in Structural Biology 2022, 74 , 102371. https://doi.org/10.1016/j.sbi.2022.102371
    86. Rico Ballmann, Sven-Kevin Hotop, Federico Bertoglio, Stephan Steinke, Philip Alexander Heine, M. Zeeshan Chaudhry, Dieter Jahn, Boas Pucker, Fausto Baldanti, Antonio Piralla, Maren Schubert, Luka Čičin-Šain, Mark Brönstrup, Michael Hust, Stefan Dübel. ORFeome Phage Display Reveals a Major Immunogenic Epitope on the S2 Subdomain of SARS-CoV-2 Spike Protein. Viruses 2022, 14 (6) , 1326. https://doi.org/10.3390/v14061326
    87. Miriam Klausberger, Nikolaus F. Kienzl, Gerhard Stadlmayr, Clemens Grünwald‐Gruber, Elisabeth Laurent, Katharina Stadlbauer, Florian Stracke, Klemens Vierlinger, Manuela Hofner, Gabriele Manhart, Wilhelm Gerner, Florian Grebien, Andreas Weinhäusel, Lukas Mach, Gordana Wozniak‐Knopp. Designed SARS‐CoV‐2 receptor binding domain variants form stable monomers. Biotechnology Journal 2022, 17 (5) https://doi.org/10.1002/biot.202100422
    88. Ran Cao, Jing‐Xuan Li, Huan Chen, Cui Cao, Feng Zheng, Kun Huang, Ya‐Ran Chen, Sabine L. Flitsch, Li Liu, Josef Voglmeir. Complete Shift in Glycosyl Donor Specificity in Mammalian, but not C. elegans β1,4‐GalT1 Y286L mutants, Enables the Synthesis of N , N ‐Diacetyllactosamine. ChemCatChem 2022, 14 (7) https://doi.org/10.1002/cctc.202101699
    89. Tania Bakshi, David Pham, Raminderjeet Kaur, Bingyun Sun. Hidden Relationships between N-Glycosylation and Disulfide Bonds in Individual Proteins. International Journal of Molecular Sciences 2022, 23 (7) , 3742. https://doi.org/10.3390/ijms23073742
    90. Ying Sheng, Anita Vinjamuri, Michael Russelle S. Alvarez, Yixuan Xie, Marisa McGrath, Siyu Chen, Mariana Barboza, Matthew Frieman, Carlito B. Lebrilla. Host Cell Glycocalyx Remodeling Reveals SARS-CoV-2 Spike Protein Glycomic Binding Sites. Frontiers in Molecular Biosciences 2022, 9 https://doi.org/10.3389/fmolb.2022.799703
    91. Lisa Pagani, Clizia Chinello, Allia Mahajneh, Francesca Clerici, Lucrezia Criscuolo, Andrea Favalli, Paola Gruarin, Renata Grifantini, Alessandra Bandera, Andrea Lombardi, Riccardo Ungaro, Antonio Muscatello, Francesco Blasi, Andrea Gori, Fulvio Magni. Untargeted Mass Spectrometry Approach to Study SARS-CoV-2 Proteins in Human Plasma and Saliva Proteome. BioChem 2022, 2 (1) , 64-83. https://doi.org/10.3390/biochem2010005
    92. Matthew A. Nugent. The Future of the COVID-19 Pandemic: How Good (or Bad) Can the SARS-CoV2 Spike Protein Get?. Cells 2022, 11 (5) , 855. https://doi.org/10.3390/cells11050855
    93. Philippe Colson, Jeremy Delerce, Emilie Burel, Mamadou Beye, Pierre-Edouard Fournier, Anthony Levasseur, Jean-Christophe Lagier, Didier Raoult. Occurrence of a substitution or deletion of SARS-CoV-2 spike amino acid 677 in various lineages in Marseille, France. Virus Genes 2022, 58 (1) , 53-58. https://doi.org/10.1007/s11262-021-01877-2
    94. Aoife M. Harbison, Carl A. Fogarty, Toan K. Phung, Akash Satheesan, Benjamin L. Schulz, Elisa Fadda. Fine-tuning the spike: role of the nature and topology of the glycan shield in the structure and dynamics of the SARS-CoV-2 S. Chemical Science 2022, 13 (2) , 386-395. https://doi.org/10.1039/D1SC04832E
    95. Cristian D. Gutierrez‐Reyes, Peilin Jiang, Mojgan Atashi, Andrew Bennett, Aiying Yu, Wenjing Peng, Jieqiang Zhong, Yehia Mechref. Advances in mass spectrometry‐based glycoproteomics: An update covering the period 2017–2021. ELECTROPHORESIS 2022, 43 (1-2) , 370-387. https://doi.org/10.1002/elps.202100188
    96. Nongluk Sriwilaijaroen, Yasuo Suzuki. Roles of Sialyl Glycans in HCoV-OC43, HCoV-HKU1, MERS-CoV and SARS-CoV-2 Infections. 2022, 243-271. https://doi.org/10.1007/978-1-0716-2635-1_17
    97. Yihan Huang, Bradley S. Harris, Shiaki A. Minami, Seongwon Jung, Priya S. Shah, Somen Nandi, Karen A. McDonald, Roland Faller. SARS-CoV-2 spike binding to ACE2 is stronger and longer ranged due to glycan interaction. Biophysical Journal 2022, 121 (1) , 79-90. https://doi.org/10.1016/j.bpj.2021.12.002
    98. Linh Nguyen, Kelli A. McCord, Duong T. Bui, Kim M. Bouwman, Elena N. Kitova, Mohamed Elaish, Dhanraj Kumawat, Gour C. Daskhan, Ilhan Tomris, Ling Han, Pradeep Chopra, Tzu-Jing Yang, Steven D. Willows, Andrew L. Mason, Lara K. Mahal, Todd L. Lowary, Lori J. West, Shang-Te Danny Hsu, Tom Hobman, Stephen M. Tompkins, Geert-Jan Boons, Robert P. de Vries, Matthew S. Macauley, John S. Klassen. Sialic acid-containing glycolipids mediate binding and viral entry of SARS-CoV-2. Nature Chemical Biology 2022, 18 (1) , 81-90. https://doi.org/10.1038/s41589-021-00924-1
    99. Junfeng Huang, Danqing Wang, Richard David Shipman, Zexin Zhu, Yuan Liu, Lingjun Li. Simultaneous enrichment and separation of neutral and sialyl glycopeptides of SARS-CoV-2 spike protein enabled by dual-functionalized Ti-IMAC material. Analytical and Bioanalytical Chemistry 2021, 413 (29) , 7295-7303. https://doi.org/10.1007/s00216-021-03433-1
    100. Asif Shajahan, Lauren E. Pepi, Daniel S. Rouhani, Christian Heiss, Parastoo Azadi. Glycosylation of SARS-CoV-2: structural and functional insights. Analytical and Bioanalytical Chemistry 2021, 413 (29) , 7179-7193. https://doi.org/10.1007/s00216-021-03499-x
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect