ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Conformation and Permeability: Cyclic Hexapeptide Diastereomers

  • Satoshi Ono*
    Satoshi Ono
    Modality Laboratories, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa 227-0033, Japan
    *E-mail: [email protected] (S. Ono).
    More by Satoshi Ono
  • Matthew R. Naylor
    Matthew R. Naylor
    Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
  • Chad E. Townsend
    Chad E. Townsend
    Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
  • Chieko Okumura
    Chieko Okumura
    Modality Laboratories, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa 227-0033, Japan
    More by Chieko Okumura
  • Okimasa Okada
    Okimasa Okada
    Modality Laboratories, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa 227-0033, Japan
    More by Okimasa Okada
  • , and 
  • R. Scott Lokey*
    R. Scott Lokey
    Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
    *E-mail: [email protected] (R. S. Lokey).
    More by R. Scott Lokey
Cite this: J. Chem. Inf. Model. 2019, 59, 6, 2952–2963
Publication Date (Web):May 1, 2019
https://doi.org/10.1021/acs.jcim.9b00217
Copyright © 2019 American Chemical Society

    Article Views

    2550

    Altmetric

    -

    Citations

    51
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Conformational ensembles of eight cyclic hexapeptide diastereomers in explicit cyclohexane, chloroform, and water were analyzed by multicanonical molecular dynamics (McMD) simulations. Free-energy landscapes (FELs) for each compound and solvent were obtained from the molecular shapes and principal component analysis at T = 300 K; detailed analysis of the conformational ensembles and flexibility of the FELs revealed that permeable compounds have different structural profiles even for a single stereoisomeric change. The average solvent-accessible surface area (SASA) in cyclohexane showed excellent correlation with the cell permeability, whereas this correlation was weaker in chloroform. The average SASA in water correlated with the aqueous solubility. The average polar surface area did not correlate with cell permeability in these solvents. A possible strategy for designing permeable cyclic peptides from FELs obtained from McMD simulations is proposed.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jcim.9b00217.

    • Free-energy landscapes of (ϕ,ψ) for each solvent (Figures S1–S3); backbone hydrogen-bond patterns of each compound and solvent (Figures S4–S11); free-energy landscapes for PC-1 and PC-3 (Figure S12); log Dcyc/w vs average SASA and PSA for each solvent (Figure S13); representative structures of β-turn pattern F and G (Figure S14); overlaps between the FELs from the PC plane (Figure S15); free-energy landscapes of (ϕ,ψ) for known cyclic peptides (Figure S16); zones for virtual states and real potential energy for each solvent (Tables S1–S3); backbone (ϕ,ψ) values for representative structures shown in Figure 4 (Table S4) (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 51 publications.

    1. Edward Price, Manuel Weinheimer, Alexey Rivkin, Gary Jenkins, Marjoleen Nijsen, Philip B. Cox, David DeGoey. Beyond Rule of Five and PROTACs in Modern Drug Discovery: Polarity Reducers, Chameleonicity, and the Evolving Physicochemical Landscape. Journal of Medicinal Chemistry 2024, 67 (7) , 5683-5698. https://doi.org/10.1021/acs.jmedchem.3c02332
    2. Justin H. Faris, Emel Adaligil, Nataliya Popovych, Satoshi Ono, Mifune Takahashi, Huy Nguyen, Emile Plise, Jaru Taechalertpaisarn, Hsiau-Wei Lee, Michael F. T. Koehler, Christian N. Cunningham, R. Scott Lokey. Membrane Permeability in a Large Macrocyclic Peptide Driven by a Saddle-Shaped Conformation. Journal of the American Chemical Society 2024, 146 (7) , 4582-4591. https://doi.org/10.1021/jacs.3c10949
    3. Dongjae Lee, Jieun Choi, Min June Yang, Chin-Ju Park, Jiwon Seo. Controlling the Chameleonic Behavior and Membrane Permeability of Cyclosporine Derivatives via Backbone and Side Chain Modifications. Journal of Medicinal Chemistry 2023, 66 (18) , 13189-13204. https://doi.org/10.1021/acs.jmedchem.3c01140
    4. Barmak Mostofian, Holli-Joi Martin, Asghar Razavi, Shivam Patel, Bryce Allen, Woody Sherman, Jesus A Izaguirre. Targeted Protein Degradation: Advances, Challenges, and Prospects for Computational Methods. Journal of Chemical Information and Modeling 2023, 63 (17) , 5408-5432. https://doi.org/10.1021/acs.jcim.3c00603
    5. Giulia Alboreggia, Parima Udompholkul, Carlo Baggio, Maurizio Pellecchia. Mixture-Based Screening of Focused Combinatorial Libraries by NMR: Application to the Antiapoptotic Protein hMcl-1. Journal of Medicinal Chemistry 2023, 66 (14) , 10108-10118. https://doi.org/10.1021/acs.jmedchem.3c01073
    6. Tiffani Hui, Marc L. Descoteaux, Jiayuan Miao, Yu-Shan Lin. Training Neural Network Models Using Molecular Dynamics Simulation Results to Efficiently Predict Cyclic Hexapeptide Structural Ensembles. Journal of Chemical Theory and Computation 2023, 19 (14) , 4757-4769. https://doi.org/10.1021/acs.jctc.3c00154
    7. Jianan Li, Keisuke Yanagisawa, Masatake Sugita, Takuya Fujie, Masahito Ohue, Yutaka Akiyama. CycPeptMPDB: A Comprehensive Database of Membrane Permeability of Cyclic Peptides. Journal of Chemical Information and Modeling 2023, 63 (7) , 2240-2250. https://doi.org/10.1021/acs.jcim.2c01573
    8. Stephanie M. Linker, Christian Schellhaas, Anna S. Kamenik, Mac M. Veldhuizen, Franz Waibl, Hans-Jörg Roth, Marianne Fouché, Stephane Rodde, Sereina Riniker. Lessons for Oral Bioavailability: How Conformationally Flexible Cyclic Peptides Enter and Cross Lipid Membranes. Journal of Medicinal Chemistry 2023, 66 (4) , 2773-2788. https://doi.org/10.1021/acs.jmedchem.2c01837
    9. Shawn C.C. Hsueh, Adekunle Aina, Steven S. Plotkin. Ensemble Generation for Linear and Cyclic Peptides Using a Reservoir Replica Exchange Molecular Dynamics Implementation in GROMACS. The Journal of Physical Chemistry B 2022, 126 (49) , 10384-10399. https://doi.org/10.1021/acs.jpcb.2c05470
    10. Masatake Sugita, Takuya Fujie, Keisuke Yanagisawa, Masahito Ohue, Yutaka Akiyama. Lipid Composition Is Critical for Accurate Membrane Permeability Prediction of Cyclic Peptides by Molecular Dynamics Simulations. Journal of Chemical Information and Modeling 2022, 62 (18) , 4549-4560. https://doi.org/10.1021/acs.jcim.2c00931
    11. Anna Sophia Kamenik Stephanie Maria Linker Sereina Riniker . Matching Simulations and Experiments of Conformationally Flexible Cyclic Peptides: Steps toward a Holistic View of Passive Membrane Permeability. , 137-154. https://doi.org/10.1021/bk-2022-1417.ch005
    12. Emel Adaligil Wayne J. Fairbrother . NMR Spectroscopy for Studying Peptide Conformations and Cell Permeability. , 155-177. https://doi.org/10.1021/bk-2022-1417.ch006
    13. Andrei A. Golosov Alec N. Flyer Lauren G. Monovich . Design and Discovery of Orally Bioavailable Macrocycles: Toward Orally Bioavailable Peptide Therapeutics. , 199-222. https://doi.org/10.1021/bk-2022-1417.ch008
    14. Jaru Taechalertpaisarn, Satoshi Ono, Okimasa Okada, Timothy C. Johnstone, R. Scott Lokey. A New Amino Acid for Improving Permeability and Solubility in Macrocyclic Peptides through Side Chain-to-Backbone Hydrogen Bonding. Journal of Medicinal Chemistry 2022, 65 (6) , 5072-5084. https://doi.org/10.1021/acs.jmedchem.2c00010
    15. Satoshi Ono, Matthew R. Naylor, Chad E. Townsend, Chieko Okumura, Okimasa Okada, Hsiau-Wei Lee, R. Scott Lokey. Cyclosporin A: Conformational Complexity and Chameleonicity. Journal of Chemical Information and Modeling 2021, 61 (11) , 5601-5613. https://doi.org/10.1021/acs.jcim.1c00771
    16. Shuzhe Wang, Gerhard König, Hans-Jörg Roth, Marianne Fouché, Stephane Rodde, Sereina Riniker. Effect of Flexibility, Lipophilicity, and the Location of Polar Residues on the Passive Membrane Permeability of a Series of Cyclic Decapeptides. Journal of Medicinal Chemistry 2021, 64 (17) , 12761-12773. https://doi.org/10.1021/acs.jmedchem.1c00775
    17. Victoria G. Klein, Walter M. Bray, Hao-Yuan Wang, Quinn Edmondson, Joshua Schwochert, Satoshi Ono, Matthew R. Naylor, Alexandra C. Turmon, Justin H. Faris, Okimasa Okada, Jack Taunton, R. Scott Lokey. Identifying the Cellular Target of Cordyheptapeptide A and Synthetic Derivatives. ACS Chemical Biology 2021, 16 (8) , 1354-1364. https://doi.org/10.1021/acschembio.1c00094
    18. Masatake Sugita, Satoshi Sugiyama, Takuya Fujie, Yasushi Yoshikawa, Keisuke Yanagisawa, Masahito Ohue, Yutaka Akiyama. Large-Scale Membrane Permeability Prediction of Cyclic Peptides Crossing a Lipid Bilayer Based on Enhanced Sampling Molecular Dynamics Simulations. Journal of Chemical Information and Modeling 2021, 61 (7) , 3681-3695. https://doi.org/10.1021/acs.jcim.1c00380
    19. Dongjae Lee, Sungjin Lee, Jieun Choi, Yoo-Kyung Song, Min Ju Kim, Dae-Seop Shin, Myung Ae Bae, Yong-Chul Kim, Chin-Ju Park, Kyeong-Ryoon Lee, Jun-Ho Choi, Jiwon Seo. Interplay among Conformation, Intramolecular Hydrogen Bonds, and Chameleonicity in the Membrane Permeability and Cyclophilin A Binding of Macrocyclic Peptide Cyclosporin O Derivatives. Journal of Medicinal Chemistry 2021, 64 (12) , 8272-8286. https://doi.org/10.1021/acs.jmedchem.1c00211
    20. Kei Moritsugu, Koh Takeuchi, Narutoshi Kamiya, Junichi Higo, Isao Yasumatsu, Yoshifumi Fukunishi, Ikuo Fukuda. Flexibility and Cell Permeability of Cyclic Ras-Inhibitor Peptides Revealed by the Coupled Nosé–Hoover Equation. Journal of Chemical Information and Modeling 2021, 61 (4) , 1921-1930. https://doi.org/10.1021/acs.jcim.0c01427
    21. Jovan Damjanovic, Jiayuan Miao, He Huang, Yu-Shan Lin. Elucidating Solution Structures of Cyclic Peptides Using Molecular Dynamics Simulations. Chemical Reviews 2021, 121 (4) , 2292-2324. https://doi.org/10.1021/acs.chemrev.0c01087
    22. Flaviu Cipcigan, Paul Smith, Jason Crain, Anders Hogner, Leonardo De Maria, Antonio Llinas, Ekaterina Ratkova. Membrane Permeability in Cyclic Peptides is Modulated by Core Conformations. Journal of Chemical Information and Modeling 2021, 61 (1) , 263-269. https://doi.org/10.1021/acs.jcim.0c00803
    23. Giulia Caron, Jan Kihlberg, Gilles Goetz, Ekaterina Ratkova, Vasanthanathan Poongavanam, Giuseppe Ermondi. Steering New Drug Discovery Campaigns: Permeability, Solubility, and Physicochemical Properties in the bRo5 Chemical Space. ACS Medicinal Chemistry Letters 2021, 12 (1) , 13-23. https://doi.org/10.1021/acsmedchemlett.0c00581
    24. Johannes Kraml, Florian Hofer, Anna S. Kamenik, Franz Waibl, Ursula Kahler, Michael Schauperl, Klaus R. Liedl. Solvation Thermodynamics in Different Solvents: Water–Chloroform Partition Coefficients from Grid Inhomogeneous Solvation Theory. Journal of Chemical Information and Modeling 2020, 60 (8) , 3843-3853. https://doi.org/10.1021/acs.jcim.0c00289
    25. Anna S. Kamenik, Johannes Kraml, Florian Hofer, Franz Waibl, Patrick K. Quoika, Ursula Kahler, Michael Schauperl, Klaus R. Liedl. Macrocycle Cell Permeability Measured by Solvation Free Energies in Polar and Apolar Environments. Journal of Chemical Information and Modeling 2020, 60 (7) , 3508-3517. https://doi.org/10.1021/acs.jcim.0c00280
    26. Antoine Le Roux, Émilie Blaise, Pierre-Luc Boudreault, Christian Comeau, Annie Doucet, Marilena Giarrusso, Marie-Pierre Collin, Thomas Neubauer, Florian Kölling, Andreas H. Göller, Lea Seep, Dieudonné T. Tshitenge, Matthias Wittwer, Maximilian Kullmann, Alexander Hillisch, Joachim Mittendorf, Eric Marsault. Structure–Permeability Relationship of Semipeptidic Macrocycles—Understanding and Optimizing Passive Permeability and Efflux Ratio. Journal of Medicinal Chemistry 2020, 63 (13) , 6774-6783. https://doi.org/10.1021/acs.jmedchem.0c00013
    27. Shuzhe Wang, Jagna Witek, Gregory A. Landrum, Sereina Riniker. Improving Conformer Generation for Small Rings and Macrocycles Based on Distance Geometry and Experimental Torsional-Angle Preferences. Journal of Chemical Information and Modeling 2020, 60 (4) , 2044-2058. https://doi.org/10.1021/acs.jcim.0c00025
    28. Nicolas Frazee, Kyle R. Billlings, Blake Mertz, . Gaussian accelerated molecular dynamics simulations facilitate prediction of the permeability of cyclic peptides. PLOS ONE 2024, 19 (4) , e0300688. https://doi.org/10.1371/journal.pone.0300688
    29. Daigo Asano, Hideo Takakusa, Daisuke Nakai. Oral Absorption of Middle-to-Large Molecules and Its Improvement, with a Focus on New Modality Drugs. Pharmaceutics 2024, 16 (1) , 47. https://doi.org/10.3390/pharmaceutics16010047
    30. Vasanthanathan Poongavanam, Lianne H. E. Wieske, Stefan Peintner, Máté Erdélyi, Jan Kihlberg. Molecular chameleons in drug discovery. Nature Reviews Chemistry 2024, 8 (1) , 45-60. https://doi.org/10.1038/s41570-023-00563-1
    31. Yuki Hosono, Satoshi Uchida, Moe Shinkai, Chad E. Townsend, Colin N. Kelly, Matthew R. Naylor, Hsiau-Wei Lee, Kayoko Kanamitsu, Mayumi Ishii, Ryosuke Ueki, Takumi Ueda, Koh Takeuchi, Masatake Sugita, Yutaka Akiyama, Scott R. Lokey, Jumpei Morimoto, Shinsuke Sando. Amide-to-ester substitution as a stable alternative to N-methylation for increasing membrane permeability in cyclic peptides. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-36978-z
    32. Marion L'Exact, Christian Comeau, Alix Bourhis, Olivier Boisvert, Ulrike Fröhlich, Danny Létourneau, Éric Marsault, Pierre Lavigne, Michel Grandbois, Pierre-Luc Boudreault. Beyond Rule-of-five: Permeability Assessment of Semipeptidic Macrocycles. Biochimica et Biophysica Acta (BBA) - Biomembranes 2023, 1865 (7) , 184196. https://doi.org/10.1016/j.bbamem.2023.184196
    33. Daniel Crusius, Jason R. Schnell, Flaviu Cipcigan, Philip C. Biggin. MacroConf – dataset & workflows to assess cyclic peptide solution structures. Digital Discovery 2023, 2 (4) , 1163-1177. https://doi.org/10.1039/D3DD00053B
    34. Anna Vincze, Gergely Dékány, Richárd Bicsak, András Formanek, Yves Moreau, Gábor Koplányi, Gergely Takács, Gábor Katona, Diána Balogh-Weiser, Ádám Arany, György T. Balogh. Natural Lipid Extracts as an Artificial Membrane for Drug Permeability Assay: In Vitro and In Silico Characterization. Pharmaceutics 2023, 15 (3) , 899. https://doi.org/10.3390/pharmaceutics15030899
    35. Eric Valeur. New Therapeutic Chemical Modalities: Compositions, Modes-of-action, and Drug Discovery. 2023, 911-961. https://doi.org/10.1039/9781788018982-00911
    36. Koh Takeuchi. Structure- and Dynamics-guided Drug Development Using NMR and its Application to Diverse Pharmaceutical Modalities. 2022, 411-448. https://doi.org/10.1039/9781839165702-00411
    37. Stephanie M. Linker, Christian Schellhaas, Benjamin Ries, Hans-Jörg Roth, Marianne Fouché, Stephane Rodde, Sereina Riniker. Polar/apolar interfaces modulate the conformational behavior of cyclic peptides with impact on their passive membrane permeability. RSC Advances 2022, 12 (10) , 5782-5796. https://doi.org/10.1039/D1RA09025A
    38. Jianguo Li, Srinivasaraghavan Kannan, Pietro Aronica, Christopher J. Brown, Anthony W. Partridge, Chandra S. Verma. Molecular descriptors suggest stapling as a strategy for optimizing membrane permeability of cyclic peptides. The Journal of Chemical Physics 2022, 156 (6) https://doi.org/10.1063/5.0078025
    39. Anna S. Kamenik, Stephanie M. Linker, Sereina Riniker. Enhanced sampling without borders: on global biasing functions and how to reweight them. Physical Chemistry Chemical Physics 2022, 24 (3) , 1225-1236. https://doi.org/10.1039/D1CP04809K
    40. Yuki Hosono, Jumpei Morimoto, Shinsuke Sando. A comprehensive study on the effect of backbone stereochemistry of a cyclic hexapeptide on membrane permeability and microsomal stability. Organic & Biomolecular Chemistry 2021, 19 (47) , 10326-10331. https://doi.org/10.1039/D1OB02090K
    41. Jiayuan Miao, Marc L. Descoteaux, Yu-Shan Lin. Structure prediction of cyclic peptides by molecular dynamics + machine learning. Chemical Science 2021, 12 (44) , 14927-14936. https://doi.org/10.1039/D1SC05562C
    42. Huy N. Hoang, Timothy A. Hill, David P. Fairlie. Connecting Hydrophobic Surfaces in Cyclic Peptides Increases Membrane Permeability. Angewandte Chemie 2021, 133 (15) , 8466-8471. https://doi.org/10.1002/ange.202012643
    43. Huy N. Hoang, Timothy A. Hill, David P. Fairlie. Connecting Hydrophobic Surfaces in Cyclic Peptides Increases Membrane Permeability. Angewandte Chemie International Edition 2021, 60 (15) , 8385-8390. https://doi.org/10.1002/anie.202012643
    44. Vasanthanathan Poongavanam, Yoseph Atilaw, Sofie Ye, Lianne H.E. Wieske, Mate Erdelyi, Giuseppe Ermondi, Giulia Caron, Jan Kihlberg. Predicting the Permeability of Macrocycles from Conformational Sampling – Limitations of Molecular Flexibility. Journal of Pharmaceutical Sciences 2021, 110 (1) , 301-313. https://doi.org/10.1016/j.xphs.2020.10.052
    45. Shanshan Feng, Yue Yue, Jinfeng Chen, Jie Zhou, Yanwei Li, Qingzhu Zhang. Biodegradation mechanism of polycaprolactone by a novel esterase MGS0156: a QM/MM approach. Environmental Science: Processes & Impacts 2020, 22 (12) , 2332-2344. https://doi.org/10.1039/D0EM00340A
    46. Akihiro Furukawa, Joshua Schwochert, Cameron R. Pye, Daigo Asano, Quinn D. Edmondson, Alexandra C. Turmon, Victoria G. Klein, Satoshi Ono, Okimasa Okada, R. Scott Lokey. Drug‐Like Properties in Macrocycles above MW 1000: Backbone Rigidity versus Side‐Chain Lipophilicity. Angewandte Chemie 2020, 132 (48) , 21755-21761. https://doi.org/10.1002/ange.202004550
    47. Akihiro Furukawa, Joshua Schwochert, Cameron R. Pye, Daigo Asano, Quinn D. Edmondson, Alexandra C. Turmon, Victoria G. Klein, Satoshi Ono, Okimasa Okada, R. Scott Lokey. Drug‐Like Properties in Macrocycles above MW 1000: Backbone Rigidity versus Side‐Chain Lipophilicity. Angewandte Chemie International Edition 2020, 59 (48) , 21571-21577. https://doi.org/10.1002/anie.202004550
    48. Abhinav Dubey, Koh Takeuchi, Mikhail Reibarkh, Haribabu Arthanari. The role of NMR in leveraging dynamics and entropy in drug design. Journal of Biomolecular NMR 2020, 74 (10-11) , 479-498. https://doi.org/10.1007/s10858-020-00335-9
    49. Eric Valeur. Classes, Modes of Action and Selection of New Modalities in Drug Discovery. 2020, 277-316. https://doi.org/10.1039/9781839160691-00277
    50. Ledong Zhu, Jie Zhou, Ruiming Zhang, Xiaowen Tang, Junjie Wang, Yanwei Li, Qingzhu Zhang, Wenxing Wang. Degradation mechanism of biphenyl and 4-4′-dichlorobiphenyl cis-dihydroxylation by non-heme 2,3 dioxygenases BphA: A QM/MM approach. Chemosphere 2020, 247 , 125844. https://doi.org/10.1016/j.chemosphere.2020.125844
    51. Jie Zhou, Ledong Zhu, Jinfeng Chen, Wei Wang, Ruiming Zhang, Yanwei Li, Qingzhu Zhang, Wenxing Wang. Degradation mechanism for Zearalenone ring-cleavage by Zearalenone hydrolase RmZHD: A QM/MM study. Science of The Total Environment 2020, 709 , 135897. https://doi.org/10.1016/j.scitotenv.2019.135897

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect