ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
ADDITION / CORRECTIONThis article has been corrected. View the notice.

Opportunities and Limitations for Nanophotonic Structures To Exceed the Shockley–Queisser Limit

View Author Information
Center for Nanophotonics, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
Department of Electrical Engineering, Columbia University, 500 W. 120th Street, New York, New York 10027, United States
§ Department of Electrical and Computer Engineering, The University of Texas at Austin, 1616 Guadalupe St., Austin, Texas 78701, United States
Cite this: ACS Nano 2016, 10, 9, 8620–8631
Publication Date (Web):August 31, 2016
https://doi.org/10.1021/acsnano.6b03950
Copyright © 2016 American Chemical Society

    Article Views

    1736

    Altmetric

    -

    Citations

    46
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Nanophotonic engineering holds great promise for photovoltaics, with several recently proposed approaches that have enabled efficiencies close to the Shockley–Queisser limit. Here, we theoretically demonstrate that suitably designed nanophotonic structures may be able to surpass the 1 sun Shockley–Queisser limit by utilizing tailored directivity of the scattering response of nanoparticles. We show that large absorption cross sections do not play a significant role in the efficiency enhancement, and on the contrary, directivity enhancement constitutes the nanoscale equivalent to concentration in macroscopic photovoltaic systems. Based on this principle, we discuss fundamental limits to the efficiency based on directivity bounds and a number of approaches to get close to these limits. We also highlight that, in practice, achieving efficiencies above the Shockley–Queisser limit is strongly hindered by whether high short-circuit currents can be maintained. Finally, we discuss how our results are affected by the presence of significant nonradiative recombination, in which case both directivity and photon escape probability should be increased to achieve voltage enhancement.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 46 publications.

    1. Anjay Manian, Francesco Campaioli, Rohan J. Hudson, Jared H. Cole, Timothy W. Schmidt, Igor Lyskov, Trevor A. Smith, Salvy P. Russo. Charge Transfer-Mediated Multi-exciton Mechanisms in Weakly Coupled Perylene Dimers. Chemistry of Materials 2023, 35 (17) , 6889-6908. https://doi.org/10.1021/acs.chemmater.3c01156
    2. Simon Escobar Steinvall, Elias Z. Stutz, Rajrupa Paul, Mahdi Zamani, Jean-Baptiste Leran, Mirjana Dimitrievska, Anna Fontcuberta i Morral. Nanoscale Growth Initiation as a Pathway to Improve the Earth-Abundant Absorber Zinc Phosphide. ACS Applied Energy Materials 2022, 5 (5) , 5298-5306. https://doi.org/10.1021/acsaem.1c02484
    3. Saswata Halder, Amit Kessel, Noa Mazurski, Uriel Levy. Thermal Transport in Engineered Hybrid Organic–Inorganic Perovskite Metasurfaces. The Journal of Physical Chemistry C 2021, 125 (28) , 15134-15144. https://doi.org/10.1021/acs.jpcc.0c10187
    4. Julia S. van der Burgt, Christian D. Dieleman, Eric Johlin, Jaco J. Geuchies, Arjan J. Houtepen, Bruno Ehrler, Erik C. Garnett. Integrating Sphere Fourier Microscopy of Highly Directional Emission. ACS Photonics 2021, 8 (4) , 1143-1151. https://doi.org/10.1021/acsphotonics.1c00010
    5. Erik C. Garnett, Bruno Ehrler, Albert Polman, Esther Alarcon-Llado. Photonics for Photovoltaics: Advances and Opportunities. ACS Photonics 2021, 8 (1) , 61-70. https://doi.org/10.1021/acsphotonics.0c01045
    6. Julia S. van der Burgt, Erik C. Garnett. Nanophotonic Emission Control for Improved Photovoltaic Efficiency. ACS Photonics 2020, 7 (7) , 1589-1602. https://doi.org/10.1021/acsphotonics.0c00152
    7. Robert Duggan, Younes Ra’di, Andrea Alù. Temporally and Spatially Coherent Emission from Thermal Embedded Eigenstates. ACS Photonics 2019, 6 (11) , 2949-2956. https://doi.org/10.1021/acsphotonics.9b01131
    8. Enrique Barrigón, Magnus Heurlin, Zhaoxia Bi, Bo Monemar, Lars Samuelson. Synthesis and Applications of III–V Nanowires. Chemical Reviews 2019, 119 (15) , 9170-9220. https://doi.org/10.1021/acs.chemrev.9b00075
    9. Sebastian Z. Oener, Parisa Khoram, Sarah Brittman, Sander A. Mann, Qianpeng Zhang, Zhiyong Fan, Shannon W. Boettcher, and Erik C. Garnett . Perovskite Nanowire Extrusion. Nano Letters 2017, 17 (11) , 6557-6563. https://doi.org/10.1021/acs.nanolett.7b02213
    10. Rune Frederiksen, Gozde Tutuncuoglu, Federico Matteini, Karen L. Martinez, Anna Fontcuberta i Morral, and Esther Alarcon-Llado . Visual Understanding of Light Absorption and Waveguiding in Standing Nanowires with 3D Fluorescence Confocal Microscopy. ACS Photonics 2017, 4 (9) , 2235-2241. https://doi.org/10.1021/acsphotonics.7b00434
    11. Gede W. P. Adhyaksa, Eric Johlin, and Erik C. Garnett . Nanoscale Back Contact Perovskite Solar Cell Design for Improved Tandem Efficiency. Nano Letters 2017, 17 (9) , 5206-5212. https://doi.org/10.1021/acs.nanolett.7b01092
    12. Ayesha Razi, Amna Safdar, Rabia Irfan. Optical Optimization of Tandem Solar Cells: A Systematic Review for Enhanced Power Conversion. Nanomaterials 2023, 13 (23) , 2985. https://doi.org/10.3390/nano13232985
    13. Emanuele Bochicchio, Philemon A. L. M. Koolen, Ksenia Korzun, Simon V. Quiroz Monnens, Bas van Gorkom, Jaime Gómez Rivas, Jos E. M. Haverkort. Efficiency enhancement in a lensed nanowire solar cell. Journal of Applied Physics 2023, 134 (19) https://doi.org/10.1063/5.0161007
    14. Modupeola Dada, Patricia Popoola, Alice Alao, Folasayo Olalere, Evlly Mtileni, Ntanzi Lindokuhle, Makinita Shamaine. Functional materials for solar thermophotovoltaic devices in energy conversion applications: a review. Frontiers in Energy Research 2023, 11 https://doi.org/10.3389/fenrg.2023.1124288
    15. Julia S. van der Burgt, Susan A. Rigter, Nelson de Gaay Fortman, Erik C. Garnett. Self‐Tracking Solar Concentrator with Absorption of Diffuse Sunlight. Advanced Optical Materials 2023, 11 (10) https://doi.org/10.1002/adom.202202013
    16. Yuhan Chen. Characteristic analysis and comparison of perovskite solar cell. Highlights in Science, Engineering and Technology 2022, 27 , 506-511. https://doi.org/10.54097/hset.v27i.3807
    17. Tanveer Ahmad, Hongyu Zhu, Dongdong Zhang, Rasikh Tariq, A. Bassam, Fasee Ullah, Ahmed S AlGhamdi, Sultan S. Alshamrani. Energetics Systems and artificial intelligence: Applications of industry 4.0. Energy Reports 2022, 8 , 334-361. https://doi.org/10.1016/j.egyr.2021.11.256
    18. Ángela Barreda, Francesco Vitale, Alexander E. Minovich, Carsten Ronning, Isabelle Staude. Applications of Hybrid Metal‐Dielectric Nanostructures: State of the Art. Advanced Photonics Research 2022, 3 (4) https://doi.org/10.1002/adpr.202100286
    19. Anika Tasnim Chowdhury, Nazifa Rafa, Ahmedul Kabir, Paulraj Mosae Selvakumar. Consumer Nanoproducts for Environment. 2022, 1169-1200. https://doi.org/10.1007/978-981-16-8698-6_67
    20. Maria Chiara Spadaro, Simon Escobar Steinvall, Nelson Y. Dzade, Sara Martí-Sánchez, Pol Torres-Vila, Elias Z. Stutz, Mahdi Zamani, Rajrupa Paul, Jean-Baptiste Leran, Anna Fontcuberta i Morral, Jordi Arbiol. Rotated domains in selective area epitaxy grown Zn 3 P 2 : formation mechanism and functionality. Nanoscale 2021, 13 (44) , 18441-18450. https://doi.org/10.1039/D1NR06190A
    21. Suneet Kumar Agnihotri, Dip Prakash Samajdar, D. V Prashant. Role of Hole-Selective Contact in Efficiency Improvement of ITO-Free InP/MoO 3 / PEDOT:PSS Nanowire Solar Cells. IEEE Transactions on Electron Devices 2021, 68 (11) , 5666-5673. https://doi.org/10.1109/TED.2021.3115079
    22. Wenrui Xu, Nasir Ilyas, Hong Zhuo Gao, Wei Li, Xiang-Dong Jiang, . Optically stimulated synaptic devices based on silicon-tin alloyed thin film. 2021, 200. https://doi.org/10.1117/12.2606806
    23. ZARBAD SHAH, TOFAIL ARSHAD, KAUSAR SHAHEEN, SHER BAHADAR KHAN, SYED MUHAMMAD SALMAN, ALA UDDIN. RECENT AND FUTURE PROSPECTIVE OF VARIOUS PHOTO-CATALYSTS FOR ENVIRONMENTAL POLLUTION AND ENERGY PRODUCTION: A REVIEW. Surface Review and Letters 2021, 28 (09) , 2130002. https://doi.org/10.1142/S0218625X21300021
    24. Sayan Roy, Zixuan Hu, Sabre Kais, Peter Bermel. Enhancement of Photovoltaic Current through Dark States in Donor‐Acceptor Pairs of Tungsten‐Based Transition Metal Di‐Chalcogenides. Advanced Functional Materials 2021, 31 (23) https://doi.org/10.1002/adfm.202100387
    25. Leiping Duan, Long Hu, Xinwei Guan, Chun‐Ho Lin, Dewei Chu, Shujuan Huang, Xiaogang Liu, Jianyu Yuan, Tom Wu. Quantum Dots for Photovoltaics: A Tale of Two Materials. Advanced Energy Materials 2021, 11 (20) https://doi.org/10.1002/aenm.202100354
    26. Antti Myllynen, Toufik Sadi, Jani Oksanen. Interdigitated back‐contact double‐heterojunction GaInP/GaAs solar cells. Progress in Photovoltaics: Research and Applications 2021, 29 (1) , 47-53. https://doi.org/10.1002/pip.3339
    27. Anika Tasnim Chowdhury, Nazifa Rafa, Ahmedul Kabir, Paulraj Mosae Selvakumar. Consumer Nanoproducts for Environment. 2021, 1-33. https://doi.org/10.1007/978-981-15-6453-6_67-1
    28. Simon Escobar Steinvall, Lea Ghisalberti, Reza R. Zamani, Nicolas Tappy, Fredrik S. Hage, Elias Z. Stutz, Mahdi Zamani, Rajrupa Paul, Jean-Baptiste Leran, Quentin M. Ramasse, W. Craig Carter, Anna Fontcuberta i Morral. Heterotwin Zn 3 P 2 superlattice nanowires: the role of indium insertion in the superlattice formation mechanism and their optical properties. Nanoscale 2020, 12 (44) , 22534-22540. https://doi.org/10.1039/D0NR05852A
    29. Sander A. Mann, Dimitrios L. Sounas, Andrea Alù. Nonreciprocal cavities and the time-bandwidth limit: reply. Optica 2020, 7 (9) , 1102. https://doi.org/10.1364/OPTICA.401383
    30. Prithu Roy, Alexey D Bolshakov. Ga-GaP nanowire hybrid optical system for enhanced coupling, focusing and steering of light. Journal of Physics D: Applied Physics 2020, 53 (29) , 295101. https://doi.org/10.1088/1361-6463/ab7d68
    31. Simon Escobar Steinvall, Nicolas Tappy, Masoomeh Ghasemi, Reza R. Zamani, Thomas LaGrange, Elias Z. Stutz, Jean-Baptiste Leran, Mahdi Zamani, Rajrupa Paul, Anna Fontcuberta i Morral. Multiple morphologies and functionality of nanowires made from earth-abundant zinc phosphide. Nanoscale Horizons 2020, 5 (2) , 274-282. https://doi.org/10.1039/C9NH00398C
    32. Zongyi Zhang, Yonggang Wu, Xuefei Qin, Zihuan Xia, Jian Zhou. Design of an InP/ZnO core–shell nanocone array solar cell with efficient broadband light absorption enhancement. Applied Optics 2020, 59 (1) , 107. https://doi.org/10.1364/AO.59.000107
    33. Zongyi Zhang, Yonggang Wu, Xuefei Qin, Zihuan Xia, Jian Zhou, , . Efficient broadband light absorption enhancement in InP/ZnO core-shell nanocone arrays for photovoltaic application. 2019, 11. https://doi.org/10.1117/12.2536570
    34. Nasim Tavakoli, Esther Alarcon-Llado. Combining 1D and 2D waveguiding in an ultrathin GaAs NW/Si tandem solar cell. Optics Express 2019, 27 (12) , A909. https://doi.org/10.1364/OE.27.00A909
    35. Yuyi Feng, Paul Kim, Clayton A. Nemitz, Kwang-Dae Kim, Yoonseok Park, Karl Leo, James Dorman, Jonas Weickert, Yongtian Wang, Lukas Schmidt-Mende. Boosting charge collection efficiency via large-area free-standing Ag/ZnO core-shell nanowire array electrodes. Progress in Natural Science: Materials International 2019, 29 (2) , 124-128. https://doi.org/10.1016/j.pnsc.2019.03.002
    36. Dipak L Gapale, Sandeep A Arote, Balasaheb M Palve, Sanjaykumar N Dalvi, Ratan Y Borse. Effect of film thickness on humidity sensing of spray deposited TiO 2 thin films. Materials Research Express 2019, 6 (2) , 026402. https://doi.org/10.1088/2053-1591/aae970
    37. Eric Johlin, Sander A. Mann, Sachin Kasture, A. Femius Koenderink, Erik C. Garnett. Broadband highly directive 3D nanophotonic lenses. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-07104-1
    38. Ángela I. Barreda, Hassan Saleh, Amélie Litman, Francisco González, Jean-Michel Geffrin, Fernando Moreno. On the scattering directionality of a dielectric particle dimer of High Refractive Index. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-26359-8
    39. Yuyi Feng, Paul Kim, Clayton Nemitz, Kwang-Dae Kim, Yoonseok Park, Karl Leo, James Dorman, Jonas Weickert, Yongtian Wang, Lukas Schmidt-Mende, , , . Nanowire-based metamaterials electrodes for extremely fast charge collection. 2018, 8. https://doi.org/10.1117/12.2501666
    40. Jos E. M. Haverkort, Erik C. Garnett, Erik P. A. M. Bakkers. Fundamentals of the nanowire solar cell: Optimization of the open circuit voltage. Applied Physics Reviews 2018, 5 (3) , 031106. https://doi.org/10.1063/1.5028049
    41. Ying Wang, Xinyuan Zhou, Zaixing Yang, Fengyun Wang, Ning Han, Yunfa Chen, Johnny Ho. GaAs Nanowires Grown by Catalyst Epitaxy for High Performance Photovoltaics. Crystals 2018, 8 (9) , 347. https://doi.org/10.3390/cryst8090347
    42. Zhexin Zhao, Yu Shi, Kaifeng Chen, Shanhui Fan. Relation between absorption and emission directivities for dipoles coupled with optical antennas. Physical Review A 2018, 98 (1) https://doi.org/10.1103/PhysRevA.98.013845
    43. Peter R. Wiecha, Aurélien Cuche, Houssem Kallel, Gérard Colas des Francs, Aurélie Lecestre, Guilhem Larrieu, Vincent Larrey, Frank Fournel, Thierry Baron, Arnaud Arbouet, Vincent Paillard. Fano-resonances in High Index Dielectric Nanowires for Directional Scattering. 2018, 283-309. https://doi.org/10.1007/978-3-319-99731-5_12
    44. Jian Zhou, Yonggang Wu, Zihuan Xia, Xuefei Qin, Zongyi Zhang. Toward high performance nanoscale optoelectronic devices: super solar energy harvesting in single standing core-shell nanowire. Optics Express 2017, 25 (24) , A1111. https://doi.org/10.1364/OE.25.0A1111
    45. Zhong-Jian Yang, Ruibin Jiang, Xiaolu Zhuo, Ya-Ming Xie, Jianfang Wang, Hai-Qing Lin. Dielectric nanoresonators for light manipulation. Physics Reports 2017, 701 , 1-50. https://doi.org/10.1016/j.physrep.2017.07.006
    46. Sarah Brittman, Sebastian Z. Oener, Ke Guo, Haralds Āboliņš, A. Femius Koenderink, Erik C. Garnett. Controlling crystallization to imprint nanophotonic structures into halide perovskites using soft lithography. Journal of Materials Chemistry C 2017, 5 (32) , 8301-8307. https://doi.org/10.1039/C7TC02775C

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect