ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Experimental and Estimated Rate Constants for the Reactions of Hydroxyl Radicals with Several Halocarbons

View Author Information
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109
Cite this: J. Phys. Chem. 1996, 100, 14, 5813–5820
Publication Date (Web):April 4, 1996
https://doi.org/10.1021/jp953216+
Copyright © 1996 American Chemical Society

    Article Views

    395

    Altmetric

    -

    Citations

    76
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Relative rate experiments are used to measure rate constants and temperature dependencies of the reactions of OH with CH3F (41), CH2FCl (31), CH2BrCl (30B1), CH2Br2 (30B2), CHBr3 (20B3), CF2BrCHFCl (123aB1α), and CF2ClCHCl2 (122). Rate constants for additional compounds of these types are estimated using an empirical rate constant estimation method which is based on measured rate constants for a wide range of halocarbons. The experimental data are combined with the estimated and previously reported rate constants to illustrate the effects of F, Cl, and Br substitution on OH rate constants for a series of 19 halomethanes and 25 haloethanes. Application of the estimation technique is further illustrated for some higher hydrofluorocarbons (HFCs), including CHF2CF2CF2CF2H (338pcc), CF3CHFCHFCF2CF3 (43-10mee), CF3CH2CH2CF3 (356ffa), CF3CH2CF2CH2CF3 (458mfcf), CF3CH2CHF2 (245fa), and CF3CH2CF2CH3 (365mfc). The predictions are compared with literature data for these compounds.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Abstract published in Advance ACS Abstracts, March 15, 1996.

    Cited By

    This article is cited by 76 publications.

    1. Siddha Sharma, Kento Abeywardane, C. Franklin Goldsmith. Theory-Based Mechanism for Fluoromethane Combustion I: Thermochemistry and Abstraction Reactions. The Journal of Physical Chemistry A 2023, 127 (6) , 1499-1511. https://doi.org/10.1021/acs.jpca.2c06623
    2. James B. Burkholder, Paul Marshall, Partha P. Bera, Joseph S. Francisco, Timothy J. Lee. Climate Metrics for C1–C4 Hydrofluorocarbons (HFCs). The Journal of Physical Chemistry A 2020, 124 (23) , 4793-4800. https://doi.org/10.1021/acs.jpca.0c02679
    3. Thomas C. Allison . Application of an Artificial Neural Network to the Prediction of OH Radical Reaction Rate Constants for Evaluating Global Warming Potential. The Journal of Physical Chemistry B 2016, 120 (8) , 1854-1863. https://doi.org/10.1021/acs.jpcb.5b09558
    4. Marvin L. Poutsma . Evolution of Structure–Reactivity Correlations for the Hydrogen Abstraction Reaction by Hydroxyl Radical and Comparison with That by Chlorine Atom. The Journal of Physical Chemistry A 2013, 117 (30) , 6433-6449. https://doi.org/10.1021/jp404749z
    5. V. L. Orkin, V. G. Khamaganov, E. E. Kasimovskaya, and A. G. Guschin . Photochemical Properties of Some Cl-Containing Halogenated Alkanes. The Journal of Physical Chemistry A 2013, 117 (26) , 5483-5490. https://doi.org/10.1021/jp400408y
    6. Vladimir L. Orkin, Victor G. Khamaganov, Sergey N. Kozlov, and Michael J. Kurylo . Measurements of Rate Constants for the OH Reactions with Bromoform (CHBr3), CHBr2Cl, CHBrCl2, and Epichlorohydrin (C3H5ClO). The Journal of Physical Chemistry A 2013, 117 (18) , 3809-3818. https://doi.org/10.1021/jp3128753
    7. María Antiñolo, Elena Jiménez, and José Albaladejo . Temperature Effects on the Removal of Potential HFC Replacements, CF3CH2CH2OH and CF3(CH2)2CH2OH, Initiated by OH Radicals. Environmental Science & Technology 2011, 45 (10) , 4323-4330. https://doi.org/10.1021/es103931s
    8. Àngels González-Lafont, José M. Lluch, Adrián Varela-Álvarez and José A. Sordo . Canonical Variational Transition-State Theory Study of the CF3CHFCH2F + OH Reaction. The Journal of Physical Chemistry A 2010, 114 (8) , 2768-2777. https://doi.org/10.1021/jp909675u
    9. Paul Blowers and Kyle Hollingshead. Estimations of Global Warming Potentials from Computational Chemistry Calculations for CH2F2 and Other Fluorinated Methyl Species Verified by Comparison to Experiment. The Journal of Physical Chemistry A 2009, 113 (20) , 5942-5950. https://doi.org/10.1021/jp8114918
    10. Marina Marinkovic, Margret Gruber-Stadler, J. Michael Nicovich, Raenell Soller, Max Mülhäuser, Paul H. Wine, Lihn Bache-Andreassen and Claus J. Nielsen. Experimental and Theoretical Study of the Carbon-13 and Deuterium Kinetic Isotope Effects in the Cl and OH Reactions of CH3F. The Journal of Physical Chemistry A 2008, 112 (48) , 12416-12429. https://doi.org/10.1021/jp807609d
    11. Paul Blowers, Dena Marie Moline, Kyle Franklin Tetrault, R’nld Ruth Wheeler and Shane Lee Tuchawena. Global Warming Potentials of Hydrofluoroethers. Environmental Science & Technology 2008, 42 (4) , 1301-1307. https://doi.org/10.1021/es0706201
    12. Àngels González-Lafont and, José M. Lluch, , Adrián Varela-Álvarez and, José A. Sordo. Canonical Variational Transition-State Theory Study of the CF3CH2CH3 + OH Reaction. The Journal of Physical Chemistry B 2008, 112 (2) , 328-335. https://doi.org/10.1021/jp075298v
    13. Ying Wang,, Jing-yao Liu,, Lei Yang,, Xiao-lei Zhao,, Yue-meng Ji, and, Ze-sheng Li. Direct Dynamics Studies on Hydrogen Abstraction Reactions of CH3CHFCH3 and CH3CH2CH2F with OH Radicals. The Journal of Physical Chemistry A 2007, 111 (32) , 7761-7770. https://doi.org/10.1021/jp0704665
    14. B. Rajakumar,, R. W. Portmann,, James B. Burkholder, and, A. R. Ravishankara. Rate Coefficients for the Reactions of OH with CF3CH2CH3 (HFC-263fb), CF3CHFCH2F (HFC-245eb), and CHF2CHFCHF2 (HFC-245ea) between 238 and 375 K. The Journal of Physical Chemistry A 2006, 110 (21) , 6724-6731. https://doi.org/10.1021/jp056248y
    15. Titus V. Albu and, Saravanan Swaminathan. Hybrid Density Functional Theory with Specific Reaction Parameter:  Hydrogen Abstraction Reaction of Fluoromethane by the Hydroxyl Radical. The Journal of Physical Chemistry A 2006, 110 (24) , 7663-7671. https://doi.org/10.1021/jp0615454
    16. Michael J. Kurylo and, Vladimir L. Orkin. Determination of Atmospheric Lifetimes via the Measurement of OH Radical Kinetics. Chemical Reviews 2003, 103 (12) , 5049-5076. https://doi.org/10.1021/cr020524c
    17. W. Sean McGivern,, Joseph S. Francisco, and, Simon W. North. Investigation of the Atmospheric Oxidation Pathways of Bromoform:  Initiation via OH/Cl Reactions. The Journal of Physical Chemistry A 2002, 106 (26) , 6395-6400. https://doi.org/10.1021/jp0255886
    18. Pei-Yin Lien,, Ru-Min You, and, Wei-Ping Hu. Theoretical Modeling of the Hydrogen Abstraction Reaction of Fluoromethane by the Hydroxyl Radical. The Journal of Physical Chemistry A 2001, 105 (11) , 2391-2400. https://doi.org/10.1021/jp003260b
    19. Asit K. Chandra and, Tadafumi Uchimaru. A DFT Study on the C−H Bond Dissociation Enthalpies of Haloalkanes:  Correlation between the Bond Dissociation Enthalpies and Activation Energies for Hydrogen Abstraction. The Journal of Physical Chemistry A 2000, 104 (40) , 9244-9249. https://doi.org/10.1021/jp001815x
    20. Florent Louis,, Carlos A. Gonzalez,, Robert E. Huie, and, Michael J. Kurylo. An ab Initio Study of the Kinetics of the Reactions of Halomethanes with the Hydroxyl Radical. 1. CH2Br2. The Journal of Physical Chemistry A 2000, 104 (13) , 2931-2938. https://doi.org/10.1021/jp991022e
    21. Jacek Korchowiec,, Shun-ichi Kawahara,, Kazunari Matsumura,, Tadafumi Uchimaru, and, Masaaki Sugie. Hydrogen Abstraction from Methane and Hydrofluoromethanes by •OH Radical:  Modified GAUSSIAN-2 Study. The Journal of Physical Chemistry A 1999, 103 (18) , 3548-3553. https://doi.org/10.1021/jp984810x
    22. Kazuaki Tokuhashi,, Hidekazu Nagai,, Akifumi Takahashi,, Masahiro Kaise,, Shigeo Kondo,, Akira Sekiya,, Mitsuru Takahashi,, Yoshihiko Gotoh, and, Atsuo Suga. Measurement of the OH Reaction Rate Constants for CF3CH2OH, CF3CF2CH2OH, and CF3CH(OH)CF3. The Journal of Physical Chemistry A 1999, 103 (15) , 2664-2672. https://doi.org/10.1021/jp983961x
    23. J. Espinosa-García,, E. L. Coitiño,, A. González-Lafont, and, J. M. Lluch. Reaction-Path and Dual-Level Dynamics Calculations of the CH3F + OH Reaction. The Journal of Physical Chemistry A 1998, 102 (52) , 10715-10722. https://doi.org/10.1021/jp9832138
    24. A. Melchior,, I. Bar, and, S. Rosenwaks. CHF2Cl and CH3CF2Cl Detection by Coherent Anti-Stokes Raman Scattering and Photoacoustic Raman Spectroscopy. The Journal of Physical Chemistry A 1998, 102 (37) , 7273-7276. https://doi.org/10.1021/jp982311q
    25. M. Bilde, , T. J. Wallington, , C. Ferronato, , J. J. Orlando,, G. S. Tyndall,, E. Estupiñan, and, S. Haberkorn. Atmospheric Chemistry of CH2BrCl, CHBrCl2, CHBr2Cl, CF3CHBrCl, and CBr2Cl2. The Journal of Physical Chemistry A 1998, 102 (11) , 1976-1986. https://doi.org/10.1021/jp9733375
    26. Corwin Hansch and, Hua Gao. Comparative QSAR:  Radical Reactions of Benzene Derivatives in Chemistry and Biology. Chemical Reviews 1997, 97 (8) , 2995-3060. https://doi.org/10.1021/cr9601021
    27. Max R. McGillen, Lisa Michelat, John J. Orlando, William P. L. Carter. The use of the electrotopological state as a basis for predicting hydrogen abstraction rate coefficients: a proof of principle for the reactions of alkanes and haloalkanes with OH. Environmental Science: Atmospheres 2024, 50 https://doi.org/10.1039/D3EA00147D
    28. William P. L. Carter. Estimation of Rate Constants for Reactions of Organic Compounds under Atmospheric Conditions. Atmosphere 2021, 12 (10) , 1250. https://doi.org/10.3390/atmos12101250
    29. Parth Gupta, Fakhra Jabeen, B. Rajakumar. Theoretical investigations on the OH radical mediated kinetics of cis- and trans-CH3CF=CHF and CH3CH=CF2 over temperature range of 200-400K. Journal of Fluorine Chemistry 2021, 250 , 109884. https://doi.org/10.1016/j.jfluchem.2021.109884
    30. Donald R. Burgess, Jeffrey A. Manion. Rate Constants for Abstraction of H from the Fluoromethanes by H, O, F, and OH. Journal of Physical and Chemical Reference Data 2021, 50 (2) https://doi.org/10.1063/5.0028874
    31. Julien Steffen, Bernd Hartke. Cheap but accurate calculation of chemical reaction rate constants from ab initio data, via system-specific, black-box force fields. The Journal of Chemical Physics 2017, 147 (16) https://doi.org/10.1063/1.4979712
    32. Vassileios C. Papadimitriou, Christina S. Spitieri, Panos Papagiannakopoulos, Mathieu Cazaunau, Maria Lendar, Véronique Daële, Abdelwahid Mellouki. Atmospheric chemistry of (CF 3 ) 2 CCH 2 : OH radicals, Cl atoms and O 3 rate coefficients, oxidation end-products and IR spectra. Physical Chemistry Chemical Physics 2015, 17 (38) , 25607-25620. https://doi.org/10.1039/C5CP03840E
    33. A. Voulgarakis, V. Naik, J.-F. Lamarque, D. T. Shindell, P. J. Young, M. J. Prather, O. Wild, R. D. Field, D. Bergmann, P. Cameron-Smith, I. Cionni, W. J. Collins, S. B. Dalsøren, R. M. Doherty, V. Eyring, G. Faluvegi, G. A. Folberth, L. W. Horowitz, B. Josse, I. A. MacKenzie, T. Nagashima, D. A. Plummer, M. Righi, S. T. Rumbold, D. S. Stevenson, S. A. Strode, K. Sudo, S. Szopa, G. Zeng. Analysis of present day and future OH and methane lifetime in the ACCMIP simulations. Atmospheric Chemistry and Physics 2013, 13 (5) , 2563-2587. https://doi.org/10.5194/acp-13-2563-2013
    34. Mohd Talib Latif, Lim Shun Huey, Liew Juneng. Variations of surface ozone concentration across the Klang Valley, Malaysia. Atmospheric Environment 2012, 61 , 434-445. https://doi.org/10.1016/j.atmosenv.2012.07.062
    35. Nicolas Dietl, Maria Schlangen, Helmut Schwarz. Thermische Wasserstoffabstraktion aus Methan - zur Rolle von Radikalen und Spinzuständen in der Chemie von Oxoclustern. Angewandte Chemie 2012, 124 (23) , 5638-5650. https://doi.org/10.1002/ange.201108363
    36. Nicolas Dietl, Maria Schlangen, Helmut Schwarz. Thermal Hydrogen-Atom Transfer from Methane: The Role of Radicals and Spin States in Oxo-Cluster Chemistry. Angewandte Chemie International Edition 2012, 51 (23) , 5544-5555. https://doi.org/10.1002/anie.201108363
    37. Y.N. Indulkar, S. SenGupta, S.B. Waghmode, A. Kumar, S. Dhanya, P.D. Naik. Kinetic study of gas phase reactions of OH with CF3CH2OH, CF3CF2CF2CH2OH, and CHF2CF2CH2OH using LP-LIF method. Atmospheric Environment 2011, 45 (38) , 6973-6979. https://doi.org/10.1016/j.atmosenv.2011.09.022
    38. Mohamad Akbar Ali, B. Rajakumar. Computational study on OH radical reaction with CHF2CHFCHF2(HFC-245ea) between 200 and 400 K. International Journal of Chemical Kinetics 2011, 43 (8) , 418-430. https://doi.org/10.1002/kin.20569
    39. Li Wang, Yuan Zhao, Jinglai Zhang. Hydrogen abstraction reactions of OH radicals with CF2ClCClXH (X = F, Cl) and CFCl2CClXH (X = F, Cl): a mechanistic and kinetic study. Theoretical Chemistry Accounts 2011, 129 (1) , 73-84. https://doi.org/10.1007/s00214-011-0892-1
    40. Mohamad Akbar Ali, B. Rajakumar. Kinetics of OH radical reaction with CF3CHFCH2F (HFC-245eb) between 200 and 400K: G3MP2, G3B3 and transition state theory calculations. Journal of Molecular Structure: THEOCHEM 2010, 949 (1-3) , 73-81. https://doi.org/10.1016/j.theochem.2010.03.006
    41. Hong Gao, Jing-yao Liu, Chia-chung Sun. Theoretical and kinetic studies of the reactions of CF2HCFHCF2H and CF3CFHCFH2 with hydroxyl radicals. The Journal of Chemical Physics 2009, 130 (22) https://doi.org/10.1063/1.3147464
    42. Lelio Zoccolillo, Carlo Abete, Claudia Cafaro, Susanna Insogna. Evaluation of volatile chlorinated hydrocarbons distribution along depth profiles in the Ross Sea, Antarctica. Microchemical Journal 2009, 92 (1) , 32-36. https://doi.org/10.1016/j.microc.2008.09.004
    43. Mohamad Akbar Ali, B. Rajakumar. Rate coefficients for the reaction of OH with CF3CH2CH3 (HFC-263fb) between 200 and 400 K: Ab initio, DFT, and transition state theory calculations. Journal of Computational Chemistry 2009, 263 , NA-NA. https://doi.org/10.1002/jcc.21336
    44. Linlin Zhang, Shujin Li. Theoretical study of the kinetics for the hydrogen abstraction of 1,1,1,2-tetrafluoroethane (HFC-134a) by hydroxyl radical. Journal of Molecular Structure: THEOCHEM 2008, 869 (1-3) , 6-10. https://doi.org/10.1016/j.theochem.2008.08.012
    45. Paul Blowers, Kyle Franklin Tetrault, Yirla Trujillo-Morehead. Global warming potential predictions for hydrofluoroethers with two carbon atoms. Theoretical Chemistry Accounts 2008, 119 (4) , 369-381. https://doi.org/10.1007/s00214-007-0394-3
    46. L. Chen, J. Mizukado, S. Kutsuna, K. Tokuhashi, A. Sekiya. Kinetics study of the gas-phase reactions of cyclo-CF2CF2CHXCHX– (X = F, Cl) and cyclo-CF2CFClCCl2CH2– with OH radicals at 253–328 K. Chemical Physics Letters 2007, 439 (1-3) , 40-45. https://doi.org/10.1016/j.cplett.2007.03.070
    47. Edmond W. Wilson,, Wesley A. Hamilton, Hillary R. Kennington, Bill Evans, Nathan W. Scott, William B. DeMore. Measurement and Estimation of Rate Constants for the Reactions of Hydroxyl Radical with Several Alkanes and Cycloalkanes. The Journal of Physical Chemistry A 2006, 110 (10) , 3593-3604. https://doi.org/10.1021/jp055841c
    48. William B. DeMore. Regularities in Arrhenius parameters for rate constants of abstraction reactions of hydroxyl radical with CH bonds. Journal of Photochemistry and Photobiology A: Chemistry 2005, 176 (1-3) , 129-135. https://doi.org/10.1016/j.jphotochem.2005.07.015
    49. Hue Minh Thi Nguyen, Asit K. Chandra, Shaun A. Carl, Minh Tho Nguyen. Quantum chemical study of hydrogen abstraction reactions of the ethynyl radical with hydrogen compounds (C2H+HX). Journal of Molecular Structure: THEOCHEM 2005, 732 (1-3) , 219-224. https://doi.org/10.1016/j.theochem.2005.07.023
    50. Lelio Zoccolillo, Luca Amendola, Claudia Cafaro, Susanna Insogna. Improved analysis of volatile halogenated hydrocarbons in water by purge-and-trap with gas chromatography and mass spectrometric detection. Journal of Chromatography A 2005, 1077 (2) , 181-187. https://doi.org/10.1016/j.chroma.2005.04.076
    51. B. Rajakumar, James B. Burkholder, R. W. Portmann, A. R. RavishankaraAlso affiliated with th. Rate coefficients for the OH + CFH2CH2OH reaction between 238 and 355 K. Physical Chemistry Chemical Physics 2005, 7 (12) , 2498. https://doi.org/10.1039/b503332b
    52. Edmond W. Wilson,, Adam M. Jacoby, Sheila J. Kukta, Lauren E. Gilbert, William B. DeMore. Rate Constants for Reaction of CH 2 FCH 2 F (HFC-152) and CH 3 CHF 2 (HFC-152a) with Hydroxyl Radicals. The Journal of Physical Chemistry A 2003, 107 (44) , 9357-9361. https://doi.org/10.1021/jp027288u
    53. Asit K. Chandra, Tadafumi Uchimaru, Shingo Urata, Masaaki Sugie, Akira Sekiya. Estimation of rate constants for hydrogen atom abstraction by OH radicals using the C?H bond dissociation enthalpies: Haloalkanes and haloethers. International Journal of Chemical Kinetics 2003, 35 (3) , 130-138. https://doi.org/10.1002/kin.10110
    54. John J. Orlando. Atmospheric Chemistry of Organic Bromine and Iodine Compounds. 2003, 253-299. https://doi.org/10.1007/978-3-540-37055-0_4
    55. Jacek Korchowiec. Mechanism of hydrogen abstraction from methane and hydrofluoromethanes by hydroxyl radical. Journal of Physical Organic Chemistry 2002, 15 (8) , 524-528. https://doi.org/10.1002/poc.522
    56. Andrey A. Fokin, Peter R. Schreiner. Selective Alkane Transformations via Radicals and Radical Cations:  Insights into the Activation Step from Experiment and Theory. Chemical Reviews 2002, 102 (5) , 1551-1594. https://doi.org/10.1021/cr000453m
    57. Michael A Kamboures, Jaron C Hansen, Joseph S Francisco. A study of the kinetics and mechanisms involved in the atmospheric degradation of bromoform by atomic chlorine. Chemical Physics Letters 2002, 353 (5-6) , 335-344. https://doi.org/10.1016/S0009-2614(01)01439-7
    58. S. El-Taher. Ab initio study of reactions of hydroxyl radicals with chloro- and fluoro-substituted methanes. International Journal of Quantum Chemistry 2001, 84 (4) , 426-440. https://doi.org/10.1002/qua.1082
    59. Kenneth O. Patten, Zhuangjie Li, Donald J. Wuebbles. Estimates of atmospheric lifetimes and ozone depletion potentials for the bromopentafluoropropane isomers. Journal of Geophysical Research: Atmospheres 2000, 105 (D9) , 11625-11631. https://doi.org/10.1029/2000JD900072
    60. Asit K Chandra, Tadafumi Uchimaru, Masaaki Sugie, Akira Sekiya. Correlation between hardness and activation energies for reactions of OH radical with halomethanes. Chemical Physics Letters 2000, 318 (1-3) , 69-74. https://doi.org/10.1016/S0009-2614(99)01450-5
    61. Barbara J. Finlayson-Pitts, James N. Pitts. Scientific Basis for Control of Halogenated Organics. 2000, 727-761. https://doi.org/10.1016/B978-012257060-5/50015-0
    62. Jerzy Moc. Theoretical study of the CH2Br, CHBr2 and CBr3 radicals. Chemical Physics 1999, 247 (3) , 365-373. https://doi.org/10.1016/S0301-0104(99)00218-9
    63. W. B. DeMore, K. D. Bayes. Rate Constants for the Reactions of Hydroxyl Radical with Several Alkanes, Cycloalkanes, and Dimethyl Ether. The Journal of Physical Chemistry A 1999, 103 (15) , 2649-2654. https://doi.org/10.1021/jp983273d
    64. W. B. DeMore, Edmond W. Wilson. Rate Constant and Temperature Dependence for the Reaction of Hydroxyl Radicals with 2-Fluoropropane (HFC-281ea). The Journal of Physical Chemistry A 1999, 103 (5) , 573-576. https://doi.org/10.1021/jp9835521
    65. H. Hein, A. Hoffmann, R. Zellner. Direct investigations of reactions of 2-butoxy radicals using laser pulse initiated oxidation: Reaction with O2 and unimolecular decomposition at 293 K and 50 mbar. Berichte der Bunsengesellschaft für physikalische Chemie 1998, 102 (12) , 1840-1849. https://doi.org/10.1002/bbpc.19981021214
    66. J.C. Loison, L. Ley, R. Lesclaux. Kinetic study of OH radical reactions with chlorobutane isomers at 298K. Chemical Physics Letters 1998, 296 (3-4) , 350-356. https://doi.org/10.1016/S0009-2614(98)01058-6
    67. Eric Villenave, Vladimir L. Orkin, Robert E. Huie, Michael J. Kurylo. Rate Constant for the Reaction of OH Radicals with Dichloromethane. The Journal of Physical Chemistry A 1997, 101 (45) , 8513-8517. https://doi.org/10.1021/jp9721614
    68. Kyriakos G. Kambanis, Yannis G. Lazarou, Panos Papagiannakopoulos. Absolute Rate Constants for the Reactions of Cl Atoms with CH 3 Br, CH 2 Br 2 , and CHBr 3. The Journal of Physical Chemistry A 1997, 101 (45) , 8496-8502. https://doi.org/10.1021/jp9719671
    69. G. S. Tyndall, J. J. Orlando, T. J. Wallington, M. Dill, E. W. Kaiser. Kinetics and mechanisms of the reactions of chlorine atoms with ethane, propane, andn-butane. International Journal of Chemical Kinetics 1997, 29 (1) , 43-55. https://doi.org/10.1002/(SICI)1097-4601(1997)29:1<43::AID-KIN6>3.0.CO;2-L
    70. S. Dhanya, R. D. Saini. Rate constants of OH radical reactions in gas phase with some fluorinated compounds: A correlation with molecular parameters. International Journal of Chemical Kinetics 1997, 29 (3) , 187-194. https://doi.org/10.1002/(SICI)1097-4601(1997)29:3<187::AID-KIN5>3.0.CO;2-Q
    71. John Barry, Garrett Locke, Donncha Scollard, Howard Sidebottom, Jack Treacy, Cathy Clerbaux, Reginald Colin, James Franklin. 1,1,1,3,3,-pentafluorobutane (HFC-365mfc): atmospheric degradation and contribution to radiative forcing. International Journal of Chemical Kinetics 1997, 29 (8) , 607-617. https://doi.org/10.1002/(SICI)1097-4601(1997)29:8<607::AID-KIN6>3.0.CO;2-Y
    72. Branko S. Jursic. An accurate evaluation of activation barriers for hydrogen abstraction reactions with Becke's 88 density functional theory and high-level G1 and G2 ab initio methods. International Journal of Quantum Chemistry 1997, 65 (1) , 75-82. https://doi.org/10.1002/(SICI)1097-461X(1997)65:1<75::AID-QUA8>3.0.CO;2-Y
    73. Vladimir L. Orkin, Victor G. Khamaganov, Andrey G. Guschin, Robert E. Huie, Michael J. Kurylo. Atmospheric Fate of Chlorobromomethane:  Rate Constant for the Reaction with OH, UV Spectrum, and Water Solubility. The Journal of Physical Chemistry A 1997, 101 (2) , 174-178. https://doi.org/10.1021/jp962428j
    74. Mario J. Molina, Luisa T. Molina, Charles E. Kolb. GAS-PHASE AND HETEROGENEOUS CHEMICAL KINETICS OF THE TROPOSPHERE AND STRATOSPHERE. Annual Review of Physical Chemistry 1996, 47 (1) , 327-367. https://doi.org/10.1146/annurev.physchem.47.1.327
    75. W. B. DEMORE. ChemInform Abstract: Experimental and Estimated Rate Constants for the Reactions of Hydroxyl Radicals with Several Halocarbons. ChemInform 1996, 27 (30) , no-no. https://doi.org/10.1002/chin.199630079
    76. Branko S. Jursic. Density functional theory study of radical hydrogen abstraction with hydrogen and hydroxyl radicals. Chemical Physics Letters 1996, 256 (6) , 603-608. https://doi.org/10.1016/0009-2614(96)00480-0

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect